Skip to main content
Erschienen in: Journal of Materials Science 7/2017

10.01.2017 | Batteries and Supercapacitors

Thermophysical and transport properties of blends of an ether-derivatized imidazolium ionic liquid and a Li+-based solvate ionic liquid

verfasst von: Yanni Wang, Michael C. Turk, Malavarayan Sankarasubramanian, Anirudh Srivatsa, Dipankar Roy, Sitaraman Krishnan

Erschienen in: Journal of Materials Science | Ausgabe 7/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The ‘solvate’ ionic liquid (IL), comprising of a 1:1 complex of lithium bis(trifluoromethanesulfonyl)amide (LiTf2N) and tetraglyme (G4), denoted herein by [Li(G4)][Tf2N], is promising as a relatively nonvolatile, nonflammable, and safer electrolyte for lithium-ion batteries. It, however, suffers from the drawback of low ionic conductivity compared with the conventional organic carbonate electrolytes. We report herein the enhancement in the thermal and transport properties of [Li(G4)][Tf2N] by blending it with an ether-derivatized imidazolium IL, namely 1-(2-methoxyethyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)amide, [mEtMeIm][Tf2N]. The volumetric and transport properties of [mEtMeIm][Tf2N], and its blends with [Li(G4)][Tf2N], were investigated at temperatures in the range of 10–85 °C using oscillating U-tube densitometry, cone and plate viscometry, and electrochemical impedance spectroscopy. The addition of [mEtMeIm][Tf2N] to [Li(G4)][Tf2N] lowered the viscosity and increased the ionic conductivity of the blends. The blends also exhibited improved thermal stability in thermogravimetry experiments. Notwithstanding the complex intermolecular interactions existing in the mixture of the [mEtMeIm][Tf2N], LiTf2N, and G4, the density, viscosity, and conductivity data could be modeled assuming the blend to be a simple binary mixture of [Li(G4)][Tf2N] and [mEtMeIm][Tf2N], instead of a ternary mixture of [mEtMeIm][Tf2N], LiTf2N, and G4. The addition of unchelated LiTf2N to [mEtMeIm][Tf2N] resulted in a decrease in ionic conductivity at all temperatures of measurement. However, when LiTf2N was added as a 1:1 complex with G4, the conductivity was higher, at the same molar concentration of LiTf2N. The implications of these results are discussed in view of developing thermally and chemically stable IL-based electrolytes for Li ion batteries, especially for operation at elevated temperatures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
3.
Zurück zum Zitat Rock SE, Wu L, Crain DJ, Krishnan S, Roy D (2013) Interfacial characteristics of a PEGylated imidazolium bistriflamide ionic liquid electrolyte at a lithium ion battery cathode of LiMn2O4. ACS Appl Mater Interfaces 5:2075–2084. doi:10.1021/am302921r CrossRef Rock SE, Wu L, Crain DJ, Krishnan S, Roy D (2013) Interfacial characteristics of a PEGylated imidazolium bistriflamide ionic liquid electrolyte at a lithium ion battery cathode of LiMn2O4. ACS Appl Mater Interfaces 5:2075–2084. doi:10.​1021/​am302921r CrossRef
6.
Zurück zum Zitat Bhatt MD, O’Dwyer C (2015) Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys Chem Chem Phys 17:4799–4844. doi:10.1039/C4CP05552G CrossRef Bhatt MD, O’Dwyer C (2015) Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys Chem Chem Phys 17:4799–4844. doi:10.​1039/​C4CP05552G CrossRef
11.
Zurück zum Zitat Moosbauer D, Zugmann S, Amereller M, Gores HJ (2010) Effect of ionic liquids as additives on lithium electrolytes: conductivity, electrochemical stability, and aluminum corrosion. J Chem Eng Data 55:1794–1798. doi:10.1021/je900867m CrossRef Moosbauer D, Zugmann S, Amereller M, Gores HJ (2010) Effect of ionic liquids as additives on lithium electrolytes: conductivity, electrochemical stability, and aluminum corrosion. J Chem Eng Data 55:1794–1798. doi:10.​1021/​je900867m CrossRef
12.
