Skip to main content

2024 | OriginalPaper | Buchkapitel

3. Thermoplasmonic Materials

verfasst von : Guohua Liu

Erschienen in: Thermoplasmonics

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Material selection, design, and fabrication are critical aspects in thermoplasmonics. Here, we focus on fundamental strategies for selecting suitable plasmonic materials, tuning surface plasmon responses through single nanoparticle designs involving size and shape, and leveraging coupling effects in NP assemblies with carefully designed matrices or substrates. Once the selection and design are established, the common synthesizing methods for novel nanostructures are further presented to achieve optimal thermoplasmonic properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Baffou, Thermoplasmonics Heating Metal Nanoparticles Using Light (Cambridge University Press, 2018). ISBN 978-971-108-41832-41834 G. Baffou, Thermoplasmonics Heating Metal Nanoparticles Using Light (Cambridge University Press, 2018). ISBN 978-971-108-41832-41834
2.
Zurück zum Zitat S.A. Maier, Plasmonics Fundamentals and Applications @2007 (Springer Science+Business Media LLC, 2007) S.A. Maier, Plasmonics Fundamentals and Applications @2007 (Springer Science+Business Media LLC, 2007)
3.
Zurück zum Zitat R.J. Mendelsberg, G. Garcia, D.J. Milliron, Extracting reliable electronic properties from transmission spectra of indium tin oxide thin films and nanocrystal films by careful application of the Drude theory. J. Appl. Phys. 111 (2012) R.J. Mendelsberg, G. Garcia, D.J. Milliron, Extracting reliable electronic properties from transmission spectra of indium tin oxide thin films and nanocrystal films by careful application of the Drude theory. J. Appl. Phys. 111 (2012)
4.
5.
Zurück zum Zitat T. Gong, J.N. Munday, Materials for hot carrier plasmonics. Opt. Mater. Expr. 5, 2501 (2015)CrossRef T. Gong, J.N. Munday, Materials for hot carrier plasmonics. Opt. Mater. Expr. 5, 2501 (2015)CrossRef
6.
Zurück zum Zitat S. Furumi, H. Fudouzi, T. Sawada, Self-organized colloidal crystals for photonics and laser applications. Laser Photon. Rev. 4, 205–220 (2010)CrossRef S. Furumi, H. Fudouzi, T. Sawada, Self-organized colloidal crystals for photonics and laser applications. Laser Photon. Rev. 4, 205–220 (2010)CrossRef
7.
Zurück zum Zitat N. Jiang, X. Zhuo, J. Wang, Active plasmonics: principles, structures, and applications. Chem. Rev. 118, 3054–3099 (2018)PubMedCrossRef N. Jiang, X. Zhuo, J. Wang, Active plasmonics: principles, structures, and applications. Chem. Rev. 118, 3054–3099 (2018)PubMedCrossRef
8.
Zurück zum Zitat A. Agrawal, R.W. Johns, D.J. Milliron, Control of localized surface plasmon resonances in metal oxide nanocrystals. Annu. Rev. Mater. Res. 47, 1–31 (2017)CrossRef A. Agrawal, R.W. Johns, D.J. Milliron, Control of localized surface plasmon resonances in metal oxide nanocrystals. Annu. Rev. Mater. Res. 47, 1–31 (2017)CrossRef
9.
Zurück zum Zitat P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010)CrossRef P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010)CrossRef
10.
Zurück zum Zitat G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013)PubMedCrossRef G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013)PubMedCrossRef
11.
Zurück zum Zitat M.I. Stockman, K. Kneipp, S.I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V.M. Shalaev, A. Boltasseva, B. Gholipour, H.N.S. Krishnamoorthy, K.F. MacDonald, C. Soci, N.I. Zheludev, V. Savinov, R. Singh, P. Gross, C. Lienau, M. Vadai, M.L. Solomon, D.R. Barton, M. Lawrence, J.A. Dionne, S.V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D.Q. Wang, W.J. Wang, T.W. Odom, N. Accanto, P.M. de Roque, I.M. Hancu, L. Piatkowski, N.F. van Hulst, M.F. Kling, Roadmap on plasmonics. J. Optics-Uk 20 (2018) M.I. Stockman, K. Kneipp, S.I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V.M. Shalaev, A. Boltasseva, B. Gholipour, H.N.S. Krishnamoorthy, K.F. MacDonald, C. Soci, N.I. Zheludev, V. Savinov, R. Singh, P. Gross, C. Lienau, M. Vadai, M.L. Solomon, D.R. Barton, M. Lawrence, J.A. Dionne, S.V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D.Q. Wang, W.J. Wang, T.W. Odom, N. Accanto, P.M. de Roque, I.M. Hancu, L. Piatkowski, N.F. van Hulst, M.F. Kling, Roadmap on plasmonics. J. Optics-Uk 20 (2018)
12.
Zurück zum Zitat A. Lalisse, G. Tessier, J. Plain, G. Baffou, Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. J. Phys. Chem. C 119, 25518–25528 (2015)CrossRef A. Lalisse, G. Tessier, J. Plain, G. Baffou, Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. J. Phys. Chem. C 119, 25518–25528 (2015)CrossRef
13.
Zurück zum Zitat H. Kang, J.T. Buchman, R.S. Rodriguez, H.L. Ring, J. He, K.C. Bantz, C.L. Haynes, Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chem. Rev. 119, 664–699 (2019)PubMedCrossRef H. Kang, J.T. Buchman, R.S. Rodriguez, H.L. Ring, J. He, K.C. Bantz, C.L. Haynes, Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chem. Rev. 119, 664–699 (2019)PubMedCrossRef
14.
Zurück zum Zitat H. Chen, L. Shao, Q. Li, J. Wang, Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 42, 2679–2724 (2013)PubMedCrossRef H. Chen, L. Shao, Q. Li, J. Wang, Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 42, 2679–2724 (2013)PubMedCrossRef
15.
Zurück zum Zitat M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, Y. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011)PubMedPubMedCentralCrossRef M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, Y. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011)PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat I. Zoric, M. Zach, B. Kasemo, C. Langhammer, Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms. ACS Nano 5, 2535–2546 (2011)PubMedCrossRef I. Zoric, M. Zach, B. Kasemo, C. Langhammer, Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms. ACS Nano 5, 2535–2546 (2011)PubMedCrossRef
17.
Zurück zum Zitat A. Marimuthu, J. Zhang, S. Linic, Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339, 1590–1593 (2013)PubMedCrossRef A. Marimuthu, J. Zhang, S. Linic, Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339, 1590–1593 (2013)PubMedCrossRef
18.
Zurück zum Zitat M.W. Knight, N.S. King, L. Liu, H.O. Everitt, P. Nordlander, N.J. Halas, Aluminum for plasmonics. ACS Nano 8, 834–840 (2014)PubMedCrossRef M.W. Knight, N.S. King, L. Liu, H.O. Everitt, P. Nordlander, N.J. Halas, Aluminum for plasmonics. ACS Nano 8, 834–840 (2014)PubMedCrossRef
19.
Zurück zum Zitat B.D. Clark, C.R. Jacobson, M. Lou, J. Yang, L. Zhou, S. Gottheim, C.J. DeSantis, P. Nordlander, N.J. Halas, Aluminum nanorods. Nano Lett. 18, 1234–1240 (2018)PubMedCrossRef B.D. Clark, C.R. Jacobson, M. Lou, J. Yang, L. Zhou, S. Gottheim, C.J. DeSantis, P. Nordlander, N.J. Halas, Aluminum nanorods. Nano Lett. 18, 1234–1240 (2018)PubMedCrossRef
20.
Zurück zum Zitat A. Sobhani, A. Manjavacas, Y. Cao, M.J. McClain, F.J. Garcia de Abajo, P. Nordlander, N.J. Halas, Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film. Nano Lett. 15, 6946–6951 (2015)PubMedCrossRef A. Sobhani, A. Manjavacas, Y. Cao, M.J. McClain, F.J. Garcia de Abajo, P. Nordlander, N.J. Halas, Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film. Nano Lett. 15, 6946–6951 (2015)PubMedCrossRef
21.
Zurück zum Zitat Y. Zhu, L. Cui, M. Abbasi, D. Natelson, Tuning light emission crossovers in atomic-scale aluminum plasmonic tunnel junctions. Nano Lett. 22, 8068–8075 (2022)PubMedCrossRef Y. Zhu, L. Cui, M. Abbasi, D. Natelson, Tuning light emission crossovers in atomic-scale aluminum plasmonic tunnel junctions. Nano Lett. 22, 8068–8075 (2022)PubMedCrossRef
22.
Zurück zum Zitat A.B. Urcan Guler, V.M. Shalaev, Refractory plasmonics. Science 344, 263–264 (2014) A.B. Urcan Guler, V.M. Shalaev, Refractory plasmonics. Science 344, 263–264 (2014)
23.
Zurück zum Zitat Z. Huang, C. Cao, Q. Wang, H. Zhang, C.E. Owens, A.J. Hart, K. Cui, Multiscale plasmonic refractory nanocomposites for high-temperature solar photothermal conversion. Nano Lett. 22, 8526–8533 (2022)PubMedCrossRef Z. Huang, C. Cao, Q. Wang, H. Zhang, C.E. Owens, A.J. Hart, K. Cui, Multiscale plasmonic refractory nanocomposites for high-temperature solar photothermal conversion. Nano Lett. 22, 8526–8533 (2022)PubMedCrossRef
24.
Zurück zum Zitat X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, N. Zheng, Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 6, 28–32 (2011)PubMedCrossRef X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, N. Zheng, Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 6, 28–32 (2011)PubMedCrossRef
25.
Zurück zum Zitat H. Sheng, J. Wang, J. Huang, Z. Li, G. Ren, L. Zhang, L. Yu, M. Zhao, X. Li, G. Li, N. Wang, C. Shen, G. Lu, Strong synergy between gold nanoparticles and cobalt porphyrin induces highly efficient photocatalytic hydrogen evolution. Nat. Commun. 14, 1528 (2023)PubMedPubMedCentralCrossRef H. Sheng, J. Wang, J. Huang, Z. Li, G. Ren, L. Zhang, L. Yu, M. Zhao, X. Li, G. Li, N. Wang, C. Shen, G. Lu, Strong synergy between gold nanoparticles and cobalt porphyrin induces highly efficient photocatalytic hydrogen evolution. Nat. Commun. 14, 1528 (2023)PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat S.S.V. Kailash, Quantifying the optical and thermoplasmonic properties of some bimetallic alloy nanospheres. J. Quant. Spectrosc. Radiat. Transfer 309, 108707 (2023)CrossRef S.S.V. Kailash, Quantifying the optical and thermoplasmonic properties of some bimetallic alloy nanospheres. J. Quant. Spectrosc. Radiat. Transfer 309, 108707 (2023)CrossRef
27.
Zurück zum Zitat P. Han, P. Jin, X. Li, Y. Xu, K. Li, S. Wang, Z. Nie, Photoactivation of ambient oxygen via plasmon-coupled valence-band hybridization in AgPd nanoalloy for reaction pathway alteration. Appl. Catal. B 298, 120598 (2021)CrossRef P. Han, P. Jin, X. Li, Y. Xu, K. Li, S. Wang, Z. Nie, Photoactivation of ambient oxygen via plasmon-coupled valence-band hybridization in AgPd nanoalloy for reaction pathway alteration. Appl. Catal. B 298, 120598 (2021)CrossRef
28.
Zurück zum Zitat M. Rebello Sousa Dias, M.S. Leite, Alloying: a platform for metallic materials with on-demand optical response. Accounts Chem. Res. 52, 2881–2891 (2019) M. Rebello Sousa Dias, M.S. Leite, Alloying: a platform for metallic materials with on-demand optical response. Accounts Chem. Res. 52, 2881–2891 (2019)
29.
Zurück zum Zitat M. Cao, Q. Liu, M. Chen, L. Chen, D. Yang, H. Hu, L. He, G. Zhang, Q. Zhang, Fully alloying AuAg nanorods in a photothermal nano-oven: superior plasmonic property and enhanced chemical stability. ACS Omega 3, 18623–18629 (2018)PubMedPubMedCentralCrossRef M. Cao, Q. Liu, M. Chen, L. Chen, D. Yang, H. Hu, L. He, G. Zhang, Q. Zhang, Fully alloying AuAg nanorods in a photothermal nano-oven: superior plasmonic property and enhanced chemical stability. ACS Omega 3, 18623–18629 (2018)PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat N.E. Motl, A.F. Smith, C.J. DeSantis, S.E. Skrabalak, Engineering plasmonic metal colloids through composition and structural design. Chem. Soc. Rev. 43, 3823–3834 (2014)PubMedCrossRef N.E. Motl, A.F. Smith, C.J. DeSantis, S.E. Skrabalak, Engineering plasmonic metal colloids through composition and structural design. Chem. Soc. Rev. 43, 3823–3834 (2014)PubMedCrossRef
31.
Zurück zum Zitat G. Baffou, Thermoplasmonics Heating Metal Nanoparticles Using Light (Cambridge University Press, 2017). G. Baffou, Thermoplasmonics Heating Metal Nanoparticles Using Light (Cambridge University Press, 2017).
32.
33.
Zurück zum Zitat C. Ma, J. Yan, Y. Huang, C. Wang, G. Yang, The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion. Sci. Adv. 4, eaas9894 (2018) C. Ma, J. Yan, Y. Huang, C. Wang, G. Yang, The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion. Sci. Adv. 4, eaas9894 (2018)
34.
Zurück zum Zitat W. Li, U. Guler, N. Kinsey, G.V. Naik, A. Boltasseva, J. Guan, V.M. Shalaev, A.V. Kildishev, Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26, 7959–7965 (2014)PubMedCrossRef W. Li, U. Guler, N. Kinsey, G.V. Naik, A. Boltasseva, J. Guan, V.M. Shalaev, A.V. Kildishev, Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26, 7959–7965 (2014)PubMedCrossRef
35.
Zurück zum Zitat S.H.C. Askes, E.C. Garnett, Ultrafast thermal imprinting of plasmonic hotspots. Adv. Mater. 33, e2105192 (2021)PubMedCrossRef S.H.C. Askes, E.C. Garnett, Ultrafast thermal imprinting of plasmonic hotspots. Adv. Mater. 33, e2105192 (2021)PubMedCrossRef
36.
Zurück zum Zitat S. Rej, L. Mascaretti, E.Y. Santiago, O. Tomanec, Š Kment, Z. Wang, R. Zbořil, P. Fornasiero, A.O. Govorov, A. Naldoni, Determining plasmonic hot electrons and photothermal effects during H2 evolution with TiN-Pt nanohybrids. ACS Catal. 10, 5261–5271 (2020)CrossRef S. Rej, L. Mascaretti, E.Y. Santiago, O. Tomanec, Š Kment, Z. Wang, R. Zbořil, P. Fornasiero, A.O. Govorov, A. Naldoni, Determining plasmonic hot electrons and photothermal effects during H2 evolution with TiN-Pt nanohybrids. ACS Catal. 10, 5261–5271 (2020)CrossRef
37.
Zurück zum Zitat A.N. Sabzeghabae, C. Berrospe-Rodriguez, L. Mangolini, G. Aguilar, Laser-induced cavitation in plasmonic nanoparticle solutions: a comparative study between gold and titanium nitride. J. Biomed. Mater. Res., Part A 109, 2483–2492 (2021)CrossRef A.N. Sabzeghabae, C. Berrospe-Rodriguez, L. Mangolini, G. Aguilar, Laser-induced cavitation in plasmonic nanoparticle solutions: a comparative study between gold and titanium nitride. J. Biomed. Mater. Res., Part A 109, 2483–2492 (2021)CrossRef
38.
Zurück zum Zitat T. Krekeler, S.S. Rout, G.V. Krishnamurthy, M. Störmer, M. Arya, A. Ganguly, D.S. Sutherland, S.I. Bozhevolnyi, M. Ritter, K. Pedersen, A.Y. Petrov, M. Eich, M. Chirumamilla, Unprecedented thermal stability of plasmonic titanium nitride films up to 1400 °C. Adv. Opt. Mater. 9 (2021) T. Krekeler, S.S. Rout, G.V. Krishnamurthy, M. Störmer, M. Arya, A. Ganguly, D.S. Sutherland, S.I. Bozhevolnyi, M. Ritter, K. Pedersen, A.Y. Petrov, M. Eich, M. Chirumamilla, Unprecedented thermal stability of plasmonic titanium nitride films up to 1400 °C. Adv. Opt. Mater. 9 (2021)
39.
Zurück zum Zitat U. Guler, V.M. Shalaev, A. Boltasseva, Nanoparticle plasmonics: going practical with transition metal nitrides. Mater. Today 18, 227–237 (2015)CrossRef U. Guler, V.M. Shalaev, A. Boltasseva, Nanoparticle plasmonics: going practical with transition metal nitrides. Mater. Today 18, 227–237 (2015)CrossRef
40.
Zurück zum Zitat T. Krekeler, S.S. Rout, G.V. Krishnamurthy, M. Störmer, M. Arya, A. Ganguly, D.S. Sutherland, S.I. Bozhevolnyi, M. Ritter, K. Pedersen, A.Y. Petrov, M. Eich, M. Chirumamilla, Unprecedented thermal stability of plasmonic titanium nitride films up to 1400 °C. Adv. Opt. Mater. 2100323 (2021) T. Krekeler, S.S. Rout, G.V. Krishnamurthy, M. Störmer, M. Arya, A. Ganguly, D.S. Sutherland, S.I. Bozhevolnyi, M. Ritter, K. Pedersen, A.Y. Petrov, M. Eich, M. Chirumamilla, Unprecedented thermal stability of plasmonic titanium nitride films up to 1400 °C. Adv. Opt. Mater. 2100323 (2021)
41.
Zurück zum Zitat S. Ishii, R.P. Sugavaneshwar, T. Nagao, Titanium nitride nanoparticles as plasmonic solar heat transducers. J. Phys. Chem. C 120, 2343–2348 (2016)CrossRef S. Ishii, R.P. Sugavaneshwar, T. Nagao, Titanium nitride nanoparticles as plasmonic solar heat transducers. J. Phys. Chem. C 120, 2343–2348 (2016)CrossRef
42.
Zurück zum Zitat Y. Guo, Z. Xu, A.G. Curto, Y.J. Zeng, D. Van Thourhout, Plasmonic semiconductors: materials, tunability and applications. Prog. Mater. Sci. 138, 101158 (2023)CrossRef Y. Guo, Z. Xu, A.G. Curto, Y.J. Zeng, D. Van Thourhout, Plasmonic semiconductors: materials, tunability and applications. Prog. Mater. Sci. 138, 101158 (2023)CrossRef
43.
Zurück zum Zitat M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12, 841–864 (2019)CrossRef M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12, 841–864 (2019)CrossRef
44.
Zurück zum Zitat J.T. Li, N.Q. Wu, Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review, Catal. Sci Technol 5, 1360–1384 (2015) J.T. Li, N.Q. Wu, Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review, Catal. Sci Technol 5, 1360–1384 (2015)
45.
Zurück zum Zitat X. Li, D. Wang, Y. Zhang, L. Liu, W. Wang, Surface-ligand protected reduction on plasmonic tuning of one-dimensional MoO3−x nanobelts for solar steam generation. Nano Res. 13, 3025–3032 (2020)CrossRef X. Li, D. Wang, Y. Zhang, L. Liu, W. Wang, Surface-ligand protected reduction on plasmonic tuning of one-dimensional MoO3−x nanobelts for solar steam generation. Nano Res. 13, 3025–3032 (2020)CrossRef
46.
Zurück zum Zitat J. Wang, Y. Li, L. Deng, N. Wei, Y. Weng, S. Dong, D. Qi, J. Qiu, X. Chen, T. Wu, High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 29 (2017) J. Wang, Y. Li, L. Deng, N. Wei, Y. Weng, S. Dong, D. Qi, J. Qiu, X. Chen, T. Wu, High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 29 (2017)
47.
Zurück zum Zitat J.M. Luther, P.K. Jain, T. Ewers, A.P. Alivisatos, Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10, 361–366 (2011)PubMedCrossRef J.M. Luther, P.K. Jain, T. Ewers, A.P. Alivisatos, Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10, 361–366 (2011)PubMedCrossRef
48.
Zurück zum Zitat C.M. Hessel, V.P. Pattani, M. Rasch, M.G. Panthani, B. Koo, J.W. Tunnell, B.A. Korgel, Copper selenide nanocrystals for photothermal therapy. Nano Lett. 11, 2560–2566 (2011)PubMedPubMedCentralCrossRef C.M. Hessel, V.P. Pattani, M. Rasch, M.G. Panthani, B. Koo, J.W. Tunnell, B.A. Korgel, Copper selenide nanocrystals for photothermal therapy. Nano Lett. 11, 2560–2566 (2011)PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat K. Manthiram, A.P. Alivisatos, Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am. Chem. Soc. 134, 3995–3998 (2012)PubMedCrossRef K. Manthiram, A.P. Alivisatos, Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am. Chem. Soc. 134, 3995–3998 (2012)PubMedCrossRef
50.
Zurück zum Zitat W. Xu, H. Liu, D. Zhou, X. Chen, N. Ding, H. Song, H. Ågren, Localized surface plasmon resonances in self-doped copper chalcogenide binary nanocrystals and their emerging applications. Nano Today 33, 100892 (2020)CrossRef W. Xu, H. Liu, D. Zhou, X. Chen, N. Ding, H. Song, H. Ågren, Localized surface plasmon resonances in self-doped copper chalcogenide binary nanocrystals and their emerging applications. Nano Today 33, 100892 (2020)CrossRef
51.
Zurück zum Zitat K. Hantanasirisakul, Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 30 (2018) K. Hantanasirisakul, Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 30 (2018)
52.
Zurück zum Zitat G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M.S. Strano, V.R. Cooper, L.B. Liang, S.G. Louie, E. Ringe, W. Zhou, S.S. Kim, R.R. Naik, B.G. Sumpter, H. Terrones, F.N. Xia, Y.L. Wang, J. Zhu, D. Akinwande, N. Alem, J.A. Schuller, R.E. Schaak, M. Terrones, J.A. Robinson, Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015)PubMedCrossRef G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M.S. Strano, V.R. Cooper, L.B. Liang, S.G. Louie, E. Ringe, W. Zhou, S.S. Kim, R.R. Naik, B.G. Sumpter, H. Terrones, F.N. Xia, Y.L. Wang, J. Zhu, D. Akinwande, N. Alem, J.A. Schuller, R.E. Schaak, M. Terrones, J.A. Robinson, Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015)PubMedCrossRef
53.
Zurück zum Zitat R. Yu, Q. Guo, F. Xia, F.J. Garcia de Abajo, Photothermal engineering of graphene plasmons. Phys. Rev. Lett. 121, 057404 (2018)PubMedCrossRef R. Yu, Q. Guo, F. Xia, F.J. Garcia de Abajo, Photothermal engineering of graphene plasmons. Phys. Rev. Lett. 121, 057404 (2018)PubMedCrossRef
54.
Zurück zum Zitat Z. Fei, A.S. Rodin, G.O. Andreev, W. Bao, A.S. McLeod, M. Wagner, L.M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M.M. Fogler, A.H. Castro Neto, C.N. Lau, F. Keilmann, D.N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012) Z. Fei, A.S. Rodin, G.O. Andreev, W. Bao, A.S. McLeod, M. Wagner, L.M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M.M. Fogler, A.H. Castro Neto, C.N. Lau, F. Keilmann, D.N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012)
55.
Zurück zum Zitat X. Wen, W. Wang, X. Zhang, H. Chen, S. Jia, Y. Gong, W. Chen, Y. Wang, H. Zhu, J. Zheng, P.M. Ajayan, J. Lou, Pathways of exciton triggered hot-carrier injection at plasmonic metal-transition metal dichalcogenide interface. Adv. Opt. Mater. 10 (2022) X. Wen, W. Wang, X. Zhang, H. Chen, S. Jia, Y. Gong, W. Chen, Y. Wang, H. Zhu, J. Zheng, P.M. Ajayan, J. Lou, Pathways of exciton triggered hot-carrier injection at plasmonic metal-transition metal dichalcogenide interface. Adv. Opt. Mater. 10 (2022)
56.
Zurück zum Zitat D. Yang, G. Yang, P. Yang, R. Lv, S. Gai, C. Li, F. He, J. Lin, Assembly of Au plasmonic photothermal agent and iron oxide nanoparticles on ultrathin black phosphorus for targeted photothermal and photodynamic cancer therapy. Adv. Funct. Mater. 27 (2017) D. Yang, G. Yang, P. Yang, R. Lv, S. Gai, C. Li, F. He, J. Lin, Assembly of Au plasmonic photothermal agent and iron oxide nanoparticles on ultrathin black phosphorus for targeted photothermal and photodynamic cancer therapy. Adv. Funct. Mater. 27 (2017)
57.
Zurück zum Zitat J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X.F. Yu, Y. Zhao, H. Zhang, H. Wang, P.K. Chu, Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 7, 12967 (2016)PubMedPubMedCentralCrossRef J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X.F. Yu, Y. Zhao, H. Zhang, H. Wang, P.K. Chu, Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 7, 12967 (2016)PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat D. Alcaraz Iranzo, S. Nanot, E.J.C. Dias, I. Epstein, C. Peng, D.K. Efetov, M.B. Lundeberg, R. Parret, J. Osmond, J.Y. Hong, J. Kong, D.R. Englund, N.M.R. Peres, F.H.L. Koppens, Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018) D. Alcaraz Iranzo, S. Nanot, E.J.C. Dias, I. Epstein, C. Peng, D.K. Efetov, M.B. Lundeberg, R. Parret, J. Osmond, J.Y. Hong, J. Kong, D.R. Englund, N.M.R. Peres, F.H.L. Koppens, Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018)
59.
Zurück zum Zitat T. Low, A. Chaves, J.D. Caldwell, A. Kumar, N.X. Fang, P. Avouris, T.F. Heinz, F. Guinea, L. Martin-Moreno, F. Koppens, Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017)PubMedCrossRef T. Low, A. Chaves, J.D. Caldwell, A. Kumar, N.X. Fang, P. Avouris, T.F. Heinz, F. Guinea, L. Martin-Moreno, F. Koppens, Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017)PubMedCrossRef
60.
Zurück zum Zitat Y. Wang, J.Z. Ou, A.F. Chrimes, B.J. Carey, T. Daeneke, M.M. Alsaif, M. Mortazavi, S. Zhuiykov, N. Medhekar, M. Bhaskaran, J.R. Friend, M.S. Strano, K. Kalantar-Zadeh, Plasmon resonances of highly doped two-dimensional MoS2. Nano Lett. 15, 883–890 (2015)PubMedCrossRef Y. Wang, J.Z. Ou, A.F. Chrimes, B.J. Carey, T. Daeneke, M.M. Alsaif, M. Mortazavi, S. Zhuiykov, N. Medhekar, M. Bhaskaran, J.R. Friend, M.S. Strano, K. Kalantar-Zadeh, Plasmon resonances of highly doped two-dimensional MoS2. Nano Lett. 15, 883–890 (2015)PubMedCrossRef
61.
Zurück zum Zitat L. Zhang, J. Dong, F. Ding, Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis. Chem. Rev. 121, 6321–6372 (2021)PubMedCrossRef L. Zhang, J. Dong, F. Ding, Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis. Chem. Rev. 121, 6321–6372 (2021)PubMedCrossRef
62.
Zurück zum Zitat J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta, T. Gemming, H. Liu, Z. Liu, M.H. Rummeli, Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019)PubMedCrossRef J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta, T. Gemming, H. Liu, Z. Liu, M.H. Rummeli, Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019)PubMedCrossRef
63.
Zurück zum Zitat A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372 (2021) A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372 (2021)
64.
Zurück zum Zitat X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi, C. Zhi, MXene chemistry, electrochemistry and energy storage applications, Nature reviews. Chemistry 6, 389–404 (2022)PubMed X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi, C. Zhi, MXene chemistry, electrochemistry and energy storage applications, Nature reviews. Chemistry 6, 389–404 (2022)PubMed
65.
Zurück zum Zitat X. Guo, N. Li, C. Wu, X. Dai, R. Qi, T. Qiao, T. Su, D. Lei, N. Liu, J. Du, E. Wang, X. Yang, P. Gao, Q. Dai, Studying plasmon dispersion of MXene for enhanced electromagnetic absorption. Adv. Mater. 34, e2201120 (2022)PubMedCrossRef X. Guo, N. Li, C. Wu, X. Dai, R. Qi, T. Qiao, T. Su, D. Lei, N. Liu, J. Du, E. Wang, X. Yang, P. Gao, Q. Dai, Studying plasmon dispersion of MXene for enhanced electromagnetic absorption. Adv. Mater. 34, e2201120 (2022)PubMedCrossRef
66.
Zurück zum Zitat N. Zhang, J. Zhang, X. Zhu, S. Yuan, D. Wang, H. Xu, Z. Wang, Synergistic effect of Ti3C2Tx MXene nanosheets and tannic acid-Fe3+ network in constructing high-performance hydrogel composite membrane for photothermal membrane distillation. Nano Lett. 24, 724–732 (2024)PubMedCrossRef N. Zhang, J. Zhang, X. Zhu, S. Yuan, D. Wang, H. Xu, Z. Wang, Synergistic effect of Ti3C2Tx MXene nanosheets and tannic acid-Fe3+ network in constructing high-performance hydrogel composite membrane for photothermal membrane distillation. Nano Lett. 24, 724–732 (2024)PubMedCrossRef
67.
Zurück zum Zitat R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11, 3752–3759 (2017)PubMedCrossRef R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11, 3752–3759 (2017)PubMedCrossRef
68.
Zurück zum Zitat Q. Wu, L. Tan, X. Liu, Z. Li, Y. Zhang, Y. Zheng, Y. Liang, Z. Cui, S. Zhu, S. Wu, The enhanced near-infrared photocatalytic and photothermal effects of MXene-based heterojunction for rapid bacteria-killing. Appl. Catal. B 297, 120500 (2021)CrossRef Q. Wu, L. Tan, X. Liu, Z. Li, Y. Zhang, Y. Zheng, Y. Liang, Z. Cui, S. Zhu, S. Wu, The enhanced near-infrared photocatalytic and photothermal effects of MXene-based heterojunction for rapid bacteria-killing. Appl. Catal. B 297, 120500 (2021)CrossRef
69.
Zurück zum Zitat Z. Hao, Y. Li, X. Liu, T. Jiang, Y. He, X. Zhang, C. Cong, D. Wang, Z. Liu, D. Gao, Enhancing biocatalysis of a MXene-based biomimetic plasmonic assembly for targeted cancer treatments in NIR-II biowindow. Chem. Eng. J. 425, 130639 (2021)CrossRef Z. Hao, Y. Li, X. Liu, T. Jiang, Y. He, X. Zhang, C. Cong, D. Wang, Z. Liu, D. Gao, Enhancing biocatalysis of a MXene-based biomimetic plasmonic assembly for targeted cancer treatments in NIR-II biowindow. Chem. Eng. J. 425, 130639 (2021)CrossRef
70.
Zurück zum Zitat A. Manjavacas, J.G. Liu, V. Kulkarni, P. Nordlander, Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630–7638 (2014)PubMedCrossRef A. Manjavacas, J.G. Liu, V. Kulkarni, P. Nordlander, Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630–7638 (2014)PubMedCrossRef
71.
Zurück zum Zitat G.S. Javier González-Colsa, J.M. Saiz, D. Ortiz, F. González, F. Bresme, F. Moreno, P. Albella, Gold nanodoughnut as an outstanding nanoheater for photothermal applications, arXiv:2106.01059 (2021) G.S. Javier González-Colsa, J.M. Saiz, D. Ortiz, F. González, F. Bresme, F. Moreno, P. Albella, Gold nanodoughnut as an outstanding nanoheater for photothermal applications, arXiv:​2106.​01059 (2021)
72.
Zurück zum Zitat J. Qiu, M. Xie, T. Wu, D. Qin, Y. Xia, Gold nanocages for effective photothermal conversion and related applications. Chem. Sci. 11, 12955–12973 (2020)CrossRef J. Qiu, M. Xie, T. Wu, D. Qin, Y. Xia, Gold nanocages for effective photothermal conversion and related applications. Chem. Sci. 11, 12955–12973 (2020)CrossRef
73.
Zurück zum Zitat K. Bae, G. Kang, S.K. Cho, W. Park, K. Kim, W.J. Padilla, Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015)PubMedCrossRef K. Bae, G. Kang, S.K. Cho, W. Park, K. Kim, W.J. Padilla, Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015)PubMedCrossRef
74.
Zurück zum Zitat S.V. Boriskina, T.A. Cooper, L. Zeng, G. Ni, J.K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, G. Chen, Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities. Adv. Opt. Photon. 9, 775 (2017)CrossRef S.V. Boriskina, T.A. Cooper, L. Zeng, G. Ni, J.K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, G. Chen, Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities. Adv. Opt. Photon. 9, 775 (2017)CrossRef
75.
Zurück zum Zitat C. Mouhot, C. Villani, On Landau damping. Acta Math. 207, 29–201 (2011)CrossRef C. Mouhot, C. Villani, On Landau damping. Acta Math. 207, 29–201 (2011)CrossRef
76.
Zurück zum Zitat S. Peng, J.M. McMahon, G.C. Schatz, S.K. Gray, Y. Sun, Reversing the size-dependence of surface plasmon resonances. Proc. Natl. Acad. Sci. 107, 14530–14534 (2010)PubMedPubMedCentralCrossRef S. Peng, J.M. McMahon, G.C. Schatz, S.K. Gray, Y. Sun, Reversing the size-dependence of surface plasmon resonances. Proc. Natl. Acad. Sci. 107, 14530–14534 (2010)PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat O. Hess, J.B. Pendry, S.A. Maier, R.F. Oulton, J.M. Hamm, K.L. Tsakmakidis, Active nanoplasmonic metamaterials. Nat. Mater. 11, 573–584 (2012)PubMedCrossRef O. Hess, J.B. Pendry, S.A. Maier, R.F. Oulton, J.M. Hamm, K.L. Tsakmakidis, Active nanoplasmonic metamaterials. Nat. Mater. 11, 573–584 (2012)PubMedCrossRef
78.
Zurück zum Zitat S. Link, M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999)CrossRef S. Link, M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999)CrossRef
79.
Zurück zum Zitat L. Jauffred, A. Samadi, H. Klingberg, P.M. Bendix, L.B. Oddershede, Plasmonic heating of nanostructures. Chem. Rev. 119, 8087–8130 (2019)PubMedCrossRef L. Jauffred, A. Samadi, H. Klingberg, P.M. Bendix, L.B. Oddershede, Plasmonic heating of nanostructures. Chem. Rev. 119, 8087–8130 (2019)PubMedCrossRef
80.
Zurück zum Zitat J. Chen, Z. Ye, F. Yang, Y. Yin, Plasmonic nanostructures for photothermal conversion. Small Sci. 1, 2000055 (2021)CrossRef J. Chen, Z. Ye, F. Yang, Y. Yin, Plasmonic nanostructures for photothermal conversion. Small Sci. 1, 2000055 (2021)CrossRef
81.
Zurück zum Zitat V. Amendola, R. Pilot, M. Frasconi, O.M. Maragò, M.A. Iatì, Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Condens. Matter 29, 203002 (2017)PubMedCrossRef V. Amendola, R. Pilot, M. Frasconi, O.M. Maragò, M.A. Iatì, Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Condens. Matter 29, 203002 (2017)PubMedCrossRef
82.
Zurück zum Zitat B. Yang, C. Li, Z. Wang, Q. Dai, Thermoplasmonics in solar energy conversion: materials. Nanostruct. Des. Appl. Adv. Mater. 34, e2107351 (2022) B. Yang, C. Li, Z. Wang, Q. Dai, Thermoplasmonics in solar energy conversion: materials. Nanostruct. Des. Appl. Adv. Mater. 34, e2107351 (2022)
83.
Zurück zum Zitat Y. Seol, A.E. Carpenter, T.T. Perkins, Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Opt. Lett. 31, 2429 (2006)PubMedCrossRef Y. Seol, A.E. Carpenter, T.T. Perkins, Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Opt. Lett. 31, 2429 (2006)PubMedCrossRef
84.
Zurück zum Zitat E.R. Encina, E.A. Coronado, Size optimization of iron Oxide@Noble metal core-shell nanohybrids for photothermal applications. J. Phys. Chem. C 120, 5630–5639 (2016)CrossRef E.R. Encina, E.A. Coronado, Size optimization of iron Oxide@Noble metal core-shell nanohybrids for photothermal applications. J. Phys. Chem. C 120, 5630–5639 (2016)CrossRef
85.
Zurück zum Zitat H. Zhang, T. Zhu, M. Li, Quantitative analysis of the shape effect of thermoplasmonics in gold nanostructures. J. Phys. Chem. Lett. 14, 3853–3860 (2023)PubMedCrossRef H. Zhang, T. Zhu, M. Li, Quantitative analysis of the shape effect of thermoplasmonics in gold nanostructures. J. Phys. Chem. Lett. 14, 3853–3860 (2023)PubMedCrossRef
86.
Zurück zum Zitat E.Y. Santiago, L.V. Besteiro, X.T. Kong, M.A. Correa-Duarte, Z. Wang, A.O. Govorov, Efficiency of hot-electron generation in plasmonic nanocrystals with complex shapes: surface-induced scattering, hot spots, and interband transitions. ACS Photon. 7, 2807–2824 (2020)CrossRef E.Y. Santiago, L.V. Besteiro, X.T. Kong, M.A. Correa-Duarte, Z. Wang, A.O. Govorov, Efficiency of hot-electron generation in plasmonic nanocrystals with complex shapes: surface-induced scattering, hot spots, and interband transitions. ACS Photon. 7, 2807–2824 (2020)CrossRef
87.
Zurück zum Zitat G.A. Vinnacombe-Willson, N. Chiang, L. Scarabelli, Y. Hu, L.K. Heidenreich, X. Li, Y. Gong, D.T. Inouye, T.S. Fisher, P.S. Weiss, S.J. Jonas, In situ shape control of thermoplasmonic gold nanostars on oxide substrates for hyperthermia-mediated cell detachment. ACS Cent. Sci. 6, 2105–2116 (2020)PubMedPubMedCentralCrossRef G.A. Vinnacombe-Willson, N. Chiang, L. Scarabelli, Y. Hu, L.K. Heidenreich, X. Li, Y. Gong, D.T. Inouye, T.S. Fisher, P.S. Weiss, S.J. Jonas, In situ shape control of thermoplasmonic gold nanostars on oxide substrates for hyperthermia-mediated cell detachment. ACS Cent. Sci. 6, 2105–2116 (2020)PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat H. Yuan, A.M. Fales, T. Vo-Dinh, TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J. Am. Chem. Soc. 134, 11358–11361 (2012)PubMedPubMedCentralCrossRef H. Yuan, A.M. Fales, T. Vo-Dinh, TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J. Am. Chem. Soc. 134, 11358–11361 (2012)PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat H. Liu, T.E. Gage, P. Singh, A. Jaiswal, R.D. Schaller, J. Tang, S.T. Park, S.K. Gray, I. Arslan, Visualization of plasmonic couplings using ultrafast electron microscopy. Nano Lett. 21, 5842–5849 (2021)PubMedCrossRef H. Liu, T.E. Gage, P. Singh, A. Jaiswal, R.D. Schaller, J. Tang, S.T. Park, S.K. Gray, I. Arslan, Visualization of plasmonic couplings using ultrafast electron microscopy. Nano Lett. 21, 5842–5849 (2021)PubMedCrossRef
90.
Zurück zum Zitat M.B. Ross, M.G. Blaber, G.C. Schatz, Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials. Nat. Commun. 5, 4090 (2014)PubMedCrossRef M.B. Ross, M.G. Blaber, G.C. Schatz, Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials. Nat. Commun. 5, 4090 (2014)PubMedCrossRef
91.
Zurück zum Zitat G. Baffou, R. Quidant, C. Girard, Heat generation in plasmonic nanostructures: influence of morphology. Appl. Phys. Lett. 94 (2009) G. Baffou, R. Quidant, C. Girard, Heat generation in plasmonic nanostructures: influence of morphology. Appl. Phys. Lett. 94 (2009)
92.
Zurück zum Zitat E. Ringe, M.R. Langille, K. Sohn, J. Zhang, J. Huang, C.A. Mirkin, R.P. Van Duyne, L.D. Marks, Plasmon length: a universal parameter to describe size effects in gold nanoparticles. J. Phys. Chem. Lett. 3, 1479–1483 (2012)PubMedCrossRef E. Ringe, M.R. Langille, K. Sohn, J. Zhang, J. Huang, C.A. Mirkin, R.P. Van Duyne, L.D. Marks, Plasmon length: a universal parameter to describe size effects in gold nanoparticles. J. Phys. Chem. Lett. 3, 1479–1483 (2012)PubMedCrossRef
93.
Zurück zum Zitat B.J. Wiley, S.H. Im, Z.Y. Li, J. McLellan, A. Siekkinen, Y. Xia, Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B 110, 15666–15675 (2006)PubMedCrossRef B.J. Wiley, S.H. Im, Z.Y. Li, J. McLellan, A. Siekkinen, Y. Xia, Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B 110, 15666–15675 (2006)PubMedCrossRef
94.
Zurück zum Zitat O. Cardozo, M. Habib, W. Jiang, R.E. de Araujo, S. Farooq, Superior performance of hollow plasmonic cubic structures for solar energy harvesting, conversion, and storage systems. Plasmonics (2024) O. Cardozo, M. Habib, W. Jiang, R.E. de Araujo, S. Farooq, Superior performance of hollow plasmonic cubic structures for solar energy harvesting, conversion, and storage systems. Plasmonics (2024)
95.
Zurück zum Zitat B. Gao, G. Arya, A.R. Tao, Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Nat. Nanotechnol. 7, 433–437 (2012)PubMedCrossRef B. Gao, G. Arya, A.R. Tao, Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Nat. Nanotechnol. 7, 433–437 (2012)PubMedCrossRef
96.
Zurück zum Zitat M. Ha, S.H. Nam, K. Sim, S.E. Chong, J. Kim, Y. Kim, Y. Lee, J.M. Nam, Highly efficient photothermal therapy with cell-penetrating peptide-modified bumpy au triangular nanoprisms using low laser power and low probe dose. Nano Lett. 21, 731–739 (2021)PubMedCrossRef M. Ha, S.H. Nam, K. Sim, S.E. Chong, J. Kim, Y. Kim, Y. Lee, J.M. Nam, Highly efficient photothermal therapy with cell-penetrating peptide-modified bumpy au triangular nanoprisms using low laser power and low probe dose. Nano Lett. 21, 731–739 (2021)PubMedCrossRef
97.
Zurück zum Zitat G. Baffou, C. Girard, R. Quidant, Mapping heat origin in plasmonic structures. Phys. Rev. Lett. 104, 136805 (2010)PubMedCrossRef G. Baffou, C. Girard, R. Quidant, Mapping heat origin in plasmonic structures. Phys. Rev. Lett. 104, 136805 (2010)PubMedCrossRef
98.
Zurück zum Zitat J. Reguera, J. Langer, D. Jimenez de Aberasturi, L.M. Liz-Marzan, Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem. Soc. Rev. 46, 3866–3885 (2017)PubMedCrossRef J. Reguera, J. Langer, D. Jimenez de Aberasturi, L.M. Liz-Marzan, Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem. Soc. Rev. 46, 3866–3885 (2017)PubMedCrossRef
99.
Zurück zum Zitat J. Pettine, P. Choo, F. Medeghini, T.W. Odom, D.J. Nesbitt, Plasmonic nanostar photocathodes for optically-controlled directional currents. Nat. Commun. 11 (2020) J. Pettine, P. Choo, F. Medeghini, T.W. Odom, D.J. Nesbitt, Plasmonic nanostar photocathodes for optically-controlled directional currents. Nat. Commun. 11 (2020)
100.
Zurück zum Zitat L. Meng, R. Yu, M. Qiu, F.J. Garcia de Abajo, Plasmonic nano-oven by concatenation of multishell photothermal enhancement. ACS Nano 11, 7915–7924 (2017)PubMedCrossRef L. Meng, R. Yu, M. Qiu, F.J. Garcia de Abajo, Plasmonic nano-oven by concatenation of multishell photothermal enhancement. ACS Nano 11, 7915–7924 (2017)PubMedCrossRef
101.
Zurück zum Zitat M.A. Mahmoud, M. Chamanzar, A. Adibi, M.A. El-Sayed, Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes. J. Am. Chem. Soc. 134, 6434–6442 (2012)PubMedCrossRef M.A. Mahmoud, M. Chamanzar, A. Adibi, M.A. El-Sayed, Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes. J. Am. Chem. Soc. 134, 6434–6442 (2012)PubMedCrossRef
102.
Zurück zum Zitat L. Wang, M. Hasanzadeh Kafshgari, M. Meunier, Optical properties and applications of plasmonic-metal nanoparticles. Adv. Funct. Mater. 30, 2005400 (2020) L. Wang, M. Hasanzadeh Kafshgari, M. Meunier, Optical properties and applications of plasmonic-metal nanoparticles. Adv. Funct. Mater. 30, 2005400 (2020)
103.
Zurück zum Zitat M. ElKabbash, A. Sousa-Castillo, Q. Nguyen, R. Mariño-Fernández, N. Hoffman, M.A. Correa-Duarte, G. Strangi, Tunable black gold: controlling the near-field coupling of immobilized au nanoparticles embedded in mesoporous silica capsules. Adv. Opt. Mater. 5, 1700617 (2017)CrossRef M. ElKabbash, A. Sousa-Castillo, Q. Nguyen, R. Mariño-Fernández, N. Hoffman, M.A. Correa-Duarte, G. Strangi, Tunable black gold: controlling the near-field coupling of immobilized au nanoparticles embedded in mesoporous silica capsules. Adv. Opt. Mater. 5, 1700617 (2017)CrossRef
104.
Zurück zum Zitat Z. Wang, X. Quan, Z. Zhang, P. Cheng, Optical absorption of carbon-gold core-shell nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 205, 291–298 (2018)CrossRef Z. Wang, X. Quan, Z. Zhang, P. Cheng, Optical absorption of carbon-gold core-shell nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 205, 291–298 (2018)CrossRef
105.
Zurück zum Zitat M. Ha, J.H. Kim, M. You, Q. Li, C. Fan, J.M. Nam, Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures. Chem. Rev. 119, 12208–12278 (2019)PubMedCrossRef M. Ha, J.H. Kim, M. You, Q. Li, C. Fan, J.M. Nam, Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures. Chem. Rev. 119, 12208–12278 (2019)PubMedCrossRef
106.
Zurück zum Zitat E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003)PubMedCrossRef E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003)PubMedCrossRef
107.
Zurück zum Zitat I. Jung, J. Kim, S. Lee, W. Park, S. Park, Multiple stepwise synthetic pathways toward complex plasmonic 2D and 3D nanoframes for generation of electromagnetic hot zones in a single entity. Acc. Chem. Res. 56, 270–283 (2023)PubMedCrossRef I. Jung, J. Kim, S. Lee, W. Park, S. Park, Multiple stepwise synthetic pathways toward complex plasmonic 2D and 3D nanoframes for generation of electromagnetic hot zones in a single entity. Acc. Chem. Res. 56, 270–283 (2023)PubMedCrossRef
108.
Zurück zum Zitat X. Huang, S. Tang, B. Liu, B. Ren, N. Zheng, Enhancing the photothermal stability of plasmonic metal nanoplates by a core-shell architecture. Adv. Mater. 23, 3420–3425 (2011)PubMedCrossRef X. Huang, S. Tang, B. Liu, B. Ren, N. Zheng, Enhancing the photothermal stability of plasmonic metal nanoplates by a core-shell architecture. Adv. Mater. 23, 3420–3425 (2011)PubMedCrossRef
109.
Zurück zum Zitat A. Alkurdi, J. Lombard, F. Detcheverry, S. Merabia, Enhanced heat transfer with metal-dielectric core-shell nanoparticles. Phys. Rev. Appl. 13 (2020) A. Alkurdi, J. Lombard, F. Detcheverry, S. Merabia, Enhanced heat transfer with metal-dielectric core-shell nanoparticles. Phys. Rev. Appl. 13 (2020)
110.
Zurück zum Zitat J. Cunha, T.L. Guo, G. Della Valle, A.N. Koya, R. Proietti Zaccaria, A. Alabastri, Controlling light, heat, and vibrations in plasmonics and phononics. Adv. Opt. Mater. 8 (2020) 2001225 J. Cunha, T.L. Guo, G. Della Valle, A.N. Koya, R. Proietti Zaccaria, A. Alabastri, Controlling light, heat, and vibrations in plasmonics and phononics. Adv. Opt. Mater. 8 (2020) 2001225
111.
Zurück zum Zitat C. Rossner, T.A.F. König, A. Fery, Plasmonic properties of colloidal assemblies. Adv. Opt. Mater. 9, 2001869 (2021)CrossRef C. Rossner, T.A.F. König, A. Fery, Plasmonic properties of colloidal assemblies. Adv. Opt. Mater. 9, 2001869 (2021)CrossRef
112.
Zurück zum Zitat L. Lermusiaux, V. Many, P. Barois, V. Ponsinet, S. Ravaine, E. Duguet, M. Treguer-Delapierre, A. Baron, Toward Huygens’ sources with dodecahedral plasmonic clusters. Nano Lett. 21, 2046–2052 (2021)PubMedCrossRef L. Lermusiaux, V. Many, P. Barois, V. Ponsinet, S. Ravaine, E. Duguet, M. Treguer-Delapierre, A. Baron, Toward Huygens’ sources with dodecahedral plasmonic clusters. Nano Lett. 21, 2046–2052 (2021)PubMedCrossRef
113.
Zurück zum Zitat L.O. Herrmann, V.K. Valev, C. Tserkezis, J.S. Barnard, S. Kasera, O.A. Scherman, J. Aizpurua, J.J. Baumberg, Threading plasmonic nanoparticle strings with light. Nat. Commun. 5, 4568 (2014)PubMedCrossRef L.O. Herrmann, V.K. Valev, C. Tserkezis, J.S. Barnard, S. Kasera, O.A. Scherman, J. Aizpurua, J.J. Baumberg, Threading plasmonic nanoparticle strings with light. Nat. Commun. 5, 4568 (2014)PubMedCrossRef
114.
Zurück zum Zitat V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A.M. Funston, C. Novo, P. Mulvaney, L.M. Liz-Marzán, F.J. García de Abajo, Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37, 1792 (2008)PubMedCrossRef V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A.M. Funston, C. Novo, P. Mulvaney, L.M. Liz-Marzán, F.J. García de Abajo, Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37, 1792 (2008)PubMedCrossRef
115.
Zurück zum Zitat K.H. Su, Q.H. Wei, X. Zhang, J.J. Mock, D.R. Smith, S. Schultz, Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3, 1087–1090 (2003)CrossRef K.H. Su, Q.H. Wei, X. Zhang, J.J. Mock, D.R. Smith, S. Schultz, Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3, 1087–1090 (2003)CrossRef
116.
Zurück zum Zitat D. Liu, C. Xue, Plasmonic coupling architectures for enhanced photocatalysis. Adv. Mater. e2005738 (2021) D. Liu, C. Xue, Plasmonic coupling architectures for enhanced photocatalysis. Adv. Mater. e2005738 (2021)
117.
Zurück zum Zitat I. Romero, J. Aizpurua, G.W. Bryant, F.J. García De Abajo, Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt. Express 14, 9988 (2006)PubMedCrossRef I. Romero, J. Aizpurua, G.W. Bryant, F.J. García De Abajo, Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt. Express 14, 9988 (2006)PubMedCrossRef
118.
Zurück zum Zitat P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, T. Deng, Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018)CrossRef P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, T. Deng, Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018)CrossRef
119.
Zurück zum Zitat A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, E. Dujardin, Plasmonic nanoparticle networks for light and heat concentration. ACS Nano 6, 3434–3440 (2012)PubMedCrossRef A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, E. Dujardin, Plasmonic nanoparticle networks for light and heat concentration. ACS Nano 6, 3434–3440 (2012)PubMedCrossRef
120.
Zurück zum Zitat L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photon. 10, 393–398 (2016)CrossRef L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photon. 10, 393–398 (2016)CrossRef
121.
Zurück zum Zitat Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, T. Deng, A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 27, 2768–2774 (2015)PubMedCrossRef Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, T. Deng, A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 27, 2768–2774 (2015)PubMedCrossRef
122.
Zurück zum Zitat M. Zhu, Y. Li, F. Chen, X. Zhu, J. Dai, Y. Li, Z. Yang, X. Yan, J. Song, Y. Wang, E. Hitz, W. Luo, M. Lu, B. Yang, L. Hu, Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 8, 1701028 (2018)CrossRef M. Zhu, Y. Li, F. Chen, X. Zhu, J. Dai, Y. Li, Z. Yang, X. Yan, J. Song, Y. Wang, E. Hitz, W. Luo, M. Lu, B. Yang, L. Hu, Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 8, 1701028 (2018)CrossRef
123.
Zurück zum Zitat L. Tian, J. Luan, K.K. Liu, Q. Jiang, S. Tadepalli, M.K. Gupta, R.R. Naik, S. Singamaneni, Plasmonic biofoam: a versatile optically active material. Nano Lett. 16, 609–616 (2016)PubMedCrossRef L. Tian, J. Luan, K.K. Liu, Q. Jiang, S. Tadepalli, M.K. Gupta, R.R. Naik, S. Singamaneni, Plasmonic biofoam: a versatile optically active material. Nano Lett. 16, 609–616 (2016)PubMedCrossRef
124.
Zurück zum Zitat L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, J. Zhu, Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016)PubMedPubMedCentralCrossRef L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, J. Zhu, Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016)PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat C. Kuppe, K.R. Rusimova, L. Ohnoutek, D. Slavov, V.K. Valev, “Hot” in plasmonics: temperature-related concepts and applications of metal nanostructures. Adv. Opt. Mater. 8, 1901166 (2019)CrossRef C. Kuppe, K.R. Rusimova, L. Ohnoutek, D. Slavov, V.K. Valev, “Hot” in plasmonics: temperature-related concepts and applications of metal nanostructures. Adv. Opt. Mater. 8, 1901166 (2019)CrossRef
126.
Zurück zum Zitat J.A. Bordley, N. Hooshmand, M.A. El-Sayed, The coupling between gold or silver nanocubes in their homo-dimers: a new coupling mechanism at short separation distances. Nano Lett. 15, 3391–3397 (2015)PubMedCrossRef J.A. Bordley, N. Hooshmand, M.A. El-Sayed, The coupling between gold or silver nanocubes in their homo-dimers: a new coupling mechanism at short separation distances. Nano Lett. 15, 3391–3397 (2015)PubMedCrossRef
127.
Zurück zum Zitat J.J. Baumberg, J. Aizpurua, M.H. Mikkelsen, D.R. Smith, Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019)PubMedCrossRef J.J. Baumberg, J. Aizpurua, M.H. Mikkelsen, D.R. Smith, Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019)PubMedCrossRef
128.
Zurück zum Zitat D. Yoo, F. de León-Pérez, M. Pelton, I.H. Lee, D.A. Mohr, M.B. Raschke, J.D. Caldwell, L. Martín-Moreno, S.H. Oh, Ultrastrong plasmon-phonon coupling via epsilon-near-zero nanocavities. Nat. Photon. 15, 125–130 (2020)CrossRef D. Yoo, F. de León-Pérez, M. Pelton, I.H. Lee, D.A. Mohr, M.B. Raschke, J.D. Caldwell, L. Martín-Moreno, S.H. Oh, Ultrastrong plasmon-phonon coupling via epsilon-near-zero nanocavities. Nat. Photon. 15, 125–130 (2020)CrossRef
129.
Zurück zum Zitat G. Baffou, R. Quidant, F.J. Garcia de Abajo, Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709–716 (2010)PubMedCrossRef G. Baffou, R. Quidant, F.J. Garcia de Abajo, Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709–716 (2010)PubMedCrossRef
130.
Zurück zum Zitat K. Setoura, Y. Okada, D. Werner, S. Hashimoto, Observation of nanoscale cooling effects by substrates and the surrounding media for single gold nanoparticles under CW-laser illumination. ACS Nano 7, 7874–7885 (2013)PubMedCrossRef K. Setoura, Y. Okada, D. Werner, S. Hashimoto, Observation of nanoscale cooling effects by substrates and the surrounding media for single gold nanoparticles under CW-laser illumination. ACS Nano 7, 7874–7885 (2013)PubMedCrossRef
131.
Zurück zum Zitat Z. Qian, D.S. Ginger, Reversibly reconfigurable colloidal plasmonic nanomaterials. J. Am. Chem. Soc. 139, 5266–5276 (2017)PubMedCrossRef Z. Qian, D.S. Ginger, Reversibly reconfigurable colloidal plasmonic nanomaterials. J. Am. Chem. Soc. 139, 5266–5276 (2017)PubMedCrossRef
132.
Zurück zum Zitat S. Homaeigohar, M. Elbahri, Switchable plasmonic nanocomposites. Adv. Opt. Mater. 7 (2018) S. Homaeigohar, M. Elbahri, Switchable plasmonic nanocomposites. Adv. Opt. Mater. 7 (2018)
134.
Zurück zum Zitat S. Lee, K. Sim, S.Y. Moon, J. Choi, Y. Jeon, J.M. Nam, S.J. Park, Controlled assembly of plasmonic nanoparticles: from static to dynamic nanostructures. Adv. Mater. e2007668 (2021) S. Lee, K. Sim, S.Y. Moon, J. Choi, Y. Jeon, J.M. Nam, S.J. Park, Controlled assembly of plasmonic nanoparticles: from static to dynamic nanostructures. Adv. Mater. e2007668 (2021)
135.
Zurück zum Zitat E.B.L.D. Sio, Active plasmonic nanomaterials CRC Press © 2016 by Taylor & Francis Group, LLC. E.B.L.D. Sio, Active plasmonic nanomaterials CRC Press © 2016 by Taylor & Francis Group, LLC.
136.
Zurück zum Zitat Z. Li, Y. Yin, Stimuli-responsive optical nanomaterials. Adv. Mater. 31, 1807061 (2019)CrossRef Z. Li, Y. Yin, Stimuli-responsive optical nanomaterials. Adv. Mater. 31, 1807061 (2019)CrossRef
137.
Zurück zum Zitat L. Lin, X. Peng, M. Wang, L. Scarabelli, Z. Mao, L.M. Liz-Marzan, M.F. Becker, Y. Zheng, Light-directed reversible assembly of plasmonic nanoparticles using plasmon-enhanced thermophoresis. ACS Nano 10, 9659–9668 (2016)PubMedCrossRef L. Lin, X. Peng, M. Wang, L. Scarabelli, Z. Mao, L.M. Liz-Marzan, M.F. Becker, Y. Zheng, Light-directed reversible assembly of plasmonic nanoparticles using plasmon-enhanced thermophoresis. ACS Nano 10, 9659–9668 (2016)PubMedCrossRef
138.
Zurück zum Zitat Y. Montelongo, D. Sikdar, Y. Ma, A.J.S. McIntosh, L. Velleman, A.R. Kucernak, J.B. Edel, A.A. Kornyshev, Electrotunable nanoplasmonic liquid mirror. Nat. Mater. 16, 1127–1135 (2017) Y. Montelongo, D. Sikdar, Y. Ma, A.J.S. McIntosh, L. Velleman, A.R. Kucernak, J.B. Edel, A.A. Kornyshev, Electrotunable nanoplasmonic liquid mirror. Nat. Mater. 16, 1127–1135 (2017)
139.
Zurück zum Zitat S. Khatua, W.S. Chang, P. Swanglap, J. Olson, S. Link, Active modulation of nanorod plasmons. Nano Lett. 11, 3797–3802 (2011)PubMedCrossRef S. Khatua, W.S. Chang, P. Swanglap, J. Olson, S. Link, Active modulation of nanorod plasmons. Nano Lett. 11, 3797–3802 (2011)PubMedCrossRef
140.
Zurück zum Zitat M.S. Ergoktas, G. Bakan, E. Kovalska, L.W. Le Fevre, R.P. Fields, P. Steiner, X. Yu, O. Salihoglu, S. Balci, V.I. Fal’ko, K.S. Novoselov, R.A.W. Dryfe, C. Kocabas, Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nat. Photon. 15, 493–498 (2021) M.S. Ergoktas, G. Bakan, E. Kovalska, L.W. Le Fevre, R.P. Fields, P. Steiner, X. Yu, O. Salihoglu, S. Balci, V.I. Fal’ko, K.S. Novoselov, R.A.W. Dryfe, C. Kocabas, Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nat. Photon. 15, 493–498 (2021)
141.
Zurück zum Zitat A. Kuzyk, R. Schreiber, H. Zhang, A.O. Govorov, T. Liedl, N. Liu, Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 862–866 (2014)PubMedCrossRef A. Kuzyk, R. Schreiber, H. Zhang, A.O. Govorov, T. Liedl, N. Liu, Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 862–866 (2014)PubMedCrossRef
142.
Zurück zum Zitat L. Liu, R. Aleisa, Y. Zhang, J. Feng, Y. Zheng, Y. Yin, W. Wang, Dynamic color-switching of plasmonic nanoparticle films. Angew. Chem. Int. Ed. 58, 16307–16313 (2019)CrossRef L. Liu, R. Aleisa, Y. Zhang, J. Feng, Y. Zheng, Y. Yin, W. Wang, Dynamic color-switching of plasmonic nanoparticle films. Angew. Chem. Int. Ed. 58, 16307–16313 (2019)CrossRef
143.
144.
Zurück zum Zitat W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, E. Górecka, Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial. Nat. Commun. 6 (2015) W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, E. Górecka, Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial. Nat. Commun. 6 (2015)
145.
Zurück zum Zitat T. Ding, V.K. Valev, A.R. Salmon, C.J. Forman, S.K. Smoukov, O.A. Scherman, D. Frenkel, J.J. Baumberg, Light-induced actuating nanotransducers. Proc. Natl. Acad. Sci. 113, 5503–5507 (2016)PubMedPubMedCentralCrossRef T. Ding, V.K. Valev, A.R. Salmon, C.J. Forman, S.K. Smoukov, O.A. Scherman, D. Frenkel, J.J. Baumberg, Light-induced actuating nanotransducers. Proc. Natl. Acad. Sci. 113, 5503–5507 (2016)PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat L. Liu, Z. Gao, B. Jiang, Y. Bai, W. Wang, Y. Yin, Reversible assembly and dynamic plasmonic tuning of Ag nanoparticles enabled by limited ligand protection. Nano Lett. 18, 5312–5318 (2018)PubMedCrossRef L. Liu, Z. Gao, B. Jiang, Y. Bai, W. Wang, Y. Yin, Reversible assembly and dynamic plasmonic tuning of Ag nanoparticles enabled by limited ligand protection. Nano Lett. 18, 5312–5318 (2018)PubMedCrossRef
147.
Zurück zum Zitat Z. Li, W. Wang, Y. Yin, Colloidal assembly and active tuning of coupled plasmonic nanospheres. Trends Chem. 2, 593–608 (2020)CrossRef Z. Li, W. Wang, Y. Yin, Colloidal assembly and active tuning of coupled plasmonic nanospheres. Trends Chem. 2, 593–608 (2020)CrossRef
148.
Zurück zum Zitat Z. Sun, W. Ni, Z. Yang, X. Kou, L. Li, J. Wang, PH-controlled reversible assembly and disassembly of gold nanorods. Small 4, 1287–1292 (2008)PubMedCrossRef Z. Sun, W. Ni, Z. Yang, X. Kou, L. Li, J. Wang, PH-controlled reversible assembly and disassembly of gold nanorods. Small 4, 1287–1292 (2008)PubMedCrossRef
149.
Zurück zum Zitat Y. Liu, X. Han, L. He, Y. Yin, Thermoresponsive assembly of charged gold nanoparticles and their reversible tuning of plasmon coupling. Angew. Chem. Int. Ed. 51, 6373–6377 (2012)CrossRef Y. Liu, X. Han, L. He, Y. Yin, Thermoresponsive assembly of charged gold nanoparticles and their reversible tuning of plasmon coupling. Angew. Chem. Int. Ed. 51, 6373–6377 (2012)CrossRef
150.
Zurück zum Zitat G.E. Lio, G. Palermo, A. De Luca, R. Caputo, Tensile control of the thermal flow in plasmonic heaters realized on flexible substrates. J. Chem. Phys. 151, 244707 (2019)PubMedCrossRef G.E. Lio, G. Palermo, A. De Luca, R. Caputo, Tensile control of the thermal flow in plasmonic heaters realized on flexible substrates. J. Chem. Phys. 151, 244707 (2019)PubMedCrossRef
151.
Zurück zum Zitat G.E. Lio, G. Palermo, R. Caputo, A. De Luca, Opto-mechanical control of flexible plasmonic materials. J. Appl. Phys. 125, 082533 (2019)CrossRef G.E. Lio, G. Palermo, R. Caputo, A. De Luca, Opto-mechanical control of flexible plasmonic materials. J. Appl. Phys. 125, 082533 (2019)CrossRef
152.
Zurück zum Zitat G. Emanuele Lio, A. De Luca, C.P. Umeton, R. Caputo, Opto-mechanically induced thermoplasmonic response of unclonable flexible tags with hotspot fingerprint. J. Appl. Phys. 128, 093107 (2020) G. Emanuele Lio, A. De Luca, C.P. Umeton, R. Caputo, Opto-mechanically induced thermoplasmonic response of unclonable flexible tags with hotspot fingerprint. J. Appl. Phys. 128, 093107 (2020)
153.
Zurück zum Zitat N.C. Lindquist, P. Nagpal, K.M. McPeak, D.J. Norris, S.H. Oh, Engineering metallic nanostructures for plasmonics and nanophotonics, Reports on progress in physics. Phys. Soc. 75, 036501 (2012) N.C. Lindquist, P. Nagpal, K.M. McPeak, D.J. Norris, S.H. Oh, Engineering metallic nanostructures for plasmonics and nanophotonics, Reports on progress in physics. Phys. Soc. 75, 036501 (2012)
154.
Zurück zum Zitat S. Kasani, K. Curtin, N. Wu, A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications. Nanophotonics 8, 2065–2089 (2019)CrossRef S. Kasani, K. Curtin, N. Wu, A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications. Nanophotonics 8, 2065–2089 (2019)CrossRef
155.
Zurück zum Zitat T. Qiu, E.M. Akinoglu, B. Luo, M. Konarova, J.H. Yun, I.R. Gentle, L. Wang, Nanosphere lithography: a versatile approach to develop transparent conductive films for optoelectronic applications. Adv. Mater. 34, e2103842 (2022)PubMedCrossRef T. Qiu, E.M. Akinoglu, B. Luo, M. Konarova, J.H. Yun, I.R. Gentle, L. Wang, Nanosphere lithography: a versatile approach to develop transparent conductive films for optoelectronic applications. Adv. Mater. 34, e2103842 (2022)PubMedCrossRef
156.
Zurück zum Zitat L.J. Guo, Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007)CrossRef L.J. Guo, Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007)CrossRef
157.
Zurück zum Zitat M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, A.J. Turberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000)PubMedCrossRef M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, A.J. Turberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000)PubMedCrossRef
158.
Zurück zum Zitat K. Yang, X. Yao, B. Liu, B. Ren, Metallic plasmonic array structures: principles, fabrications, properties, and applications. Adv. Mater. 33, e2007988 (2021)PubMedCrossRef K. Yang, X. Yao, B. Liu, B. Ren, Metallic plasmonic array structures: principles, fabrications, properties, and applications. Adv. Mater. 33, e2007988 (2021)PubMedCrossRef
159.
Zurück zum Zitat J. Fischer, M. Wegener, Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photon. Rev. 7, 22–44 (2012)CrossRef J. Fischer, M. Wegener, Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photon. Rev. 7, 22–44 (2012)CrossRef
160.
Zurück zum Zitat Y. Wang, M. Zhang, Y. Lai, L. Chi, Advanced colloidal lithography: From patterning to applications. Nano Today 22, 36–61 (2018)CrossRef Y. Wang, M. Zhang, Y. Lai, L. Chi, Advanced colloidal lithography: From patterning to applications. Nano Today 22, 36–61 (2018)CrossRef
161.
Zurück zum Zitat Z. Lu, M. Zhou, Fabrication of large scale two-dimensional colloidal crystal of polystyrene particles by an interfacial self-ordering process. J. Colloid Interface Sci. 361, 429–435 (2011)PubMedCrossRef Z. Lu, M. Zhou, Fabrication of large scale two-dimensional colloidal crystal of polystyrene particles by an interfacial self-ordering process. J. Colloid Interface Sci. 361, 429–435 (2011)PubMedCrossRef
162.
Zurück zum Zitat Y. Yu, C. Ng, T.A.F. Konig, A. Fery, Tackling the scalability challenge in plasmonics by wrinkle-assisted colloidal self-assembly. Langmuir ACS J. Surf. Colloids 35, 8629–8645 (2019)CrossRef Y. Yu, C. Ng, T.A.F. Konig, A. Fery, Tackling the scalability challenge in plasmonics by wrinkle-assisted colloidal self-assembly. Langmuir ACS J. Surf. Colloids 35, 8629–8645 (2019)CrossRef
163.
Zurück zum Zitat C. Zhu, G. Meng, P. Zheng, Q. Huang, Z. Li, X. Hu, X. Wang, Z. Huang, F. Li, N. Wu, A hierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutants. Adv. Mater. 28, 4871–4876 (2016)PubMedCrossRef C. Zhu, G. Meng, P. Zheng, Q. Huang, Z. Li, X. Hu, X. Wang, Z. Huang, F. Li, N. Wu, A hierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutants. Adv. Mater. 28, 4871–4876 (2016)PubMedCrossRef
164.
Zurück zum Zitat K. Xu, Z. Wang, C.F. Tan, N. