Skip to main content
Erschienen in: International Journal of Mechanics and Materials in Design 3/2019

03.10.2018

Thermomechanical investigation of unidirectional carbon fiber-polymer hybrid composites containing CNTs

verfasst von: M. K. Hassanzadeh-Aghdam, R. Ansari

Erschienen in: International Journal of Mechanics and Materials in Design | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this research, the thermoelastic response of unidirectional carbon fiber (CF)-reinforced polymer hybrid composites containing carbon nanotubes (CNTs) are analyzed using a physics-based hierarchical micromechanical modeling approach. The developed model consists of a unit cell-based scheme along with the Eshelby method which can consider random orientation, random distribution, directional behavior, non-straight shape of CNTs and interphase region generated due to the non-bonded van der Waals interaction between a CNT and the polymer matrix. The predictions are compared with the experimental data available in the literature and a quite good agreement is pointed out for the fibrous polymer composite, CNT-polymer nanocomposite and fiber/CNT-polymer hybrid composite systems. The influences of several factors, including volume fraction, aspect ratio, off-axis angle and arrangement type of CFs as well as CNT volume fraction on the thermoelastic behavior of CF/CNT-polymer hybrid composites are examined in detail. The results indicate that the transverse CTE of a unidirectional CF-reinforced composite is significantly improved due to the addition of CNTs, while the hybrid composite CTE in the longitudinal direction is negligibly affected by the CNTs. Also, it is found that the role of CNT in the hybrid composite thermoelastic behavior becomes more prominent as the CF aspect ratio decreases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aghdam, M.M., Dezhsetan, A.: Micromechanics based analysis of randomly distributed fiber reinforced composites using simplified unit cell model. Compos. Struct. 71(3–4), 327–332 (2005)CrossRef Aghdam, M.M., Dezhsetan, A.: Micromechanics based analysis of randomly distributed fiber reinforced composites using simplified unit cell model. Compos. Struct. 71(3–4), 327–332 (2005)CrossRef
Zurück zum Zitat Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer 70, 149–160 (2015a)CrossRef Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer 70, 149–160 (2015a)CrossRef
Zurück zum Zitat Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Interfacial and mechanical properties of epoxy nanocomposites using different multiscale modeling schemes. Compos. Struct. 131, 545–555 (2015b)CrossRef Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Interfacial and mechanical properties of epoxy nanocomposites using different multiscale modeling schemes. Compos. Struct. 131, 545–555 (2015b)CrossRef
Zurück zum Zitat Ansari, R., Hassanzadeh-Aghdam, M.K.: Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites. Int. J. Mech. Sci. 115, 45–55 (2016)CrossRef Ansari, R., Hassanzadeh-Aghdam, M.K.: Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites. Int. J. Mech. Sci. 115, 45–55 (2016)CrossRef
Zurück zum Zitat Baxter, S.C., Robinson, C.T.: Pseudo-percolation: critical volume fractions and mechanical percolation in polymer nanocomposites. Compos. Sci. Technol. 71(10), 1273–1279 (2011)CrossRef Baxter, S.C., Robinson, C.T.: Pseudo-percolation: critical volume fractions and mechanical percolation in polymer nanocomposites. Compos. Sci. Technol. 71(10), 1273–1279 (2011)CrossRef
Zurück zum Zitat Bednarcyk, B.A., Arnold, S.M.: Transverse tensile and creep modeling of continuously reinforced titanium composites with local debonding. Int. J. Solids Struct. 39(7), 1987–2017 (2002)MATHCrossRef Bednarcyk, B.A., Arnold, S.M.: Transverse tensile and creep modeling of continuously reinforced titanium composites with local debonding. Int. J. Solids Struct. 39(7), 1987–2017 (2002)MATHCrossRef
