Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 1/2018

24.05.2017 | Original Article

Thermogravimetric characteristic and kinetic of catalytic co-pyrolysis of biomass with low- and high-density polyethylenes

verfasst von: Mohammed Umar Garba, Adoga Inalegwu, Umaru Musa, Alechenu Audu Aboje, Abdulsalami Sanni Kovo, David Olalekan Adeniyi

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The pyrolysis of wood fuel (WF) and polyethylenes (low-density polyethylene; LDPE and high-density polyethylene; HDPE) in a non-catalytic and catalytic co-pyrolysis over zeolite catalyst (ZSM-5) were studied via a thermogravimetric analysis. The result obtained for the biomass with LDPE and HDPE blends shows that the peak temperature decreases significantly only at blends with catalyst as compared to the peak temperature of isolated LDPE and HDPE materials. The peak temperature of WF/LDPE/ZSM-5 (390 °C) was lower than that of WF/HDPE/ZSM-5 (480 °C). The weight loss differences between experimental and theoretical values were greater than 1% at temperature higher than 500 °C in the various admixtures which depicts the occurrence of chemical interactions between the blends. After catalysts were added to the blend, the fuels became more reactive to thermal degradation. The results of the non-catalytic pyrolysis kinetics revealed activation energy values of 54.09 and 95.90 KJ/mol for WF/LDPE and WF/HDPE, respectively. However, with the presence of ZSM-5 activation, energy falls to 24.13 and 50.45 for WF/LDPE/ZSM-5 and WF/HDPE/ZSM-5, respectively. The findings in this work show that the kinetic of catalytic co-pyrolysis of biomass with plastic can be viewed as a potential thermochemical conversion method that can be effectively utilized for a marked reduction in energy requirement of the process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hu C, Yang Y, Luo J, Pan P, Tong D, Li G (2011) Recent advances in the catalytic pyrolysis of biomass. Front Chem Sci Eng 5:188–193CrossRef Hu C, Yang Y, Luo J, Pan P, Tong D, Li G (2011) Recent advances in the catalytic pyrolysis of biomass. Front Chem Sci Eng 5:188–193CrossRef
2.
Zurück zum Zitat Goyal H, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources. A Rev Renew Sustain Energ Rev 12(2):504–517 Goyal H, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources. A Rev Renew Sustain Energ Rev 12(2):504–517
3.
Zurück zum Zitat Jackson MA, Compton DL, Boateng AA (2009) Screening heterogeneous catalysts for the pyrolysis of lignin. J Anal Appl Pyrolysis 85:226–230CrossRef Jackson MA, Compton DL, Boateng AA (2009) Screening heterogeneous catalysts for the pyrolysis of lignin. J Anal Appl Pyrolysis 85:226–230CrossRef
4.
Zurück zum Zitat Garba, M.U., Gambo, S.U., Musa, U., Tauheed, K., Alhassan, M., Adeniyi, O.D.(2017): Impact of torrefaction on fuel property of tropical biomass feedstocks, Biofuels, DOI:10.1080/17597269.2016.1271629. Garba, M.U., Gambo, S.U., Musa, U., Tauheed, K., Alhassan, M., Adeniyi, O.D.(2017): Impact of torrefaction on fuel property of tropical biomass feedstocks, Biofuels, DOI:10.1080/17597269.2016.1271629.
5.
Zurück zum Zitat Garba MU, Ingham DB, Ma L, Degereji MU, Pourkashanian M, Williams A (2013) Modelling of deposit formation and sintering for the co-combustion of coal with biomass. Fuel 113:863–872CrossRef Garba MU, Ingham DB, Ma L, Degereji MU, Pourkashanian M, Williams A (2013) Modelling of deposit formation and sintering for the co-combustion of coal with biomass. Fuel 113:863–872CrossRef
6.
Zurück zum Zitat Güray Y, Tom L, Hilal ET, Kevin MG, Guy BM, Frederik R, Ruben D, Sascha RAK, Wolter P (2014) Catalytic fast pyrolysis of pine wood: effect of successive catalyst regeneration. Energ Fuel 28:4560–4572CrossRef Güray Y, Tom L, Hilal ET, Kevin MG, Guy BM, Frederik R, Ruben D, Sascha RAK, Wolter P (2014) Catalytic fast pyrolysis of pine wood: effect of successive catalyst regeneration. Energ Fuel 28:4560–4572CrossRef
7.
Zurück zum Zitat Pattiya A, Titiloye JO, Bridgwater A (2008) Fast pyrolysis of cassava rhizome in the presence of catalysts. J Anal Appl Pyrolysis 81:72–79CrossRef Pattiya A, Titiloye JO, Bridgwater A (2008) Fast pyrolysis of cassava rhizome in the presence of catalysts. J Anal Appl Pyrolysis 81:72–79CrossRef
8.
Zurück zum Zitat Zhang H, Xiao R, Jin B, Shen D, Chen R, Xiao G (2013) Catalytic fast pyrolysis of straw biomass in an internally interconnected fluidized bed to produce aromatics and olefins: effect of different catalysts. Bioresour Technol 137:82–87CrossRef Zhang H, Xiao R, Jin B, Shen D, Chen R, Xiao G (2013) Catalytic fast pyrolysis of straw biomass in an internally interconnected fluidized bed to produce aromatics and olefins: effect of different catalysts. Bioresour Technol 137:82–87CrossRef
9.
Zurück zum Zitat Williams PT, Nugranad N (2000) Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy 25:493–513CrossRef Williams PT, Nugranad N (2000) Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy 25:493–513CrossRef
10.
Zurück zum Zitat Zhang B, Zhong Z, Min M, Ding K, Xie Q, Ruan R (2015a) Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: analytical Py-GC/MS study. Bioresour Technol 189:30–35CrossRef Zhang B, Zhong Z, Min M, Ding K, Xie Q, Ruan R (2015a) Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: analytical Py-GC/MS study. Bioresour Technol 189:30–35CrossRef
11.
Zurück zum Zitat Dorado C, Mullen CA, Boateng AA (2014) H-ZSM5 catalyzed co-pyrolysis of biomass and plastics. ACS Sustain Chem Eng 2(2):301–311CrossRef Dorado C, Mullen CA, Boateng AA (2014) H-ZSM5 catalyzed co-pyrolysis of biomass and plastics. ACS Sustain Chem Eng 2(2):301–311CrossRef
12.
13.
Zurück zum Zitat Zhang X, Lei H, Zhu L, Qian M, Zhu X, Wu J, Chen S (2016b) Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions. Appl Energy 173:418–430CrossRef Zhang X, Lei H, Zhu L, Qian M, Zhu X, Wu J, Chen S (2016b) Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions. Appl Energy 173:418–430CrossRef
14.
Zurück zum Zitat Garba MU, Ingham DB, Ma L, Porter RTJ, Pourkashnian M, Tan HZ, Williams A (2012) Prediction of potassium chloride Sulphation and its effect on deposition of biomass-fired boilers. Energ Fuel 26(11):6501–6508CrossRef Garba MU, Ingham DB, Ma L, Porter RTJ, Pourkashnian M, Tan HZ, Williams A (2012) Prediction of potassium chloride Sulphation and its effect on deposition of biomass-fired boilers. Energ Fuel 26(11):6501–6508CrossRef
15.
Zurück zum Zitat Garba MU, Ingham DB, Ma L, Degereji MU, Pourkashanian M, Williams A (2013) Modelling of deposit formation and sintering for the co-combustion of coal with biomass. Fuel 113:863–872CrossRef Garba MU, Ingham DB, Ma L, Degereji MU, Pourkashanian M, Williams A (2013) Modelling of deposit formation and sintering for the co-combustion of coal with biomass. Fuel 113:863–872CrossRef
16.
Zurück zum Zitat Cordero T, Rodríguez-Maroto JM, Rodríguez-Mirasol J, Rodríguez JJ (1990) On the kinetics of thermal decomposition of wood and wood components. Thermochim Act 164:135–144CrossRef Cordero T, Rodríguez-Maroto JM, Rodríguez-Mirasol J, Rodríguez JJ (1990) On the kinetics of thermal decomposition of wood and wood components. Thermochim Act 164:135–144CrossRef
17.
Zurück zum Zitat Orfao JJM, Antunes FJA, Figueiredo JL (1999) Pyrolysis kinetics of lignocellulosic materials – three independent reactions model. Fuel 78:349–358CrossRef Orfao JJM, Antunes FJA, Figueiredo JL (1999) Pyrolysis kinetics of lignocellulosic materials – three independent reactions model. Fuel 78:349–358CrossRef
18.
Zurück zum Zitat Font R, Marcilla A, Verdú E, Devesa J (1991) Thermogravimetric kinetic study of the pyrolyisis of almond shells and almond shells impregnated with CoCl2. J Anal Appl Pyrolysis 21:249–264CrossRef Font R, Marcilla A, Verdú E, Devesa J (1991) Thermogravimetric kinetic study of the pyrolyisis of almond shells and almond shells impregnated with CoCl2. J Anal Appl Pyrolysis 21:249–264CrossRef
19.
Zurück zum Zitat Changbo L, Wenli S, Weigang L (2009) Kinetics of biomass catalytic pyrolysis. Biotechnol Adv 27:583–587CrossRef Changbo L, Wenli S, Weigang L (2009) Kinetics of biomass catalytic pyrolysis. Biotechnol Adv 27:583–587CrossRef
20.
Zurück zum Zitat Foster AJ, Jae J, Cheng YT, Huber GW, Lobo RF (2012) Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Appl Catal A 423-424:154–161CrossRef Foster AJ, Jae J, Cheng YT, Huber GW, Lobo RF (2012) Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Appl Catal A 423-424:154–161CrossRef
21.
Zurück zum Zitat Iliopoulou EF, Stefanidis SD, Kalogiannis KG, Delimitis A, Lappas AA, Triantafyllidis KS (2012) Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Appl Catal B 127:281–290CrossRef Iliopoulou EF, Stefanidis SD, Kalogiannis KG, Delimitis A, Lappas AA, Triantafyllidis KS (2012) Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Appl Catal B 127:281–290CrossRef
22.
Zurück zum Zitat Miranda R, Yang J, Roy C, Vasile C (2001) Vacuum pyrolysis of commingled plastics containing PVC I. Kinetic study. Polym Degrad Stab 72:469–491CrossRef Miranda R, Yang J, Roy C, Vasile C (2001) Vacuum pyrolysis of commingled plastics containing PVC I. Kinetic study. Polym Degrad Stab 72:469–491CrossRef
23.
Zurück zum Zitat Chattopadhyay J, Kim C, Kim R, Park D (2008b) Thermogravimetric characteristics and kinetic study of biomass co-pyrolysis with plastics. Korean J Chem Eng 25:1047–1053CrossRef Chattopadhyay J, Kim C, Kim R, Park D (2008b) Thermogravimetric characteristics and kinetic study of biomass co-pyrolysis with plastics. Korean J Chem Eng 25:1047–1053CrossRef
24.
Zurück zum Zitat Chattopadhyay J, Kim C, Kim R, Park D (2009) Thermogravimetric study on pyrolysis of biomass with Cu/Al2O3 catalysts, J Indust Enginee Chem, 15(1), 72–76 Chattopadhyay J, Kim C, Kim R, Park D (2009) Thermogravimetric study on pyrolysis of biomass with Cu/Al2O3 catalysts, J Indust Enginee Chem, 15(1), 72–76
25.
Zurück zum Zitat Xiong S, Zhuo J, Zhou H, Pang R, Yao Q (2015) Study on the co-pyrolysis of high density polyethylene and potato blends using thermogravimetric analyzer and tubular furnace. J Anal Appl Pyrolysis 112:66–73CrossRef Xiong S, Zhuo J, Zhou H, Pang R, Yao Q (2015) Study on the co-pyrolysis of high density polyethylene and potato blends using thermogravimetric analyzer and tubular furnace. J Anal Appl Pyrolysis 112:66–73CrossRef
26.
Zurück zum Zitat Marin N, Collura S, Sharypov VI, Beregovtsova NG et al (2002) Copyrolysis of wood biomass and synthetic polymers mixtures. Part II: characterisation of the liquid phases. J Anal Appl Pyrolysis 65:41–55CrossRef Marin N, Collura S, Sharypov VI, Beregovtsova NG et al (2002) Copyrolysis of wood biomass and synthetic polymers mixtures. Part II: characterisation of the liquid phases. J Anal Appl Pyrolysis 65:41–55CrossRef
27.
Zurück zum Zitat Vasile C, Brebu M, Darie H, Cazacu G (2010) Effect of some environmentally degradable materials on the pyrolysis of plastics II: influence of cellulose and lignin on the pyrolysis of complex mixtures. J Mater Cycles Waste Manage 12:147–153CrossRef Vasile C, Brebu M, Darie H, Cazacu G (2010) Effect of some environmentally degradable materials on the pyrolysis of plastics II: influence of cellulose and lignin on the pyrolysis of complex mixtures. J Mater Cycles Waste Manage 12:147–153CrossRef
28.
Zurück zum Zitat Aboulkas A, El Harfi K (2009) Co-pyrolysis of olive residue with poly (vinyl chloride) using thermogravimetric analysis. J Therm Anal Calorim 95:1007–1013CrossRef Aboulkas A, El Harfi K (2009) Co-pyrolysis of olive residue with poly (vinyl chloride) using thermogravimetric analysis. J Therm Anal Calorim 95:1007–1013CrossRef
29.
Zurück zum Zitat Cumming JW (1984) Reactivity assessment of coals via a weighted mean activation energy. Fuel 63(10):1436–1440CrossRef Cumming JW (1984) Reactivity assessment of coals via a weighted mean activation energy. Fuel 63(10):1436–1440CrossRef
31.
Zurück zum Zitat Haykiri-Açma H (2003) Combustion characteristics of different biomass materials. Energy Convers Manag 44:155–162CrossRef Haykiri-Açma H (2003) Combustion characteristics of different biomass materials. Energy Convers Manag 44:155–162CrossRef
32.
Zurück zum Zitat Vasile C, Brebu MA (2007) Thermal valorisation of biomass and of synthetic polymer waste. Upgrading of pyrolysis oils. Cellul Chemist Technol 40:489–512 Vasile C, Brebu MA (2007) Thermal valorisation of biomass and of synthetic polymer waste. Upgrading of pyrolysis oils. Cellul Chemist Technol 40:489–512
33.
Zurück zum Zitat Singh RK, Ruj B (2016) Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel 174:164–171CrossRef Singh RK, Ruj B (2016) Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel 174:164–171CrossRef
34.
Zurück zum Zitat Day M, Cooney D, Mackinnon M (1995) Degradation of contaminated plastics: a kinetic study. Polym Degrad Stab 48:341–349CrossRef Day M, Cooney D, Mackinnon M (1995) Degradation of contaminated plastics: a kinetic study. Polym Degrad Stab 48:341–349CrossRef
35.
Zurück zum Zitat Bockhorn H, Hornung A, Hornung U, Schawaller D (1999) Kinetic study on the thermal degradation of polypropylene and polyethylene. J Anal Appl Pyrolysis 48(2):93–109CrossRef Bockhorn H, Hornung A, Hornung U, Schawaller D (1999) Kinetic study on the thermal degradation of polypropylene and polyethylene. J Anal Appl Pyrolysis 48(2):93–109CrossRef
36.
Zurück zum Zitat Horvat N, Ng FTT (1999) Tertiary polymer recycling: study of polyethylene thermolysis as a first step to synthetic diesel fuel. Fuel 78:459–462CrossRef Horvat N, Ng FTT (1999) Tertiary polymer recycling: study of polyethylene thermolysis as a first step to synthetic diesel fuel. Fuel 78:459–462CrossRef
37.
Zurück zum Zitat Kandola BK, Horrocks AR, Price D, Coleman GV (1996) Flame-retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. J Macrom scien Part C: Poly Rev 36(4):721–794CrossRef Kandola BK, Horrocks AR, Price D, Coleman GV (1996) Flame-retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. J Macrom scien Part C: Poly Rev 36(4):721–794CrossRef
38.
Zurück zum Zitat Sharypov VI, Beregovtsova NG, Kuznetsov BN, Membrado L, Cebolla VL, Marin N, Weber JV (2003) Co-pyrolysis of wood biomass and synthetic polymers mixtures. Part III: characterisation of heavy products. J Anal Appl Pyrolysis 67:325–340CrossRef Sharypov VI, Beregovtsova NG, Kuznetsov BN, Membrado L, Cebolla VL, Marin N, Weber JV (2003) Co-pyrolysis of wood biomass and synthetic polymers mixtures. Part III: characterisation of heavy products. J Anal Appl Pyrolysis 67:325–340CrossRef
39.
Zurück zum Zitat Han B, Chen Y, Wu Y, Hua D, Chen Z, Feng W, Yang M, Xie Q (2013) Co-pyrolysis behaviors and kinetics of plastics–biomass blends through thermogravimetric analysis. J Therm Anal Calorim 115:1–9 Han B, Chen Y, Wu Y, Hua D, Chen Z, Feng W, Yang M, Xie Q (2013) Co-pyrolysis behaviors and kinetics of plastics–biomass blends through thermogravimetric analysis. J Therm Anal Calorim 115:1–9
40.
Zurück zum Zitat Cai JQ, Wang YP, Zhou LM, Huang QW (2008) Thermogravimetric analysis and kinetics of coal/plastic blends during co-pyrolysis in nitrogen atmosphere. Fuel Process Technol 89:21–27CrossRef Cai JQ, Wang YP, Zhou LM, Huang QW (2008) Thermogravimetric analysis and kinetics of coal/plastic blends during co-pyrolysis in nitrogen atmosphere. Fuel Process Technol 89:21–27CrossRef
41.
Zurück zum Zitat Wall LA, Madorsky SL, Brown DW, Straus S, Simha R (1954) The Depolymerization of Polymethylene and polyethylene. J Am Chem Soc 76:3430–3437CrossRef Wall LA, Madorsky SL, Brown DW, Straus S, Simha R (1954) The Depolymerization of Polymethylene and polyethylene. J Am Chem Soc 76:3430–3437CrossRef
Metadaten
Titel
Thermogravimetric characteristic and kinetic of catalytic co-pyrolysis of biomass with low- and high-density polyethylenes
verfasst von
Mohammed Umar Garba
Adoga Inalegwu
Umaru Musa
Alechenu Audu Aboje
Abdulsalami Sanni Kovo
David Olalekan Adeniyi
Publikationsdatum
24.05.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 1/2018
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-017-0261-y

Weitere Artikel der Ausgabe 1/2018

Biomass Conversion and Biorefinery 1/2018 Zur Ausgabe