Skip to main content

2010 | OriginalPaper | Buchkapitel

Thermophysical Properties of Ionic Liquids

verfasst von : David Rooney, Johan Jacquemin, Ramesh Gardas

Erschienen in: Ionic Liquids

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Low melting point salts which are often classified as ionic liquids have received significant attention from research groups and industry for a range of novel applications. Many of these require a thorough knowledge of the thermophysical properties of the pure fluids and their mixtures. Despite this need, the necessary experimental data for many properties is scarce and often inconsistent between the various sources. By using accurate data, predictive physical models can be developed which are highly useful and some would consider essential if ionic liquids are to realize their full potential. This is particularly true if one can use them to design new ionic liquids which maximize key desired attributes. Therefore there is a growing interest in the ability to predict the physical properties and behavior of ionic liquids from simple structural information either by using group contribution methods or directly from computer simulations where recent advances in computational techniques are providing insight into physical processes within these fluids. Given the importance of these properties this review will discuss the recent advances in our understanding, prediction and correlation of selected ionic liquid physical properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wasserscheid P, Welton T (2003) Ionic liquids in synthesis. Wiley-VCH Verlag, Weinheim Wasserscheid P, Welton T (2003) Ionic liquids in synthesis. Wiley-VCH Verlag, Weinheim
2.
Zurück zum Zitat Pârvulescu VI, Hardacre C (2007) Catalysis in ionic liquids. Chem Rev 107:2615–2665 Pârvulescu VI, Hardacre C (2007) Catalysis in ionic liquids. Chem Rev 107:2615–2665
3.
Zurück zum Zitat Silvester DS, Compton RG (2006) Electrochemistry in room temperature ionic liquids: a review and some possible applications. Z Phys Chem 220:1247–1274 Silvester DS, Compton RG (2006) Electrochemistry in room temperature ionic liquids: a review and some possible applications. Z Phys Chem 220:1247–1274
4.
Zurück zum Zitat Harper JB, Kobrak MN (2006) Understanding organic processes in ionic liquids: achievements so far and challenges remaining. Mini-Rev Org Chem 3:253–269 Harper JB, Kobrak MN (2006) Understanding organic processes in ionic liquids: achievements so far and challenges remaining. Mini-Rev Org Chem 3:253–269
5.
Zurück zum Zitat Qu J, Truhan JJ, Dai S et al. (2006) Ionic liquids with ammonium cations as lubricants or additives. Tribol Let 22:207–214 Qu J, Truhan JJ, Dai S et al. (2006) Ionic liquids with ammonium cations as lubricants or additives. Tribol Let 22:207–214
6.
Zurück zum Zitat Holbrey JD (2007) Heat capacities of common ionic liquids – potential applications as thermal fluids? Chim Oggi – Chem Today 25:24–26. Holbrey JD (2007) Heat capacities of common ionic liquids – potential applications as thermal fluids? Chim Oggi – Chem Today 25:24–26.
7.
Zurück zum Zitat Liu JF, Jonsson JA, Jiang GB (2005) Application of ionic liquids in analytical chemistry. Trac-Trends Anal Chem 24:20–27 Liu JF, Jonsson JA, Jiang GB (2005) Application of ionic liquids in analytical chemistry. Trac-Trends Anal Chem 24:20–27
8.
Zurück zum Zitat Katritzky AR, Jain R, Lomaka A et al. (2002) Correlation of the melting points of potential ionic liquids (imidazolium bromides and benzimidazolium bromides) using the CODESSA program. J Chem Inf Comp Sci 42:225–231 Katritzky AR, Jain R, Lomaka A et al. (2002) Correlation of the melting points of potential ionic liquids (imidazolium bromides and benzimidazolium bromides) using the CODESSA program. J Chem Inf Comp Sci 42:225–231
9.
Zurück zum Zitat Widegren JA, Wang YM, Henderson WA et al. (2007) Relative volatilities of ionic liquids by vacuum distillation of mixtures. J Phys Chem B 111:8959–8964 Widegren JA, Wang YM, Henderson WA et al. (2007) Relative volatilities of ionic liquids by vacuum distillation of mixtures. J Phys Chem B 111:8959–8964
10.
Zurück zum Zitat Earle MJ, Esperanca JMSS, Gilea MA et al. (2006) The distillation and volatility of ionic liquids. Nature 439:831–834 Earle MJ, Esperanca JMSS, Gilea MA et al. (2006) The distillation and volatility of ionic liquids. Nature 439:831–834
11.
Zurück zum Zitat Hough WL, Smiglak M, Rodriguez H et al. (2007) The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem 31:1429–1436 Hough WL, Smiglak M, Rodriguez H et al. (2007) The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem 31:1429–1436
12.
Zurück zum Zitat Xue H, Twamley B, Shreeve JM (2005) Energetic salts of substituted 1,2,4-triazolium and tetrazolium 3,5-dinitro-1,2,4-triazolates. J Mat Chem 15:3459–3465 Xue H, Twamley B, Shreeve JM (2005) Energetic salts of substituted 1,2,4-triazolium and tetrazolium 3,5-dinitro-1,2,4-triazolates. J Mat Chem 15:3459–3465
13.
Zurück zum Zitat Fredlake CP, Crosthwaite JM, Hert DG et al. (2004) Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data 49:954–964 Fredlake CP, Crosthwaite JM, Hert DG et al. (2004) Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data 49:954–964
14.
Zurück zum Zitat Earle MJ, Katdare SP, Seddon KR (2004) Paradigm confirmed: the first use of ionic liquids to dramatically influence the outcome of chemical reactions. Org Let 6:707–710 Earle MJ, Katdare SP, Seddon KR (2004) Paradigm confirmed: the first use of ionic liquids to dramatically influence the outcome of chemical reactions. Org Let 6:707–710
15.