Zurück zum Zitat Chouchaoui, C.S., Benzeggagh, M.L.: The effect of interphase on the elastic behavior of a glass/epoxy bundle. Compos. Sci. Technol. 57(6), 617–622 (1997)CrossRef Chouchaoui, C.S., Benzeggagh, M.L.: The effect of interphase on the elastic behavior of a glass/epoxy bundle. Compos. Sci. Technol. 57(6), 617–622 (1997)CrossRef
Zurück zum Zitat Craft, W.J., Christensen, R.M.: Coefficient of thermal expansion for composites with randomly oriented fibers. J. Compos. Mater. 15(1), 2–20 (1981)CrossRef Craft, W.J., Christensen, R.M.: Coefficient of thermal expansion for composites with randomly oriented fibers. J. Compos. Mater. 15(1), 2–20 (1981)CrossRef
Zurück zum Zitat Dastgerdi, J.N., Marquis, G., Salimi, M.: The effect of nanotubes waviness on mechanical properties of CNT/SMP composites. Compos. Sci. Technol. 86, 164–169 (2013)CrossRef Dastgerdi, J.N., Marquis, G., Salimi, M.: The effect of nanotubes waviness on mechanical properties of CNT/SMP composites. Compos. Sci. Technol. 86, 164–169 (2013)CrossRef
Zurück zum Zitat Dong, C.: Mechanical and thermo-mechanical properties of carbon nanotube reinforced composites. Int. J. Smart Nano Mater. 5(1), 44–58 (2014)CrossRef Dong, C.: Mechanical and thermo-mechanical properties of carbon nanotube reinforced composites. Int. J. Smart Nano Mater. 5(1), 44–58 (2014)CrossRef
Zurück zum Zitat Feng, C., Jiang, L.: Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)-polymer nanocomposites. Compos. A Appl. Sci. Manuf. 47, 143–149 (2013)CrossRef Feng, C., Jiang, L.: Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)-polymer nanocomposites. Compos. A Appl. Sci. Manuf. 47, 143–149 (2013)CrossRef
Zurück zum Zitat Fisher, F.T., Bradshaw, R.D., Brinson, L.C.: Fiber waviness in nanotube-reinforced polymer composites-I: modulus predictions using effective nanotube properties. Compos. Sci. Technol. 63(11), 1689–1703 (2003)CrossRef Fisher, F.T., Bradshaw, R.D., Brinson, L.C.: Fiber waviness in nanotube-reinforced polymer composites-I: modulus predictions using effective nanotube properties. Compos. Sci. Technol. 63(11), 1689–1703 (2003)CrossRef
Zurück zum Zitat Goldberg, R.K., Arnold, S.M.: A study of influencing factors on the tensile response of a titanium matrix composite with weak interfacial bonding. NASA/TM—2000-209798 (2000) Goldberg, R.K., Arnold, S.M.: A study of influencing factors on the tensile response of a titanium matrix composite with weak interfacial bonding. NASA/TM—2000-209798 (2000)
Zurück zum Zitat Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J.: Micromechanical modeling of thermal conducting behavior of general carbon nanotube-polymer nanocomposites. Mater. Sci. Eng. B 229, 173–183 (2018)CrossRef Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J.: Micromechanical modeling of thermal conducting behavior of general carbon nanotube-polymer nanocomposites. Mater. Sci. Eng. B 229, 173–183 (2018)CrossRef
Zurück zum Zitat Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Ansari, R.: Micromechanics-based characterization of mechanical properties of fuzzy fiber-reinforced composites containing carbon nanotubes. Mech. Mater. 118, 31–43 (2018a)CrossRef Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Ansari, R.: Micromechanics-based characterization of mechanical properties of fuzzy fiber-reinforced composites containing carbon nanotubes. Mech. Mater. 118, 31–43 (2018a)CrossRef