13.
Zurück zum Zitat McIntosh LD, Kubo T, Lodge TP (2014) Morphology, modulus, and conductivity of a triblock terpolymer/ionic liquid electrolyte membrane. Macromolecules 47:1090–1098. doi:10.1021/ma4022373 CrossRef McIntosh LD, Kubo T, Lodge TP (2014) Morphology, modulus, and conductivity of a triblock terpolymer/ionic liquid electrolyte membrane. Macromolecules 47:1090–1098. doi:10.​1021/​ma4022373 CrossRef
15.
Zurück zum Zitat Ueno K, Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M (2012) Glyme–lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids? J Phys Chem B 116:11323–11331. doi:10.1021/jp307378j CrossRef Ueno K, Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M (2012) Glyme–lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids? J Phys Chem B 116:11323–11331. doi:10.​1021/​jp307378j CrossRef
17.
Zurück zum Zitat Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M (2011) Change from glyme solutions to quasi-ionic liquids for binary mixtures consisting of lithium bis(trifluoromethanesulfonyl)amide and glymes. J Phys Chem C 115:18384–18394. doi:10.1021/jp206881t CrossRef Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M (2011) Change from glyme solutions to quasi-ionic liquids for binary mixtures consisting of lithium bis(trifluoromethanesulfonyl)amide and glymes. J Phys Chem C 115:18384–18394. doi:10.​1021/​jp206881t CrossRef
18.
Zurück zum Zitat Zhang C, Ueno K, Yamazaki A, Yoshida K, Moon H, Mandai T, Umebayashi Y, Dokko K, Watanabe M (2014) Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl) amide solvate ionic liquids. I. Stability of solvate cations and correlation with electrolyte properties. J Phys Chem B 118:5144–5153. doi:10.1021/jp501319e CrossRef Zhang C, Ueno K, Yamazaki A, Yoshida K, Moon H, Mandai T, Umebayashi Y, Dokko K, Watanabe M (2014) Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl) amide solvate ionic liquids. I. Stability of solvate cations and correlation with electrolyte properties. J Phys Chem B 118:5144–5153. doi:10.​1021/​jp501319e CrossRef
19.
Zurück zum Zitat Tsuzuki S, Shinoda W, Matsugami M, Umebayashi Y, Ueno K, Mandai T, Seki S, Dokko K, Watanabe M (2015) Structures of [Li(glyme)]+ complexes and their interactions with anions in equimolar mixtures of glymes and Li[TFSA]: analysis by molecular dynamics simulations. Phys Chem Chem Phys 17:126–129. doi:10.1039/C4CP04718D CrossRef Tsuzuki S, Shinoda W, Matsugami M, Umebayashi Y, Ueno K, Mandai T, Seki S, Dokko K, Watanabe M (2015) Structures of [Li(glyme)]+ complexes and their interactions with anions in equimolar mixtures of glymes and Li[TFSA]: analysis by molecular dynamics simulations. Phys Chem Chem Phys 17:126–129. doi:10.​1039/​C4CP04718D CrossRef
20.
Zurück zum Zitat Zhang C, Yamazaki A, Murai J, Park J-W, Mandai T, Ueno K, Dokko K, Watanabe M (2014) Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids, Part 2: importance of solvate-structure stability for electrolytes of lithium batteries. J Phys Chem C 118:17362–17373. doi:10.1021/jp504099q CrossRef Zhang C, Yamazaki A, Murai J, Park J-W, Mandai T, Ueno K, Dokko K, Watanabe M (2014) Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids, Part 2: importance of solvate-structure stability for electrolytes of lithium batteries. J Phys Chem C 118:17362–17373. doi:10.​1021/​jp504099q CrossRef
21.
Zurück zum Zitat Freemantle M (2010) An introduction to ionic liquids. RSC Publishing, Cambridge Freemantle M (2010) An introduction to ionic liquids. RSC Publishing, Cambridge
23.
Zurück zum Zitat Umecky T, Suga K, Masaki E, Takamuku T, Makino T, Kanakubo M (2015) Solvation structure and dynamics of Li+ in Lewis-basic ionic liquid of 1-octyl-4-aza-1-azoniabicyclo[2.2.2]octane bis(trifluoromethanesulfonyl)amide. J Mol Liq 209:557–562. doi:10.1016/j.molliq.2015.06.006 CrossRef Umecky T, Suga K, Masaki E, Takamuku T, Makino T, Kanakubo M (2015) Solvation structure and dynamics of Li+ in Lewis-basic ionic liquid of 1-octyl-4-aza-1-azoniabicyclo[2.2.2]octane bis(trifluoromethanesulfonyl)amide. J Mol Liq 209:557–562. doi:10.​1016/​j.​molliq.​2015.​06.​006 CrossRef
25.
Zurück zum Zitat Angenendt K, Johansson P (2011) Ionic liquid based lithium battery electrolytes: charge carriers and interactions derived by density functional theory calculations. J Phys Chem B 115:7808–7813. doi:10.1021/jp2036108 CrossRef Angenendt K, Johansson P (2011) Ionic liquid based lithium battery electrolytes: charge carriers and interactions derived by density functional theory calculations. J Phys Chem B 115:7808–7813. doi:10.​1021/​jp2036108 CrossRef
26.
Zurück zum Zitat Lassegues J-C, Grondin J, Talaga D (2006) Lithium solvation in bis(trifluoromethanesulfonyl)imide-based ionic liquids. Phys Chem Chem Phys 8:5629–5632. doi:10.1039/B615127B CrossRef Lassegues J-C, Grondin J, Talaga D (2006) Lithium solvation in bis(trifluoromethanesulfonyl)imide-based ionic liquids. Phys Chem Chem Phys 8:5629–5632. doi:10.​1039/​B615127B CrossRef
27.
Zurück zum Zitat Johansson P, Gejji SP, Tegenfeldt J, Lindgren J (1996) Local coordination and conformation in polyether electrolytes: geometries of M-triglyme complexes (M = Li, Na, K, Mg and Ca) from ab initio molecular orbital calculations. Solid State Ionics 86:297–302. doi:10.1016/0167-2738(96)00129-4 CrossRef Johansson P, Gejji SP, Tegenfeldt J, Lindgren J (1996) Local coordination and conformation in polyether electrolytes: geometries of M-triglyme complexes (M = Li, Na, K, Mg and Ca) from ab initio molecular orbital calculations. Solid State Ionics 86:297–302. doi:10.​1016/​0167-2738(96)00129-4 CrossRef
28.
Zurück zum Zitat Johansson P, Tegenfeldt J, Lindgren J (1999) Modelling amorphous lithium salt–PEO polymer electrolytes: ab initio calculations of lithium ion–tetra-, penta- and hexaglyme complexes. Polymer 40:4399–4406. doi:10.1016/S0032-3861(98)00676-4 CrossRef Johansson P, Tegenfeldt J, Lindgren J (1999) Modelling amorphous lithium salt–PEO polymer electrolytes: ab initio calculations of lithium ion–tetra-, penta- and hexaglyme complexes. Polymer 40:4399–4406. doi:10.​1016/​S0032-3861(98)00676-4 CrossRef
30.
Zurück zum Zitat Pappenfus TM, Henderson WA, Owens BB, Mann KR, Smyrl WH (2004) Complexes of lithium imide salts with tetraglyme and their polyelectrolyte composite materials. J Electrochem Soc 151:A209–A215. doi:10.1149/1.1635384 CrossRef Pappenfus TM, Henderson WA, Owens BB, Mann KR, Smyrl WH (2004) Complexes of lithium imide salts with tetraglyme and their polyelectrolyte composite materials. J Electrochem Soc 151:A209–A215. doi:10.​1149/​1.​1635384 CrossRef
32.
Zurück zum Zitat Kashyap HK, Hettige JJ, Annapureddy HVR, Margulis CJ (2012) SAXS anti-peaks reveal the length-scales of dual positive–negative and polar–apolar ordering in room-temperature ionic liquids. Chem Commun 48:5103–5105. doi:10.1039/C2CC30609C CrossRef Kashyap HK, Hettige JJ, Annapureddy HVR, Margulis CJ (2012) SAXS anti-peaks reveal the length-scales of dual positive–negative and polar–apolar ordering in room-temperature ionic liquids. Chem Commun 48:5103–5105. doi:10.​1039/​C2CC30609C CrossRef
33.
Zurück zum Zitat Ueno K, Tatara R, Tsuzuki S, Saito S, Doi H, Yoshida K, Mandai T, Matsugami M, Umebayashi Y, Dokko K, Watanabe M (2015) Li+ solvation in glyme-Li salt solvate ionic liquids. Phys Chem Chem Phys 17:8248–8257. doi:10.1039/C4CP05943C CrossRef Ueno K, Tatara R, Tsuzuki S, Saito S, Doi H, Yoshida K, Mandai T, Matsugami M, Umebayashi Y, Dokko K, Watanabe M (2015) Li+ solvation in glyme-Li salt solvate ionic liquids. Phys Chem Chem Phys 17:8248–8257. doi:10.​1039/​C4CP05943C CrossRef
34.
Zurück zum Zitat Nicolau BG, Sturlaugson A, Fruchey K, Ribeiro MCC, Fayer MD (2010) Room temperature ionic liquid–lithium salt mixtures: optical Kerr effect dynamical measurements. J Phys Chem B 114:8350–8356. doi:10.1021/jp103810r CrossRef Nicolau BG, Sturlaugson A, Fruchey K, Ribeiro MCC, Fayer MD (2010) Room temperature ionic liquid–lithium salt mixtures: optical Kerr effect dynamical measurements. J Phys Chem B 114:8350–8356. doi:10.​1021/​jp103810r CrossRef
35.
Zurück zum Zitat Wu L, Venkatanarayananan RI, Shi X, Roy D, Krishnan S (2014) Glass transition, viscosity, and conductivity correlations in solutions of lithium salts in PEGylated imidazolium ionic liquids. J Mol Liq 198:398–408. doi:10.1016/j.molliq.2014.07.031 CrossRef Wu L, Venkatanarayananan RI, Shi X, Roy D, Krishnan S (2014) Glass transition, viscosity, and conductivity correlations in solutions of lithium salts in PEGylated imidazolium ionic liquids. J Mol Liq 198:398–408. doi:10.​1016/​j.​molliq.​2014.​07.​031 CrossRef
36.
37.
Zurück zum Zitat Ganapatibhotla LVNR, Zheng J, Roy D, Krishnan S (2010) PEGylated imidazolium ionic liquid electrolytes: thermophysical and electrochemical properties. Chem Mater 22:6347–6360. doi:10.1021/cm102263s CrossRef Ganapatibhotla LVNR, Zheng J, Roy D, Krishnan S (2010) PEGylated imidazolium ionic liquid electrolytes: thermophysical and electrochemical properties. Chem Mater 22:6347–6360. doi:10.​1021/​cm102263s CrossRef
39.
Zurück zum Zitat Wei YY, Tinant B, Declercq J-P, Van Meerssche M, Dale J (1988) Crown ether complexes of alkaline-earth metal ions. I. Structures of 1,4,7,10-tetraoxacyclododecane (12-crown-4) complexed with calcium, strontium and barium thiocyanates. Acta Crystallogr Sect C 44:68–73. doi:10.1107/S0108270187009090 CrossRef Wei YY, Tinant B, Declercq J-P, Van Meerssche M, Dale J (1988) Crown ether complexes of alkaline-earth metal ions. I. Structures of 1,4,7,10-tetraoxacyclododecane (12-crown-4) complexed with calcium, strontium and barium thiocyanates. Acta Crystallogr Sect C 44:68–73. doi:10.​1107/​S010827018700909​0 CrossRef
40.
Zurück zum Zitat Wei YY, Tinant B, Declercq J-P, Van Meerssche M, Dale J (1988) Crown ether complexes of alkaline-earth metal ions. II. Structures of 1,4,7,10,13-pentaoxacyclopentadecane (15-crown-5) complexed with calcium and magnesium thiocyanates. Acta Crystallogr Sect C 44:73–77. doi:10.1107/S0108270187009107 CrossRef Wei YY, Tinant B, Declercq J-P, Van Meerssche M, Dale J (1988) Crown ether complexes of alkaline-earth metal ions. II. Structures of 1,4,7,10,13-pentaoxacyclopentadecane (15-crown-5) complexed with calcium and magnesium thiocyanates. Acta Crystallogr Sect C 44:73–77. doi:10.​1107/​S010827018700910​7 CrossRef
44.
Zurück zum Zitat DL Foster, J Wolfenstine, WK Behl (1999) Tertiary polyamines as additives to lithium-ion battery electrolytes. In: S Surampudi, R Marsh (eds) Proceedings of the symposium on lithium batteries, vol 98–16. The Electrochemical Society, Pennington, NJ, p 391 DL Foster, J Wolfenstine, WK Behl (1999) Tertiary polyamines as additives to lithium-ion battery electrolytes. In: S Surampudi, R Marsh (eds) Proceedings of the symposium on lithium batteries, vol 98–16. The Electrochemical Society, Pennington, NJ, p 391
45.
Zurück zum Zitat Bonhôte P, Dias A-P, Papageorgiou N, Kalyanasundaram K, Grätzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178. doi:10.1021/ic951325x CrossRef Bonhôte P, Dias A-P, Papageorgiou N, Kalyanasundaram K, Grätzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178. doi:10.​1021/​ic951325x CrossRef
47.
Zurück zum Zitat Ganapatibhotla LVNR, Wu L, Zheng J, Jia X, Roy D, McLaughlin JB, Krishnan S (2011) Ionic liquids with fluorinated block-oligomer tails: influence of self-assembly on transport properties. J Mater Chem 21:19275–19285. doi:10.1039/c1jm14526f CrossRef Ganapatibhotla LVNR, Wu L, Zheng J, Jia X, Roy D, McLaughlin JB, Krishnan S (2011) Ionic liquids with fluorinated block-oligomer tails: influence of self-assembly on transport properties. J Mater Chem 21:19275–19285. doi:10.​1039/​c1jm14526f CrossRef
48.
Zurück zum Zitat Moganty SS, Chinthamanipeta PS, Vendra VK, Krishnan S, Baltus RE (2014) Structure–property relationships in transport and thermodynamic properties of imidazolium bistriflamide ionic liquids for CO2 capture. Chem Eng J 250:377–389. doi:10.1016/j.cej.2014.04.010 CrossRef Moganty SS, Chinthamanipeta PS, Vendra VK, Krishnan S, Baltus RE (2014) Structure–property relationships in transport and thermodynamic properties of imidazolium bistriflamide ionic liquids for CO2 capture. Chem Eng J 250:377–389. doi:10.​1016/​j.​cej.​2014.​04.​010 CrossRef
49.
Zurück zum Zitat Vranes M, Dozic S, Djeric V, Gadzuric S (2012) Physicochemical characterization of 1-butyl-3-methylimidazolium and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. J Chem Eng Data 57:1072–1077. doi:10.1021/je2010837 CrossRef Vranes M, Dozic S, Djeric V, Gadzuric S (2012) Physicochemical characterization of 1-butyl-3-methylimidazolium and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. J Chem Eng Data 57:1072–1077. doi:10.​1021/​je2010837 CrossRef
51.
52.
Zurück zum Zitat Hecksher T, Nielsen AI, Olsen NB, Dyre JC (2008) Little evidence for dynamic divergences in ultraviscous molecular liquids. Nat Phys 4:737–741. doi:10.1038/nphys1033 CrossRef Hecksher T, Nielsen AI, Olsen NB, Dyre JC (2008) Little evidence for dynamic divergences in ultraviscous molecular liquids. Nat Phys 4:737–741. doi:10.​1038/​nphys1033 CrossRef
54.
Zurück zum Zitat Lebga-Nebane JL, Rock SE, Franclemont J, Roy D, Krishnan S (2012) Thermophysical properties and proton transport mechanisms of trialkylammonium and 1-alkyl-1H-imidazol-3-ium protic ionic liquids. Ind Eng Chem Res 51:14084–14098. doi:10.1021/ie301687c CrossRef Lebga-Nebane JL, Rock SE, Franclemont J, Roy D, Krishnan S (2012) Thermophysical properties and proton transport mechanisms of trialkylammonium and 1-alkyl-1H-imidazol-3-ium protic ionic liquids. Ind Eng Chem Res 51:14084–14098. doi:10.​1021/​ie301687c CrossRef
55.
Zurück zum Zitat Grest GS, Cohen MH (1981) Liquids, glasses, and the glass transition: a free-volume approach. In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol 48. John Wiley & Sons, Hoboken, NJ, p 455–525. doi:10.1002/9780470142684.ch6 Grest GS, Cohen MH (1981) Liquids, glasses, and the glass transition: a free-volume approach. In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol 48. John Wiley & Sons, Hoboken, NJ, p 455–525. doi:10.​1002/​9780470142684.​ch6
57.
Zurück zum Zitat Lau GP, Décoppet J-D, Moehl T, Zakeeruddin SM, Grätzel M, Dyson PJ (2015) Robust high-performance dye-sensitized solar cells based on ionic liquid-sulfolane composite electrolytes. Sci Rep 5:18158. doi:10.1038/srep18158 CrossRef Lau GP, Décoppet J-D, Moehl T, Zakeeruddin SM, Grätzel M, Dyson PJ (2015) Robust high-performance dye-sensitized solar cells based on ionic liquid-sulfolane composite electrolytes. Sci Rep 5:18158. doi:10.​1038/​srep18158 CrossRef
58.
61.
65.
66.
Zurück zum Zitat An Y, Zuo P, Cheng X, Liao L, Yin G (2011) Preparation and properties of ionic-liquid mixed solutions as a safety electrolyte for lithium ion batteries. Int J Electrochem Sci 6:2398–2410 An Y, Zuo P, Cheng X, Liao L, Yin G (2011) Preparation and properties of ionic-liquid mixed solutions as a safety electrolyte for lithium ion batteries. Int J Electrochem Sci 6:2398–2410
67.
Zurück zum Zitat Egashira M, Tanaka-Nakagawa M, Watanabe I, Okada S, Yamaki J-i (2006) Charge–discharge and high temperature reaction of LiCoO2 in ionic liquid electrolytes based on cyano-substituted quaternary ammonium cation. J Power Sources 160:1387–1390. doi:10.1016/j.jpowsour.2006.03.015 CrossRef Egashira M, Tanaka-Nakagawa M, Watanabe I, Okada S, Yamaki J-i (2006) Charge–discharge and high temperature reaction of LiCoO2 in ionic liquid electrolytes based on cyano-substituted quaternary ammonium cation. J Power Sources 160:1387–1390. doi:10.​1016/​j.​jpowsour.​2006.​03.​015 CrossRef
68.
Zurück zum Zitat Moreno M, Simonetti E, Appetecchi G, Carewska M, Montanino M, Kim G-T, Loeffler N, Passerini S (2017) Ionic liquid electrolytes for safer lithium batteries: I. Investigation around optimal formulation. J Electrochem Soc 164:A6026–A6031. doi:10.1149/2.0051701jes CrossRef Moreno M, Simonetti E, Appetecchi G, Carewska M, Montanino M, Kim G-T, Loeffler N, Passerini S (2017) Ionic liquid electrolytes for safer lithium batteries: I. Investigation around optimal formulation. J Electrochem Soc 164:A6026–A6031. doi:10.​1149/​2.​0051701jes CrossRef
69.
Zurück zum Zitat Anouti M, Timperman L (2013) A pyrrolidinium nitrate protic ionic liquid-based electrolyte for very low-temperature electrical double-layer capacitors. Phys Chem Chem Phys 15:6539–6548. doi:10.1039/C3CP44680H CrossRef Anouti M, Timperman L (2013) A pyrrolidinium nitrate protic ionic liquid-based electrolyte for very low-temperature electrical double-layer capacitors. Phys Chem Chem Phys 15:6539–6548. doi:10.​1039/​C3CP44680H CrossRef
70.
Zurück zum Zitat Boisset A, Menne S, Jacquemin J, Balducci A, Anouti M (2013) Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Phys Chem Chem Phys 15:20054–20063. doi:10.1039/C3CP53406E CrossRef Boisset A, Menne S, Jacquemin J, Balducci A, Anouti M (2013) Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Phys Chem Chem Phys 15:20054–20063. doi:10.​1039/​C3CP53406E CrossRef
71.
Zurück zum Zitat Vogl T, Menne S, Kuhnel R-S, Balducci A (2014) The beneficial effect of protic ionic liquids on the lithium environment in electrolytes for battery applications. J Mater Chem A 2:8258–8265. doi:10.1039/C3TA15224C CrossRef Vogl T, Menne S, Kuhnel R-S, Balducci A (2014) The beneficial effect of protic ionic liquids on the lithium environment in electrolytes for battery applications. J Mater Chem A 2:8258–8265. doi:10.​1039/​C3TA15224C CrossRef
72.
Zurück zum Zitat Singh P, Banhatti RD, Funke K (2005) Non-arrhenius viscosity related to short-time ion dynamics in a fragile molten salt. Phys Chem Chem Phys 7:1096–1099. doi:10.1039/B418432G CrossRef Singh P, Banhatti RD, Funke K (2005) Non-arrhenius viscosity related to short-time ion dynamics in a fragile molten salt. Phys Chem Chem Phys 7:1096–1099. doi:10.​1039/​B418432G CrossRef
73.
Zurück zum Zitat Yamaguchi T, Yonezawa T, Koda S (2015) Study on the temperature-dependent coupling among viscosity, conductivity and structural relaxation of ionic liquids. Phys Chem Chem Phys 17:19126–19133. doi:10.1039/C5CP02335A CrossRef Yamaguchi T, Yonezawa T, Koda S (2015) Study on the temperature-dependent coupling among viscosity, conductivity and structural relaxation of ionic liquids. Phys Chem Chem Phys 17:19126–19133. doi:10.​1039/​C5CP02335A CrossRef
74.
Zurück zum Zitat Lee S-Y, Ueno K, Angell CA (2012) Lithium salt solutions in mixed sulfone and sulfone-carbonate solvents: a Walden plot analysis of the maximally conductive compositions. J Phys Chem C 116:23915–23920. doi:10.1021/jp3067519 CrossRef Lee S-Y, Ueno K, Angell CA (2012) Lithium salt solutions in mixed sulfone and sulfone-carbonate solvents: a Walden plot analysis of the maximally conductive compositions. J Phys Chem C 116:23915–23920. doi:10.​1021/​jp3067519 CrossRef
75.
Zurück zum Zitat Yoon H, Best AS, Forsyth M, MacFarlane DR, Howlett PC (2015) Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes. Phys Chem Chem Phys 17:4656–4663. doi:10.1039/C4CP05333H CrossRef Yoon H, Best AS, Forsyth M, MacFarlane DR, Howlett PC (2015) Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes. Phys Chem Chem Phys 17:4656–4663. doi:10.​1039/​C4CP05333H CrossRef
76.
Zurück zum Zitat Chen HP, Fergus JW, Jang BZ (2000) The effect of ethylene carbonate and salt concentration on the conductivity of propylene carbonate/lithium perchlorate electrolytes. J Electrochem Soc 147:399–406. doi:10.1149/1.1393209 CrossRef Chen HP, Fergus JW, Jang BZ (2000) The effect of ethylene carbonate and salt concentration on the conductivity of propylene carbonate/lithium perchlorate electrolytes. J Electrochem Soc 147:399–406. doi:10.​1149/​1.​1393209 CrossRef
78.
Zurück zum Zitat Rong H, Xu M, Xie B, Lin H, Zhu Y, Zheng X, Huang W, Liao Y, Xing L, Li W (2016) A novel imidazole-based electrolyte additive for improved electrochemical performance at elevated temperature of high-voltage LiNi0.5Mn1.5O4 cathodes. J Power Sources 329:586–593. doi:10.1016/j.jpowsour.2016.07.120 CrossRef Rong H, Xu M, Xie B, Lin H, Zhu Y, Zheng X, Huang W, Liao Y, Xing L, Li W (2016) A novel imidazole-based electrolyte additive for improved electrochemical performance at elevated temperature of high-voltage LiNi0.5Mn1.5O4 cathodes. J Power Sources 329:586–593. doi:10.​1016/​j.​jpowsour.​2016.​07.​120 CrossRef
79.
Zurück zum Zitat Levi MD, Dargel V, Shilina Y, Borgel V, Aurbach D, Halalay IC (2015) Tailoring the potential window of negative electrodes: a diagnostic method for understanding parasitic oxidation reactions in cells with 5 V LiNi0.5Mn1.5O4 positive electrodes. J Power Sources 278:599–607. doi:10.1016/j.jpowsour.2014.12.130 CrossRef Levi MD, Dargel V, Shilina Y, Borgel V, Aurbach D, Halalay IC (2015) Tailoring the potential window of negative electrodes: a diagnostic method for understanding parasitic oxidation reactions in cells with 5 V LiNi0.5Mn1.5O4 positive electrodes. J Power Sources 278:599–607. doi:10.​1016/​j.​jpowsour.​2014.​12.​130 CrossRef
80.
Zurück zum Zitat Jha AR (2012) Next-generation batteries and fuel cells for commercial, military, and space applications. CRC Press, Boca RatonCrossRef Jha AR (2012) Next-generation batteries and fuel cells for commercial, military, and space applications. CRC Press, Boca RatonCrossRef
81.
Zurück zum Zitat Chin WC, Su Y, Sheng L, Li L, Bian H, Shi R (2014) Measurement while drilling (MWD) signal analysis, optimization and design. Wiley-Scrivener, Salem, MACrossRef Chin WC, Su Y, Sheng L, Li L, Bian H, Shi R (2014) Measurement while drilling (MWD) signal analysis, optimization and design. Wiley-Scrivener, Salem, MACrossRef
82.
83.
Metadaten
Titel
Thermophysical and transport properties of blends of an ether-derivatized imidazolium ionic liquid and a Li+-based solvate ionic liquid
verfasst von
Yanni Wang
Michael C. Turk
Malavarayan Sankarasubramanian
Anirudh Srivatsa
Dipankar Roy
Sitaraman Krishnan
Publikationsdatum
10.01.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0735-5

Weitere Artikel der Ausgabe 7/2017

Journal of Materials Science 7/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.