Zurück zum Zitat Crowhurst L, Falcone R, Lancaster NL et al. (2006) Using Kamlet–Taft solvent descriptors to explain the reactivity of anionic nucleophiles in ionic liquids. J Org Chem 71:8847–8853 Crowhurst L, Falcone R, Lancaster NL et al. (2006) Using Kamlet–Taft solvent descriptors to explain the reactivity of anionic nucleophiles in ionic liquids. J Org Chem 71:8847–8853
16.
Zurück zum Zitat Dong Q, Muzny CD, Kazakov A et al. (2007) ILThermo: a free-access web database for thermodynamic properties of ionic liquids. J Chem Eng Data 52:1151–1159 Dong Q, Muzny CD, Kazakov A et al. (2007) ILThermo: a free-access web database for thermodynamic properties of ionic liquids. J Chem Eng Data 52:1151–1159
17.
Zurück zum Zitat Katritzky AR, Lomaka A, Petrukhin R et al. (2002) QSPR correlation of the melting point for pyridinium bromides, potential ionic liquids. J Chem Inf Comp Sci 42:71–74 Katritzky AR, Lomaka A, Petrukhin R et al. (2002) QSPR correlation of the melting point for pyridinium bromides, potential ionic liquids. J Chem Inf Comp Sci 42:71–74
18.
Zurück zum Zitat Deetlefs M, Seddon KR, Shara M (2006) Predicting physical properties of ionic liquids. Phys Chem Chem Phys 8:642–649 Deetlefs M, Seddon KR, Shara M (2006) Predicting physical properties of ionic liquids. Phys Chem Chem Phys 8:642–649
19.
Zurück zum Zitat Zhang SJ, Sun N, He XZ et al. (2006) Physical properties of ionic liquids: database and evaluation. J Phys Chem Ref Data 35:1475–1517 Zhang SJ, Sun N, He XZ et al. (2006) Physical properties of ionic liquids: database and evaluation. J Phys Chem Ref Data 35:1475–1517
20.
Zurück zum Zitat Tochigi K, Yamamoto H (2007) Estimation of ionic conductivity and viscosity of ionic liquids using a QSPR model. J Phys Chem C 111:15989–15994 Tochigi K, Yamamoto H (2007) Estimation of ionic conductivity and viscosity of ionic liquids using a QSPR model. J Phys Chem C 111:15989–15994
21.
Zurück zum Zitat Matsuda H, Yamamoto H, Kurihara K et al. (2007) Computer-aided reverse design for ionic liquids by QSPR using descriptors of group contribution type for ionic conductivities. Fluid Phase Equilib 261:434–443 Matsuda H, Yamamoto H, Kurihara K et al. (2007) Computer-aided reverse design for ionic liquids by QSPR using descriptors of group contribution type for ionic conductivities. Fluid Phase Equilib 261:434–443
22.
Zurück zum Zitat Chopey NP (2004) Handbook of chemical engineering calculations. McGraw-Hill, New York Chopey NP (2004) Handbook of chemical engineering calculations. McGraw-Hill, New York
23.
Zurück zum Zitat Dzyuba SV, Bartsch RA (2002) Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluorormethyl-sulfonyl)imides on physical properties of the ionic liquids. Chem Phys Chem 3:161–166 Dzyuba SV, Bartsch RA (2002) Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluorormethyl-sulfonyl)imides on physical properties of the ionic liquids. Chem Phys Chem 3:161–166
24.
Zurück zum Zitat Suarez PAZ, Einloft S, Dullius JEL et al. (1998) Synthesis and physical-chemical properties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation. J Chim Phys-Chim Biol 95:1626–1639 Suarez PAZ, Einloft S, Dullius JEL et al. (1998) Synthesis and physical-chemical properties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation. J Chim Phys-Chim Biol 95:1626–1639
25.
Zurück zum Zitat Van Valkenburg ME, Vaughn RL, Williams M et al. (2005) Thermochemistry of ionic liquid heat-transfer fluids. Thermochim Acta 425:181–188 Van Valkenburg ME, Vaughn RL, Williams M et al. (2005) Thermochemistry of ionic liquid heat-transfer fluids. Thermochim Acta 425:181–188
26.
Zurück zum Zitat Ngo HL, LeCompte K, Hargens L et al. (2000) Thermal properties of imidazolium ionic liquids. Thermochim Acta 357:97–102 Ngo HL, LeCompte K, Hargens L et al. (2000) Thermal properties of imidazolium ionic liquids. Thermochim Acta 357:97–102
28.
Zurück zum Zitat Yamanaka N, Kawano R, Kubo W et al. (2007) Dye-sensitized TiO2 solar cells using imidazolium-type ionic liquid crystal systems as effective electrolytes. J Phys Chem B 111:4763–4769 Yamanaka N, Kawano R, Kubo W et al. (2007) Dye-sensitized TiO2 solar cells using imidazolium-type ionic liquid crystal systems as effective electrolytes. J Phys Chem B 111:4763–4769
29.
Zurück zum Zitat Gordon CM, Holbrey JD, Kennedy AR et al. (1998) Ionic liquid crystals: hexafluorophosphate salts. J Mat Chem 8:2627–2636 Gordon CM, Holbrey JD, Kennedy AR et al. (1998) Ionic liquid crystals: hexafluorophosphate salts. J Mat Chem 8:2627–2636
30.
Zurück zum Zitat Eike DM, Brennecke JF, Maginn EJ (2003) Predicting melting points of quaternary ammonium ionic liquids. Green Chem 5:323–328 Eike DM, Brennecke JF, Maginn EJ (2003) Predicting melting points of quaternary ammonium ionic liquids. Green Chem 5:323–328
31.
Zurück zum Zitat Carrera G, Aires-de-Sousa J (2005) Estimation of melting points of pyridinium bromide ionic liquids with decision trees and neural networks. Green Chem 7:20–27 Carrera G, Aires-de-Sousa J (2005) Estimation of melting points of pyridinium bromide ionic liquids with decision trees and neural networks. Green Chem 7:20–27
32.
Zurück zum Zitat Charton, M, Charton B (1994) Quantitative description of structural effects on melting-points of substituted alkanes. J Phys Org Chem 7:196–206 Charton, M, Charton B (1994) Quantitative description of structural effects on melting-points of substituted alkanes. J Phys Org Chem 7:196–206
33.
Zurück zum Zitat Trohalaki S, Pachter R, Drake GW et al (2005) Quantitative structure-property relationships for melting points and densities of ionic liquids. Energ Fuels 19:279–284 Trohalaki S, Pachter R, Drake GW et al (2005) Quantitative structure-property relationships for melting points and densities of ionic liquids. Energ Fuels 19:279–284
34.
Zurück zum Zitat López-Martin I, Burello E, Davey PN et al. (2007) Anion and cation effects on imidazolium salt melting points: a descriptor modelling study. Chem Phys Chem 8:690–695 López-Martin I, Burello E, Davey PN et al. (2007) Anion and cation effects on imidazolium salt melting points: a descriptor modelling study. Chem Phys Chem 8:690–695
35.
Zurück zum Zitat Alavi S, Thompson DL (2005) Molecular dynamics studies of melting and some liquid-state properties of 1-ethyl-3-methylimidazolium hexafluorophosphate [emim][PF6]. J Chem Phys 122:154704–154712 Alavi S, Thompson DL (2005) Molecular dynamics studies of melting and some liquid-state properties of 1-ethyl-3-methylimidazolium hexafluorophosphate [emim][PF6]. J Chem Phys 122:154704–154712
36.
Zurück zum Zitat Jayaraman S, Maginn EJ (2007) Computing the melting point and thermodynamic stabilty of the orthorhombic and monoclinic crystalline polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride. J Chem Phys 127:214504 Jayaraman S, Maginn EJ (2007) Computing the melting point and thermodynamic stabilty of the orthorhombic and monoclinic crystalline polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride. J Chem Phys 127:214504
37.
Zurück zum Zitat Krossing I, Slattery JM, Daguenet C et al. (2006) Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies. J Am Chem Soc 128:13427–13434 Krossing I, Slattery JM, Daguenet C et al. (2006) Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies. J Am Chem Soc 128:13427–13434
38.
Zurück zum Zitat Awada WH, Gilman JW, Nyden M et al. (2004) Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites. Thermochim Acta 409:3–11 Awada WH, Gilman JW, Nyden M et al. (2004) Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites. Thermochim Acta 409:3–11
39.
Zurück zum Zitat Freemantle M (2003) BASF’S smart ionic liquid. Chem Eng News 81:9 Freemantle M (2003) BASF’S smart ionic liquid. Chem Eng News 81:9
40.
Zurück zum Zitat Rodríguez H, Williams M, Wilkes JS et al. (2008) Ionic liquids for liquid-in-glass thermometers. Green Chem 10:501–507 Rodríguez H, Williams M, Wilkes JS et al. (2008) Ionic liquids for liquid-in-glass thermometers. Green Chem 10:501–507
41.
Zurück zum Zitat Kosmulski M, Gustafsson, Rosenholm JB (2004) Thermal stability of low temperature ionic liquids revisited. Thermochim Acta 412:47–53 Kosmulski M, Gustafsson, Rosenholm JB (2004) Thermal stability of low temperature ionic liquids revisited. Thermochim Acta 412:47–53
42.
Zurück zum Zitat Kamavaram V, Reddy RG (2008) Thermal stabilities of di-alkylimidazolium chloride ionic liquids. Int J Therm Sci 47:773–777 Kamavaram V, Reddy RG (2008) Thermal stabilities of di-alkylimidazolium chloride ionic liquids. Int J Therm Sci 47:773–777
43.
Zurück zum Zitat Rebelo LPN, Canongia Lopes J, Esperança J et al. (2005) On the critical temperature, normal boiling point, and vapour pressure of ionic liquids. J Phys Chem B 109:6040–6043 Rebelo LPN, Canongia Lopes J, Esperança J et al. (2005) On the critical temperature, normal boiling point, and vapour pressure of ionic liquids. J Phys Chem B 109:6040–6043
44.
Zurück zum Zitat Zaitsau DH, Kabo GJ, Strechan AA et al. (2006) Experimental vapour pressures of 1-alkyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl)imides and a correlation scheme for estimation of vapourization enthalpies of ionic liquids. J Phys Chem A 110:7303–7306 Zaitsau DH, Kabo GJ, Strechan AA et al. (2006) Experimental vapour pressures of 1-alkyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl)imides and a correlation scheme for estimation of vapourization enthalpies of ionic liquids. J Phys Chem A 110:7303–7306
45.
Zurück zum Zitat Armstrong JP, Hurst C, Jones RG et al. (2007) Vapourisation of ionic liquids. Phys Chem Chem Phys 9:982–990 Armstrong JP, Hurst C, Jones RG et al. (2007) Vapourisation of ionic liquids. Phys Chem Chem Phys 9:982–990
46.
Zurück zum Zitat Verevkin SP (2008) Predicting enthalpy of vaporization of ionic liquids: a simple rule for a complex property. Angew Chem Int Ed 47:5071–5074 Verevkin SP (2008) Predicting enthalpy of vaporization of ionic liquids: a simple rule for a complex property. Angew Chem Int Ed 47:5071–5074
47.
Zurück zum Zitat Emel’yanenko VN, Verevkin SP, Heintz A (2008) Ionic liquids. Combination of combustion calorimetry with high-level quantum chemical calculations for deriving vaporization enthalpies. J Phys Chem B 112:8095–8098 Emel’yanenko VN, Verevkin SP, Heintz A (2008) Ionic liquids. Combination of combustion calorimetry with high-level quantum chemical calculations for deriving vaporization enthalpies. J Phys Chem B 112:8095–8098
48.
Zurück zum Zitat Luo H, Baker GA, Dai S (2008) Isothermogravimetric determination of the enthalpies of vaporization of 1-alkyl-3-methylimidazolium ionic liquids. J Phys Chem B 112:10077–10081 Luo H, Baker GA, Dai S (2008) Isothermogravimetric determination of the enthalpies of vaporization of 1-alkyl-3-methylimidazolium ionic liquids. J Phys Chem B 112:10077–10081
49.
Zurück zum Zitat Santos L, Canongia Lopes J, Coutinho J et al (2007) Ionic liquids: first direct determination of their cohesive energy. J Am Chem Soc 129:284–285 Santos L, Canongia Lopes J, Coutinho J et al (2007) Ionic liquids: first direct determination of their cohesive energy. J Am Chem Soc 129:284–285
50.
Zurück zum Zitat Diedenhofen M, Klamt A, Marsh K et al (2007) Prediction of the vapor pressure and vaporization enthalpy of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids. Phys Chem Chem Phys 9:4653–4656 Diedenhofen M, Klamt A, Marsh K et al (2007) Prediction of the vapor pressure and vaporization enthalpy of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids. Phys Chem Chem Phys 9:4653–4656
51.
Zurück zum Zitat Ludwig R (2008) Thermodynamic properties of ionic liquids – a cluster approach. Phys Chem Chem Phys 10:4333–4339 Ludwig R (2008) Thermodynamic properties of ionic liquids – a cluster approach. Phys Chem Chem Phys 10:4333–4339
52.
Zurück zum Zitat Valderrama JO, Robles PA (2007) Critical properties, normal boiling temperatures and acentric factors fifty ionic liquids. Ind Eng Chem Res 46:1338–1344 Valderrama JO, Robles PA (2007) Critical properties, normal boiling temperatures and acentric factors fifty ionic liquids. Ind Eng Chem Res 46:1338–1344
53.
Zurück zum Zitat Valderrama JO, Sanga WW, Lazzús JA (2008) Critical properties, normal boiling temperature, and acentric factor of another 200 ionic liquids. Ind Eng Chem Res 47:1318–1330 Valderrama JO, Sanga WW, Lazzús JA (2008) Critical properties, normal boiling temperature, and acentric factor of another 200 ionic liquids. Ind Eng Chem Res 47:1318–1330
54.
Zurück zum Zitat Wagner W, Kleinrahm R, Losch HW et al. (2003) Density. Hydrostatic balance densimeters with magnetic suspension couplings. Bellows volumetry. Absolute density standards. In situ density measurements. In: Goodwin ARH, Marsh KN, Wakeham WA eds) Experimental thermodynamics, vol VI: measurement of the thermodynamic properties of single phases, IUPAC. Elsevier, Amsterdam Wagner W, Kleinrahm R, Losch HW et al. (2003) Density. Hydrostatic balance densimeters with magnetic suspension couplings. Bellows volumetry. Absolute density standards. In situ density measurements. In: Goodwin ARH, Marsh KN, Wakeham WA eds) Experimental thermodynamics, vol VI: measurement of the thermodynamic properties of single phases, IUPAC. Elsevier, Amsterdam
55.
Zurück zum Zitat Kratky O, Leopold H, Stabinger HZ (1969) Density determination of liquids and gases to an accuracy of 10−6 g/cm3, with a sample volume of only 0.6 cm3. Z Angew Phys 27:273–277 Kratky O, Leopold H, Stabinger HZ (1969) Density determination of liquids and gases to an accuracy of 10−6 g/cm3, with a sample volume of only 0.6 cm3. Z Angew Phys 27:273–277
56.
Zurück zum Zitat Kandil ME, Harris KR, Goodwin ARH et al. (2006) Measurement of the viscosity and density of a reference fluid, with nominal viscosity at T = 298 K and p = 0.1 MPa of 29 mPa s, at temperatures between 273 and 423 K and pressures below 275 MPa. J Chem Eng Data 51:2185–2196 Kandil ME, Harris KR, Goodwin ARH et al. (2006) Measurement of the viscosity and density of a reference fluid, with nominal viscosity at T = 298 K and p = 0.1 MPa of 29 mPa s, at temperatures between 273 and 423 K and pressures below 275 MPa. J Chem Eng Data 51:2185–2196
57.
Zurück zum Zitat Dávila MJ, Aparicio S, Alcalde R et al. (2007) On the properties of 1-butyl-3-methylimidazolium octylsulfate ionic liquid. Green Chem 9:221–232 Dávila MJ, Aparicio S, Alcalde R et al. (2007) On the properties of 1-butyl-3-methylimidazolium octylsulfate ionic liquid. Green Chem 9:221–232
58.
Zurück zum Zitat Sanmamed YA, González-Salgado D, Troncoso J et al. (2007) Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. Fluid Phase Equilib 252:96–102 Sanmamed YA, González-Salgado D, Troncoso J et al. (2007) Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. Fluid Phase Equilib 252:96–102
59.
Zurück zum Zitat Goodwin ARH, Trusler JPM (2003) Speed of sound. Measurements of the speed of sound. Thermodynamic properties from the speed of sound. In: Goodwin ARH, Marsh KN, Wakeham WA eds) Experimental thermodynamics, vol VI: measurement of the thermodynamic properties of single phases, IUPAC. Elsevier, Amsterdam Goodwin ARH, Trusler JPM (2003) Speed of sound. Measurements of the speed of sound. Thermodynamic properties from the speed of sound. In: Goodwin ARH, Marsh KN, Wakeham WA eds) Experimental thermodynamics, vol VI: measurement of the thermodynamic properties of single phases, IUPAC. Elsevier, Amsterdam
60.
Zurück zum Zitat Jacquemin J, Husson P, Padua AAH et al. (2006) Density and viscosity of several pure and water-saturated ionic liquids. Green Chem 8:172–180 Jacquemin J, Husson P, Padua AAH et al. (2006) Density and viscosity of several pure and water-saturated ionic liquids. Green Chem 8:172–180
61.
Zurück zum Zitat Jacquemin J, Ge R, Nancarrow P et al (2008) Prediction of ionic liquid properties. I. Volumetric properties as a function of temperature at 0.1 MPa. J Chem Eng Data 53:716–726 Jacquemin J, Ge R, Nancarrow P et al (2008) Prediction of ionic liquid properties. I. Volumetric properties as a function of temperature at 0.1 MPa. J Chem Eng Data 53:716–726
62.
Zurück zum Zitat Troncoso J, Cerdeirina CA, Sanmamed YA et al. (2006) Thermodynamic properties of imidazolium-based ionic liquids: densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2]. J Chem Eng Data 51:1856–1859 Troncoso J, Cerdeirina CA, Sanmamed YA et al. (2006) Thermodynamic properties of imidazolium-based ionic liquids: densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2]. J Chem Eng Data 51:1856–1859
63.
Zurück zum Zitat Rebelo LPN, Najdanovic-Visak V, Gomes de Azevedo R et al. (2005) Phase behaviour and thermodynamic properties of ionic liquids, ionic liquid mixtures, and ionic liquid solutions. In: Rogers, RD, Seddon KR eds) Ionic liquids IIIA: fundamentals, progress, challenges, and opportunities-properties and structure. ACS Symposium Series 901. American Chemical Society, Washington Rebelo LPN, Najdanovic-Visak V, Gomes de Azevedo R et al. (2005) Phase behaviour and thermodynamic properties of ionic liquids, ionic liquid mixtures, and ionic liquid solutions. In: Rogers, RD, Seddon KR eds) Ionic liquids IIIA: fundamentals, progress, challenges, and opportunities-properties and structure. ACS Symposium Series 901. American Chemical Society, Washington
64.
Zurück zum Zitat Esperança J, Guedes HJR, Blesic M et al. (2006) Densities and derived thermodynamic properties of ionic liquids. 3. Phosphonium-based ionic liquids over an extended pressure range. J Chem Eng Data 51:237–242 Esperança J, Guedes HJR, Blesic M et al. (2006) Densities and derived thermodynamic properties of ionic liquids. 3. Phosphonium-based ionic liquids over an extended pressure range. J Chem Eng Data 51:237–242
65.
Zurück zum Zitat Yang J, Lu X, Gui J et al. (2004) A new theory for ionic liquids – the interstice model part 1. The density and surface tension of ionic liquid EMISE. Green Chem 6:541–543 Yang J, Lu X, Gui J et al. (2004) A new theory for ionic liquids – the interstice model part 1. The density and surface tension of ionic liquid EMISE. Green Chem 6:541–543
66.
Zurück zum Zitat Kim YS, Choi WY, Jang JH et al. (2005) Solubility measurement and prediction of carbon dioxide in ionic liquids. Fluid Phase Equilib 256:439–445 Kim YS, Choi WY, Jang JH et al. (2005) Solubility measurement and prediction of carbon dioxide in ionic liquids. Fluid Phase Equilib 256:439–445
67.
Zurück zum Zitat Kim YS, Jang JH, Lim DB et al. (2007) Solubility of mixed gases containing carbon dioxide in ionic liquids: measurements and predictions. Fluid Phase Equilib 228:70–74 Kim YS, Jang JH, Lim DB et al. (2007) Solubility of mixed gases containing carbon dioxide in ionic liquids: measurements and predictions. Fluid Phase Equilib 228:70–74
68.
Zurück zum Zitat Ye C, Shreeve JM (2007) Rapid and accurate estimation of densities of room-temperature ionic liquids and salts. J Phys Chem A 111:1456–1461 Ye C, Shreeve JM (2007) Rapid and accurate estimation of densities of room-temperature ionic liquids and salts. J Phys Chem A 111:1456–1461
69.
Zurück zum Zitat Gardas RL, Coutinho JAP (2008) Extension of the Ye and Shreeve group contribution method for density estimation of ionic liquids in a wide range of temperatures and pressures. Fluid Phase Equilib 263:26–32 Gardas RL, Coutinho JAP (2008) Extension of the Ye and Shreeve group contribution method for density estimation of ionic liquids in a wide range of temperatures and pressures. Fluid Phase Equilib 263:26–32
70.
Zurück zum Zitat Knotts TA, Wilding WV, Oscarson JL et al. (2001) Use of the DIPPR database for development of QSPR correlations: surface tension. J Chem Eng Data 46:1007–1012 Knotts TA, Wilding WV, Oscarson JL et al. (2001) Use of the DIPPR database for development of QSPR correlations: surface tension. J Chem Eng Data 46:1007–1012
71.
Zurück zum Zitat Jacquemin J, Husson P, Mayer V et al (2007) High-pressure volumetric properties of imidazolium-based ionic liquids – effect of the anion. J Chem Eng Data 52:2204–2211 Jacquemin J, Husson P, Mayer V et al (2007) High-pressure volumetric properties of imidazolium-based ionic liquids – effect of the anion. J Chem Eng Data 52:2204–2211
72.
Zurück zum Zitat Jacquemin J, Nancarrow P, Rooney DW et al. (2008) Prediction of ionic liquid properties. II. Volumetric properties as a function of temperature and pressure. J Chem Eng Data 53:2133–2143 Jacquemin J, Nancarrow P, Rooney DW et al. (2008) Prediction of ionic liquid properties. II. Volumetric properties as a function of temperature and pressure. J Chem Eng Data 53:2133–2143
73.
Zurück zum Zitat Riddick JA, Bunger WB, Sakano TK (1986) Organic solvents, physical properties and method of purification, 4th ed. Wiley, New York Riddick JA, Bunger WB, Sakano TK (1986) Organic solvents, physical properties and method of purification, 4th ed. Wiley, New York
74.
Zurück zum Zitat Bonhote P, Dias AP, Papageorgiou N et al. (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178 Bonhote P, Dias AP, Papageorgiou N et al. (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178
75.
Zurück zum Zitat Crosthwaite JM, Muldoon MJ, Dixon JK et al. (2005) Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J Chem Thermodyn 37:559–568 Crosthwaite JM, Muldoon MJ, Dixon JK et al. (2005) Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J Chem Thermodyn 37:559–568
76.
Zurück zum Zitat Seddon KR, Stark A, Torres MJ (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72:2275–2287 Seddon KR, Stark A, Torres MJ (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72:2275–2287
77.
Zurück zum Zitat Chauvin Y, Olivier-Bourbigou H (1995) Nonaqueous ionic liquids as reaction solvents. Chem Tech 25:26–30 Chauvin Y, Olivier-Bourbigou H (1995) Nonaqueous ionic liquids as reaction solvents. Chem Tech 25:26–30
78.
Zurück zum Zitat Baker SN, Baker GA, Bright FV (2002) Temperature-dependent microscopic solvent properties of ‘dry’ and ‘wet’ 1-butyl-3-methylimidazolium hexafluorophosphate: correlation with ET(30) and Kamlet-Taft polarity scales. Green Chem 4:165–169 Baker SN, Baker GA, Bright FV (2002) Temperature-dependent microscopic solvent properties of ‘dry’ and ‘wet’ 1-butyl-3-methylimidazolium hexafluorophosphate: correlation with ET(30) and Kamlet-Taft polarity scales. Green Chem 4:165–169
79.
Zurück zum Zitat Widegren JA, Laesecke A, Magee JW (2005) The effect of dissolved water on the viscosities of hydrophobic room-temperature ionic liquids. Chem Commun 12:1610–1612 Widegren JA, Laesecke A, Magee JW (2005) The effect of dissolved water on the viscosities of hydrophobic room-temperature ionic liquids. Chem Commun 12:1610–1612
80.
Zurück zum Zitat Silvester DS, Compton RG (2006) Electrochemistry in room temperature ionic liquids: a review and some possible applications. Z Phys Chem 220:1247–1274 Silvester DS, Compton RG (2006) Electrochemistry in room temperature ionic liquids: a review and some possible applications. Z Phys Chem 220:1247–1274
81.
Zurück zum Zitat Saha S, Hamaguchi HO (2006) Effect of water on the molecular structure and arrangement of nitrile-functionalized ionic liquids. J Phys Chem B 110:2777–2781 Saha S, Hamaguchi HO (2006) Effect of water on the molecular structure and arrangement of nitrile-functionalized ionic liquids. J Phys Chem B 110:2777–2781
82.
Zurück zum Zitat Tokuda H, Hayamizu K, Ishii K et al (2004) Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108:16593–16600 Tokuda H, Hayamizu K, Ishii K et al (2004) Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108:16593–16600
83.
Zurück zum Zitat Tokuda H, Hayamizu K, Ishii K et al (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109:6103–6110 Tokuda H, Hayamizu K, Ishii K et al (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109:6103–6110
84.
Zurück zum Zitat Tokuda H, Ishii K, Susan MABH et al (2006) Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J Phys Chem B 110:2833–2839 Tokuda H, Ishii K, Susan MABH et al (2006) Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J Phys Chem B 110:2833–2839
85.
Zurück zum Zitat Tokuda H, Tsuzuki S, Susan MABH et al (2006) How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J Phys Chem B 110:19593–19600 Tokuda H, Tsuzuki S, Susan MABH et al (2006) How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J Phys Chem B 110:19593–19600
86.
Zurück zum Zitat Harris KR, Woolf LA, Kanakubo M (2005) Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Chem Eng Data 50:1777–1782 Harris KR, Woolf LA, Kanakubo M (2005) Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Chem Eng Data 50:1777–1782
87.
Zurück zum Zitat Harris KR, Kanakubo M, Woolf LA (2007) Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Chem Eng Data 52:1080–1085 Harris KR, Kanakubo M, Woolf LA (2007) Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Chem Eng Data 52:1080–1085
88.
Zurück zum Zitat Millat J, Dymond JH, Nieto de Castro CA (1996) Transport properties of fluids. their correlation, prediction and estimation. Cambridge University Press. Cambridge, UK Millat J, Dymond JH, Nieto de Castro CA (1996) Transport properties of fluids. their correlation, prediction and estimation. Cambridge University Press. Cambridge, UK
89.
Zurück zum Zitat Orrick C, Erbar EJH (1973) Estimation of viscosity for organic liquids. Proposition Report, Oklahoma State University, Stillwater Orrick C, Erbar EJH (1973) Estimation of viscosity for organic liquids. Proposition Report, Oklahoma State University, Stillwater
90.
Zurück zum Zitat Sastri SRS, Rao KK (2000) A new method for predicting saturated liquid viscosity at temperatures above the normal boiling point. Fluid Phase Equilib 175:311–323 Sastri SRS, Rao KK (2000) A new method for predicting saturated liquid viscosity at temperatures above the normal boiling point. Fluid Phase Equilib 175:311–323
91.
Zurück zum Zitat Gastonbonhomme Y, Petrino P, Chevalier JL (1994) UNIFAC visco group-contribution method for predicting kinematic viscosity – extension and temperature-dependence. Chem Eng Sci 49:1799–1806 Gastonbonhomme Y, Petrino P, Chevalier JL (1994) UNIFAC visco group-contribution method for predicting kinematic viscosity – extension and temperature-dependence. Chem Eng Sci 49:1799–1806
92.
Zurück zum Zitat Przezdziecki JW, Sridhar T (1985) Prediction of liquid viscosities. AIChE J 31:333–338 Przezdziecki JW, Sridhar T (1985) Prediction of liquid viscosities. AIChE J 31:333–338
93.
Zurück zum Zitat Chatterjee A, Vasant AK (1982) Estimation of viscosity of organic liquids. Chem Ind 11:375–376 Chatterjee A, Vasant AK (1982) Estimation of viscosity of organic liquids. Chem Ind 11:375–376
94.
Zurück zum Zitat Teja AS, Rice P (1981) Generalized corresponding states method for the viscosities of liquid-mixtures. Ind Eng Chem Fund 20:77–81 Teja AS, Rice P (1981) Generalized corresponding states method for the viscosities of liquid-mixtures. Ind Eng Chem Fund 20:77–81
95.
Zurück zum Zitat Teja AS, Rice P (1981) The measurement and prediction of the viscosities of some binary-liquid mixtures containing normal-hexane. Chem Eng Sci 36:7–10 Teja AS, Rice P (1981) The measurement and prediction of the viscosities of some binary-liquid mixtures containing normal-hexane. Chem Eng Sci 36:7–10
96.
Zurück zum Zitat Queimada AJ, Marrucho IM, Coutinho JAP et al. (2005) Viscosity and liquid density of asymmetric n-alkane mixtures: measurement and modeling. Int J Thermophys 26:47–61 Queimada AJ, Marrucho IM, Coutinho JAP et al. (2005) Viscosity and liquid density of asymmetric n-alkane mixtures: measurement and modeling. Int J Thermophys 26:47–61
97.
Zurück zum Zitat Queimada AJ, Rolo LI, Caço AI et al. (2006) Prediction of viscosities and surface tensions of fuels using a new corresponding states model. Fuel 85:874–877 Queimada AJ, Rolo LI, Caço AI et al. (2006) Prediction of viscosities and surface tensions of fuels using a new corresponding states model. Fuel 85:874–877
98.
Zurück zum Zitat Yinghua L, Peisheng M, Ping L (2002) Estimation of liquid viscosity of pure compounds at different temperatures by a corresponding-states group-contribution method. Fluid Phase Equilib 198:123–130 Yinghua L, Peisheng M, Ping L (2002) Estimation of liquid viscosity of pure compounds at different temperatures by a corresponding-states group-contribution method. Fluid Phase Equilib 198:123–130
99.
Zurück zum Zitat de Guzman J (1913) Relation between fluidity and heat fusion. An Soc Esp Fis Quim 11:353–362 de Guzman J (1913) Relation between fluidity and heat fusion. An Soc Esp Fis Quim 11:353–362
100.
Zurück zum Zitat Andrade ENDC (1930) The viscosity of liquids. Nature 125:309–310 Andrade ENDC (1930) The viscosity of liquids. Nature 125:309–310
101.
Zurück zum Zitat Gardas RL, Coutinho JAP (2008) A group contribution method for viscosity estimation of ionic liquids. Fluid Phase Equilib 266:195–201 Gardas RL, Coutinho JAP (2008) A group contribution method for viscosity estimation of ionic liquids. Fluid Phase Equilib 266:195–201
102.
Zurück zum Zitat Reid RC, Prausnitz JM, Sherwood TK (1987) The properties of gases and liquids, 4th edn. McGraw-Hill, New York Reid RC, Prausnitz JM, Sherwood TK (1987) The properties of gases and liquids, 4th edn. McGraw-Hill, New York
103.
Zurück zum Zitat Gardas RL, Coutinho JAP (2009) Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids AIChE J. (in press) DOI: 10.1002/aic.11737 Gardas RL, Coutinho JAP (2009) Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids AIChE J. (in press) DOI: 10.1002/aic.11737
104.
Zurück zum Zitat Leclercq L, Suisse L, Agbossou-Niedercorn F (2008) Biphasic hydroformylation in ionic liquids: interaction between phosphane ligands and imidazolium triflate, toward an asymmetric process. Chem Commun 3:311–313 Leclercq L, Suisse L, Agbossou-Niedercorn F (2008) Biphasic hydroformylation in ionic liquids: interaction between phosphane ligands and imidazolium triflate, toward an asymmetric process. Chem Commun 3:311–313
105.
Zurück zum Zitat Gardas RL, Coutinho JAP (2008) Applying a QSPR correlation to the prediction of surface tensions of ionic liquids. Fluid Phase Equilib 265:57–65 Gardas RL, Coutinho JAP (2008) Applying a QSPR correlation to the prediction of surface tensions of ionic liquids. Fluid Phase Equilib 265:57–65
106.
Zurück zum Zitat Knotts TA, Wilding WV, Oscarson JL et al. (2001) Use of the DIPPR database for development of QSPR correlations: surface tension. J Chem Eng Data 46:1007–1012 Knotts TA, Wilding WV, Oscarson JL et al. (2001) Use of the DIPPR database for development of QSPR correlations: surface tension. J Chem Eng Data 46:1007–1012
107.
Zurück zum Zitat Strechan AA, Paulechka YU, Blokhin AV et al. (2008) Low-temperature heat capacity of hydrophilic ionic liquids [BMIM][CF3COO] and [BMIM][CH3COO] and a correlation scheme for estimation of heat capacity of ionic liquids. J Chem Thermodyn 40:632–639 Strechan AA, Paulechka YU, Blokhin AV et al. (2008) Low-temperature heat capacity of hydrophilic ionic liquids [BMIM][CF3COO] and [BMIM][CH3COO] and a correlation scheme for estimation of heat capacity of ionic liquids. J Chem Thermodyn 40:632–639
108.
Zurück zum Zitat García-Miaja G, Troncoso J, Romaní L (2007) Density and heat capacity as a function of temperature for binary mixtures of 1-butyl-3-methylpyridinium tetrafluoroborate + water, + ethanol, and + nitromethane. J Chem Eng Data 52:2261–2265 García-Miaja G, Troncoso J, Romaní L (2007) Density and heat capacity as a function of temperature for binary mixtures of 1-butyl-3-methylpyridinium tetrafluoroborate + water, + ethanol, and + nitromethane. J Chem Eng Data 52:2261–2265
109.
Zurück zum Zitat Graziano G (2005) On the hydration heat capacity change of benzene. Biophys Chem 116:137–144 Graziano G (2005) On the hydration heat capacity change of benzene. Biophys Chem 116:137–144
110.
Zurück zum Zitat Ge R, Hardacre C, Jacquemin J et al. (2008) Heat capacities of ionic liquids as a function of temperature at 0.1 MPa – measurement and prediction. J Chem Eng Data 53:2148–2153 Ge R, Hardacre C, Jacquemin J et al. (2008) Heat capacities of ionic liquids as a function of temperature at 0.1 MPa – measurement and prediction. J Chem Eng Data 53:2148–2153
111.
Zurück zum Zitat Holbrey JD, Reichert WM, Reddy RG et al. (2003) Heat capacities of ionic liquids and their applications as thermal fluids. In: Rogers RD, Seddon KR eds) Ionic liquids as green solvents: progress and prospects. ACS Symposium Series. ACS, Washington DC Holbrey JD, Reichert WM, Reddy RG et al. (2003) Heat capacities of ionic liquids and their applications as thermal fluids. In: Rogers RD, Seddon KR eds) Ionic liquids as green solvents: progress and prospects. ACS Symposium Series. ACS, Washington DC
112.
Zurück zum Zitat Archer DG, Widegren JA, Kirklin DR et al. (2005) Enthalpy of solution of 1-octyl-3-methylimidazolium tetrafluoroborate in water and in aqueous sodium fluoride. J Chem Eng Data 50:1484–1491 Archer DG, Widegren JA, Kirklin DR et al. (2005) Enthalpy of solution of 1-octyl-3-methylimidazolium tetrafluoroborate in water and in aqueous sodium fluoride. J Chem Eng Data 50:1484–1491
113.
Zurück zum Zitat Paulechka YU, Blokhin AV, Kabo GJ et al. (2007) Thermodynamic properties and polymorphism of 1-alkyl-3-methylimidazolium bis(triflamides). J Chem Thermodyn 39:866–877 Paulechka YU, Blokhin AV, Kabo GJ et al. (2007) Thermodynamic properties and polymorphism of 1-alkyl-3-methylimidazolium bis(triflamides). J Chem Thermodyn 39:866–877
114.
Zurück zum Zitat Joback KG (1984) A unified approach to physical property estimation using multivariant statistical techniques. MSc thesis in chemical Engineering. Massachusetts Institute of Technology, Cambrdige Joback KG (1984) A unified approach to physical property estimation using multivariant statistical techniques. MSc thesis in chemical Engineering. Massachusetts Institute of Technology, Cambrdige
115.
Zurück zum Zitat Poling BE , Prausnitz JM , O'Connell JP (2001) The properties of gases and liquids . McGraw-Hill , New York Poling BE , Prausnitz JM , O'Connell JP (2001) The properties of gases and liquids . McGraw-Hill , New York
116.
Zurück zum Zitat Diedrichs A, Gmehling J (2006) Measurement of heat capacities of ionic liquids by differential scanning calorimetry. Fluid Phase Equilib 244:68–77 Diedrichs A, Gmehling J (2006) Measurement of heat capacities of ionic liquids by differential scanning calorimetry. Fluid Phase Equilib 244:68–77
117.
Zurück zum Zitat Gardas RL, Coutinho JAP (2008) A group contribution method for heat capacity estimation of ionic liquids. Ind Eng Chem Res 47:5751–5757 Gardas RL, Coutinho JAP (2008) A group contribution method for heat capacity estimation of ionic liquids. Ind Eng Chem Res 47:5751–5757
118.
Zurück zum Zitat Ruzicka V, Domalski ES (1993) Estimation of the heat-capacities of organic liquids as a function of temperature using group additivity. 1. Hydrocarbon compounds. J Phys Chem Ref Data 22:597–618 Ruzicka V, Domalski ES (1993) Estimation of the heat-capacities of organic liquids as a function of temperature using group additivity. 1. Hydrocarbon compounds. J Phys Chem Ref Data 22:597–618
119.
Zurück zum Zitat Ruzicka V, Domalski ES (1993) Estimation of the heat-capacities of organic liquids as a function of temperature using group additivity. 2. Compounds of carbon, hydrogen, halogens, nitrogen, oxygen, and sulfur. J Phys Chem Ref Data 22:619–657 Ruzicka V, Domalski ES (1993) Estimation of the heat-capacities of organic liquids as a function of temperature using group additivity. 2. Compounds of carbon, hydrogen, halogens, nitrogen, oxygen, and sulfur. J Phys Chem Ref Data 22:619–657
120.
Zurück zum Zitat Frez C, Diebold GJ, Tran C et al. (2006) Determination of thermal diffusivities, thermal conductivities, and sound speeds of room temperature ionic liquids by the transient grating technique. J Chem Eng Data 51:1250–1255 Frez C, Diebold GJ, Tran C et al. (2006) Determination of thermal diffusivities, thermal conductivities, and sound speeds of room temperature ionic liquids by the transient grating technique. J Chem Eng Data 51:1250–1255
121.
Zurück zum Zitat Tomida D, Kenmochi S, Tsukada T et al. (2007) Thermal conductivities of [bmim][PF6], [hmim][PF6], and [omim][PF6] from 294 to 335 K at pressures up to 20 MPa. Int J Thermophys 28:1147–1160 Tomida D, Kenmochi S, Tsukada T et al. (2007) Thermal conductivities of [bmim][PF6], [hmim][PF6], and [omim][PF6] from 294 to 335 K at pressures up to 20 MPa. Int J Thermophys 28:1147–1160
122.
Zurück zum Zitat Ge R, Hardacre C, Nancarrow P et al. (2007) Thermal conductivities of ionic liquids over the temperature range from 293 K to 353 K. J Chem Eng Data 52:1819–1823 Ge R, Hardacre C, Nancarrow P et al. (2007) Thermal conductivities of ionic liquids over the temperature range from 293 K to 353 K. J Chem Eng Data 52:1819–1823
123.
Zurück zum Zitat Chen H, He Y, Zhu J et al. (2008) Rheological and heat transfer behaviour of the ionic liquid, [C4mim][NTf2]. Int J Heat Fluid Flow 29 (2008) 149–155 Chen H, He Y, Zhu J et al. (2008) Rheological and heat transfer behaviour of the ionic liquid, [C4mim][NTf2]. Int J Heat Fluid Flow 29 (2008) 149–155
Metadaten
Titel
Thermophysical Properties of Ionic Liquids
verfasst von
David Rooney
Johan Jacquemin
Ramesh Gardas
Copyright-Jahr
2010
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/128_2008_32

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.