Zurück zum Zitat Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Jamali, J.: Effect of CNT coating on the overall thermal conductivity of unidirectional polymer hybrid nanocomposites. Int. J. Heat Mass Transf. 124, 190–200 (2018b)CrossRef Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Jamali, J.: Effect of CNT coating on the overall thermal conductivity of unidirectional polymer hybrid nanocomposites. Int. J. Heat Mass Transf. 124, 190–200 (2018b)CrossRef
Zurück zum Zitat Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Kazempour, M.R.: The role of thermal residual stress on the yielding behavior of carbon nanotube–aluminum nanocomposites. Int. J. Mech. Mater. Des. 14, 263–275 (2018c)CrossRef Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Kazempour, M.R.: The role of thermal residual stress on the yielding behavior of carbon nanotube–aluminum nanocomposites. Int. J. Mech. Mater. Des. 14, 263–275 (2018c)CrossRef
Zurück zum Zitat Hine, P.J., Lusti, H.R., Gusev, A.A.: Numerical simulation of the effects of volume fraction, aspect ratio and fibre length distribution on the elastic and thermoelastic properties of short fibre composites. Compos. Sci. Technol. 62(10–11), 1445–1453 (2002)CrossRef Hine, P.J., Lusti, H.R., Gusev, A.A.: Numerical simulation of the effects of volume fraction, aspect ratio and fibre length distribution on the elastic and thermoelastic properties of short fibre composites. Compos. Sci. Technol. 62(10–11), 1445–1453 (2002)CrossRef
Zurück zum Zitat Honjo, K.: Thermal stresses and effective properties calculated for fiber composites using actual cylindrically-anisotropic properties of interfacial carbon coating. Carbon 45(4), 865–872 (2007)CrossRef Honjo, K.: Thermal stresses and effective properties calculated for fiber composites using actual cylindrically-anisotropic properties of interfacial carbon coating. Carbon 45(4), 865–872 (2007)CrossRef
Zurück zum Zitat Hu, N., Qiu, J., Li, Y., Chang, C., Atobe, S., Fukunaga, H., Liu, Y., Ning, H., Wu, L., Li, J., Yuan, W., Watanabe, T., Yan, C., Zhang, Y.: Multi-scale numerical simulations of thermal expansion properties of CNT-reinforced nanocomposites. Nanoscale Res. Lett. 8(1), 15 (2013)CrossRef Hu, N., Qiu, J., Li, Y., Chang, C., Atobe, S., Fukunaga, H., Liu, Y., Ning, H., Wu, L., Li, J., Yuan, W., Watanabe, T., Yan, C., Zhang, Y.: Multi-scale numerical simulations of thermal expansion properties of CNT-reinforced nanocomposites. Nanoscale Res. Lett. 8(1), 15 (2013)CrossRef
Zurück zum Zitat Jasiuk, I., Kouider, M.W.: The effect of an inhomogeneous interphase on the elastic constants of transversely isotropic composites. Mech. Mater. 15(1), 53–63 (1993)CrossRef Jasiuk, I., Kouider, M.W.: The effect of an inhomogeneous interphase on the elastic constants of transversely isotropic composites. Mech. Mater. 15(1), 53–63 (1993)CrossRef
Zurück zum Zitat Jia, Y., Chen, Z., Yan, W.: A numerical study on carbon nanotube-hybridized carbon fibre pullout. Compos. Sci. Technol. 91, 38–44 (2014)CrossRef Jia, Y., Chen, Z., Yan, W.: A numerical study on carbon nanotube-hybridized carbon fibre pullout. Compos. Sci. Technol. 91, 38–44 (2014)CrossRef
Zurück zum Zitat Kaleemullah, M., Khan, S.U., Kim, J.K.: Effect of surfactant treatment on thermal stability and mechanical properties of CNT/polybenzoxazine nanocomposites. Compos. Sci. Technol. 72(16), 1968–1976 (2012)CrossRef Kaleemullah, M., Khan, S.U., Kim, J.K.: Effect of surfactant treatment on thermal stability and mechanical properties of CNT/polybenzoxazine nanocomposites. Compos. Sci. Technol. 72(16), 1968–1976 (2012)CrossRef
Zurück zum Zitat Karadeniz, Z.H., Kumlutas, D.: A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials. Compos. Struct. 78(1), 1–10 (2007)CrossRef Karadeniz, Z.H., Kumlutas, D.: A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials. Compos. Struct. 78(1), 1–10 (2007)CrossRef
Zurück zum Zitat Kim, Y.A., Kamio, S., Tajiri, T., Hayashi, T., Song, S.M., Endo, M., Terrones, M., Dresselhaus, M.S.: Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes. Appl. Phys. Lett. 90(9), 093125 (2007)CrossRef Kim, Y.A., Kamio, S., Tajiri, T., Hayashi, T., Song, S.M., Endo, M., Terrones, M., Dresselhaus, M.S.: Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes. Appl. Phys. Lett. 90(9), 093125 (2007)CrossRef
Zurück zum Zitat Kim, M.T., Rhee, K.Y., Lee, J.H., Hui, D., Lau, A.K.: Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes. Compos. B Eng. 42(5), 1257–1261 (2011)CrossRef Kim, M.T., Rhee, K.Y., Lee, J.H., Hui, D., Lau, A.K.: Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes. Compos. B Eng. 42(5), 1257–1261 (2011)CrossRef
Zurück zum Zitat Kulkarni, M., Carnahan, D., Kulkarni, K., Qian, D., Abot, J.L.: Elastic response of a carbon nanotube fiber reinforced polymeric composite: a numerical and experimental study. Compos. B Eng. 41(5), 414–421 (2010)CrossRef Kulkarni, M., Carnahan, D., Kulkarni, K., Qian, D., Abot, J.L.: Elastic response of a carbon nanotube fiber reinforced polymeric composite: a numerical and experimental study. Compos. B Eng. 41(5), 414–421 (2010)CrossRef
Zurück zum Zitat Kundalwal, S.I., Kumar, S.: Multiscale modeling of stress transfer in continuous microscale fiber reinforced composites with nano-engineered interphase. Mech. Mater. 102, 117–131 (2016)CrossRef Kundalwal, S.I., Kumar, S.: Multiscale modeling of stress transfer in continuous microscale fiber reinforced composites with nano-engineered interphase. Mech. Mater. 102, 117–131 (2016)CrossRef
Zurück zum Zitat Kundalwal, S.I., Meguid, S.A.: Effect of carbon nanotube waviness on active damping of laminated hybrid composite shells. Acta Mech. 226(6), 2035–2052 (2015a)MathSciNetMATHCrossRef Kundalwal, S.I., Meguid, S.A.: Effect of carbon nanotube waviness on active damping of laminated hybrid composite shells. Acta Mech. 226(6), 2035–2052 (2015a)MathSciNetMATHCrossRef
Zurück zum Zitat Kundalwal, S.I., Meguid, S.A.: Micromechanics modelling of the effective thermoelastic response of nano-tailored composites. Eur. J. Mech. A/Solids 53, 241–253 (2015b)MathSciNetMATHCrossRef Kundalwal, S.I., Meguid, S.A.: Micromechanics modelling of the effective thermoelastic response of nano-tailored composites. Eur. J. Mech. A/Solids 53, 241–253 (2015b)MathSciNetMATHCrossRef
Zurück zum Zitat Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of regularly staggered carbon fibers embedded in nano-reinforced composites. Eur. J. Mech. A/Solids 64, 69–84 (2017)MathSciNetMATHCrossRef Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of regularly staggered carbon fibers embedded in nano-reinforced composites. Eur. J. Mech. A/Solids 64, 69–84 (2017)MathSciNetMATHCrossRef
Zurück zum Zitat Kundalwal, S.I., Ray, M.C.: Micromechanical analysis of fuzzy fiber reinforced composites. Int. J. Mech. Mater. Des. 7(2), 149–166 (2011)CrossRef Kundalwal, S.I., Ray, M.C.: Micromechanical analysis of fuzzy fiber reinforced composites. Int. J. Mech. Mater. Des. 7(2), 149–166 (2011)CrossRef
Zurück zum Zitat Kundalwal, S.I., Ray, M.C.: Effective properties of a novel composite reinforced with short carbon fibers and radially aligned carbon nanotubes. Mech. Mater. 53, 47–60 (2012a)CrossRef Kundalwal, S.I., Ray, M.C.: Effective properties of a novel composite reinforced with short carbon fibers and radially aligned carbon nanotubes. Mech. Mater. 53, 47–60 (2012a)CrossRef
Zurück zum Zitat Kundalwal, S.I., Ray, M.C.: Effective properties of a novel continuous fuzzy-fiber reinforced composite using the method of cells and the finite element method. Eur. J. Mech. A/Solids 36, 191–203 (2012b)CrossRef Kundalwal, S.I., Ray, M.C.: Effective properties of a novel continuous fuzzy-fiber reinforced composite using the method of cells and the finite element method. Eur. J. Mech. A/Solids 36, 191–203 (2012b)CrossRef
Zurück zum Zitat Kundalwal, S.I., Ray, M.C.: Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite. Compos. B Eng. 57, 199–209 (2014)CrossRef Kundalwal, S.I., Ray, M.C.: Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite. Compos. B Eng. 57, 199–209 (2014)CrossRef
Zurück zum Zitat Li, C., Chou, T.W.: Multiscale modeling of compressive behavior of carbon nanotube/polymer composites. Compos. Sci. Technol. 66(14), 2409–2414 (2006)CrossRef Li, C., Chou, T.W.: Multiscale modeling of compressive behavior of carbon nanotube/polymer composites. Compos. Sci. Technol. 66(14), 2409–2414 (2006)CrossRef
Zurück zum Zitat Liao, K., Li, S.: Interfacial characteristics of a carbon nanotube–polystyrene composite system. Appl. Phys. Lett. 79(25), 4225–4227 (2001)CrossRef Liao, K., Li, S.: Interfacial characteristics of a carbon nanotube–polystyrene composite system. Appl. Phys. Lett. 79(25), 4225–4227 (2001)CrossRef
Zurück zum Zitat Lurie, S.A., Volkov-Bogorodskiy, D.B., Menshykov, O., Solyaev, Y.O., Aifantis, E.C.: Modeling the effective mechanical properties of “fuzzy fiber” composites across scales length. Compos. B Eng. 142, 24–35 (2018)CrossRef Lurie, S.A., Volkov-Bogorodskiy, D.B., Menshykov, O., Solyaev, Y.O., Aifantis, E.C.: Modeling the effective mechanical properties of “fuzzy fiber” composites across scales length. Compos. B Eng. 142, 24–35 (2018)CrossRef
Zurück zum Zitat Ma, X., Scarpa, F., Peng, H.X., Allegri, G., Yuan, J., Ciobanu, R.: Design of a hybrid carbon fibre/carbon nanotube composite for enhanced lightning strike resistance. Aerosp. Sci. Technol. 47, 367–377 (2015)CrossRef Ma, X., Scarpa, F., Peng, H.X., Allegri, G., Yuan, J., Ciobanu, R.: Design of a hybrid carbon fibre/carbon nanotube composite for enhanced lightning strike resistance. Aerosp. Sci. Technol. 47, 367–377 (2015)CrossRef
Zurück zum Zitat Mahmoodi, M.J., Aghdam, M.M.: Damage analysis of fiber reinforced Ti-alloy subjected to multi-axial loading—a micromechanical approach. Mater. Sci. Eng. A 528(27), 7983–7990 (2011)CrossRef Mahmoodi, M.J., Aghdam, M.M.: Damage analysis of fiber reinforced Ti-alloy subjected to multi-axial loading—a micromechanical approach. Mater. Sci. Eng. A 528(27), 7983–7990 (2011)CrossRef
Zurück zum Zitat Mahmoodi, M.J., Vakilifard, M.: A comprehensive micromechanical modeling of electro-thermo-mechanical behaviors of CNT reinforced smart nanocomposites. Mater. Des. 122, 347–365 (2017)CrossRef Mahmoodi, M.J., Vakilifard, M.: A comprehensive micromechanical modeling of electro-thermo-mechanical behaviors of CNT reinforced smart nanocomposites. Mater. Des. 122, 347–365 (2017)CrossRef
Zurück zum Zitat Mathur, R.B., Chatterjee, S., Singh, B.P.: Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos. Sci. Technol. 68(7), 1608–1615 (2008)CrossRef Mathur, R.B., Chatterjee, S., Singh, B.P.: Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos. Sci. Technol. 68(7), 1608–1615 (2008)CrossRef
Zurück zum Zitat Miyagawa, H., Mase, T., Sato, C., Drown, E., Drzal, L.T., Ikegami, K.: Comparison of experimental and theoretical transverse elastic modulus of carbon fibers. Carbon 44(10), 2002–2008 (2006)CrossRef Miyagawa, H., Mase, T., Sato, C., Drown, E., Drzal, L.T., Ikegami, K.: Comparison of experimental and theoretical transverse elastic modulus of carbon fibers. Carbon 44(10), 2002–2008 (2006)CrossRef
Zurück zum Zitat Pal, G., Kumar, S.: Multiscale modeling of effective electrical conductivity of short carbon fiber-carbon nanotube-polymer matrix hybrid composites. Mater. Des. 89, 129–136 (2016)CrossRef Pal, G., Kumar, S.: Multiscale modeling of effective electrical conductivity of short carbon fiber-carbon nanotube-polymer matrix hybrid composites. Mater. Des. 89, 129–136 (2016)CrossRef
Zurück zum Zitat Pan, Y., Weng, G.J., Meguid, S.A., Bao, W.S., Zhu, Z.H., Hamouda, A.M.S.: Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites. Mech. Mater. 58, 1–11 (2013)CrossRef Pan, Y., Weng, G.J., Meguid, S.A., Bao, W.S., Zhu, Z.H., Hamouda, A.M.S.: Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites. Mech. Mater. 58, 1–11 (2013)CrossRef
Zurück zum Zitat Qu, J., Cherkaoui, M.: Fundamentals of Micromechanics of Solids. Wiley, New Jersey (2006)CrossRef Qu, J., Cherkaoui, M.: Fundamentals of Micromechanics of Solids. Wiley, New Jersey (2006)CrossRef
Zurück zum Zitat Rafiee, R., Ghorbanhosseini, A.: Predicting mechanical properties of fuzzy fiber reinforced composites: radially grown carbon nanotubes on the carbon fiber. Int. J. Mech. Mater. Des. 14, 37–50 (2018)CrossRef Rafiee, R., Ghorbanhosseini, A.: Predicting mechanical properties of fuzzy fiber reinforced composites: radially grown carbon nanotubes on the carbon fiber. Int. J. Mech. Mater. Des. 14, 37–50 (2018)CrossRef
Zurück zum Zitat Ray, M.C., Kundalwal, S.I.: A thermomechanical shear lag analysis of short fuzzy fiber reinforced composite containing wavy carbon nanotubes. Eur. J. Mech. A/Solids 44, 41–60 (2014)MathSciNetMATHCrossRef Ray, M.C., Kundalwal, S.I.: A thermomechanical shear lag analysis of short fuzzy fiber reinforced composite containing wavy carbon nanotubes. Eur. J. Mech. A/Solids 44, 41–60 (2014)MathSciNetMATHCrossRef
Zurück zum Zitat Seidel, G.D., Lagoudas, D.C.: Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech. Mater. 38(8), 884–907 (2006)CrossRef Seidel, G.D., Lagoudas, D.C.: Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech. Mater. 38(8), 884–907 (2006)CrossRef
Zurück zum Zitat Sham, M.L., Kim, J.K.: Curing behavior and residual stresses in polymeric resins used for encapsulanting electronic packages. J. Appl. Polym. Sci. 96(1), 175–182 (2005)CrossRef Sham, M.L., Kim, J.K.: Curing behavior and residual stresses in polymeric resins used for encapsulanting electronic packages. J. Appl. Polym. Sci. 96(1), 175–182 (2005)CrossRef
Zurück zum Zitat Sharma, S.P., Lakkad, S.C.: Impact behavior and fractographic study of carbon nanotubes grafted carbon fiber-reinforced epoxy matrix multi-scale hybrid composites. Compos. A Appl. Sci. Manuf. 69, 124–131 (2015)CrossRef Sharma, S.P., Lakkad, S.C.: Impact behavior and fractographic study of carbon nanotubes grafted carbon fiber-reinforced epoxy matrix multi-scale hybrid composites. Compos. A Appl. Sci. Manuf. 69, 124–131 (2015)CrossRef
Zurück zum Zitat Shirasu, K., Yamamoto, G., Tamaki, I., Ogasawara, T., Shimamura, Y., Inoue, Y., Hashida, T.: Negative axial thermal expansion coefficient of carbon nanotubes: experimental determination based on measurements of coefficient of thermal expansion for aligned carbon nanotube reinforced epoxy composites. Carbon 95, 904–909 (2015)CrossRef Shirasu, K., Yamamoto, G., Tamaki, I., Ogasawara, T., Shimamura, Y., Inoue, Y., Hashida, T.: Negative axial thermal expansion coefficient of carbon nanotubes: experimental determination based on measurements of coefficient of thermal expansion for aligned carbon nanotube reinforced epoxy composites. Carbon 95, 904–909 (2015)CrossRef
Zurück zum Zitat Shirasu, K., Nakamura, A., Yamamoto, G., Ogasawara, T., Shimamura, Y., Inoue, Y., Hashida, T.: Potential use of CNTs for production of zero thermal expansion coefficient composite materials: an experimental evaluation of axial thermal expansion coefficient of CNTs using a combination of thermal expansion and uniaxial tensile tests. Compos. A Appl. Sci. Manuf. 95, 152–160 (2017)CrossRef Shirasu, K., Nakamura, A., Yamamoto, G., Ogasawara, T., Shimamura, Y., Inoue, Y., Hashida, T.: Potential use of CNTs for production of zero thermal expansion coefficient composite materials: an experimental evaluation of axial thermal expansion coefficient of CNTs using a combination of thermal expansion and uniaxial tensile tests. Compos. A Appl. Sci. Manuf. 95, 152–160 (2017)CrossRef
Zurück zum Zitat Shokrieh, M.M., Daneshvar, A., Akbari, S.: Reduction of thermal residual stresses of laminated polymer composites by addition of carbon nanotubes. Mater. Des. 53, 209–216 (2014)CrossRef Shokrieh, M.M., Daneshvar, A., Akbari, S.: Reduction of thermal residual stresses of laminated polymer composites by addition of carbon nanotubes. Mater. Des. 53, 209–216 (2014)CrossRef
Zurück zum Zitat Sideridis, E.: Thermal expansion coefficients of fiber composites defined by the concept of the interphase. Compos. Sci. Technol. 51(3), 301–317 (1994)MathSciNetCrossRef Sideridis, E.: Thermal expansion coefficients of fiber composites defined by the concept of the interphase. Compos. Sci. Technol. 51(3), 301–317 (1994)MathSciNetCrossRef
Zurück zum Zitat Tarfaoui, M., Lafdi, K., El Moumen, A.: Mechanical properties of carbon nanotubes based polymer composites. Compos. B Eng. 103, 113–121 (2016)CrossRef Tarfaoui, M., Lafdi, K., El Moumen, A.: Mechanical properties of carbon nanotubes based polymer composites. Compos. B Eng. 103, 113–121 (2016)CrossRef
Zurück zum Zitat Tsai, J.L., Tzeng, S.H., Chiu, Y.T.: Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Compos. B Eng. 41(1), 106–115 (2010)CrossRef Tsai, J.L., Tzeng, S.H., Chiu, Y.T.: Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Compos. B Eng. 41(1), 106–115 (2010)CrossRef
Zurück zum Zitat Xu, Y., Ray, G., Abdel-Magid, B.: Thermal behavior of single-walled carbon nanotube polymer–matrix composites. Compos. A Appl. Sci. Manuf. 37(1), 114–121 (2006)CrossRef Xu, Y., Ray, G., Abdel-Magid, B.: Thermal behavior of single-walled carbon nanotube polymer–matrix composites. Compos. A Appl. Sci. Manuf. 37(1), 114–121 (2006)CrossRef
Zurück zum Zitat Yao, S.S., Jin, F.L., Rhee, K.Y., Hui, D., Park, S.J.: Recent advances in carbon-fiber-reinforced thermoplastic composites: a review. Compos. B Eng. 142, 241–250 (2018)CrossRef Yao, S.S., Jin, F.L., Rhee, K.Y., Hui, D., Park, S.J.: Recent advances in carbon-fiber-reinforced thermoplastic composites: a review. Compos. B Eng. 142, 241–250 (2018)CrossRef
Zurück zum Zitat Zare, Y.: Effects of interphase on tensile strength of polymer/CNT nanocomposites by Kelly-Tyson theory. Mech. Mater. 85, 1–6 (2015)CrossRef Zare, Y.: Effects of interphase on tensile strength of polymer/CNT nanocomposites by Kelly-Tyson theory. Mech. Mater. 85, 1–6 (2015)CrossRef
Zurück zum Zitat Zhang, J., Dui, G., Liang, X.: Revisiting the micro-buckling of carbon fibers in elastic memory composite plates under pure bending. Int. J. Mech. Sci. 136, 339–348 (2018)CrossRef Zhang, J., Dui, G., Liang, X.: Revisiting the micro-buckling of carbon fibers in elastic memory composite plates under pure bending. Int. J. Mech. Sci. 136, 339–348 (2018)CrossRef
Metadaten
Titel
Thermomechanical investigation of unidirectional carbon fiber-polymer hybrid composites containing CNTs
verfasst von
M. K. Hassanzadeh-Aghdam
R. Ansari
Publikationsdatum
03.10.2018
Verlag
Springer Netherlands
Erschienen in
International Journal of Mechanics and Materials in Design / Ausgabe 3/2019
Print ISSN: 1569-1713
Elektronische ISSN: 1573-8841
DOI
https://doi.org/10.1007/s10999-018-9418-5

Weitere Artikel der Ausgabe 3/2019

International Journal of Mechanics and Materials in Design 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.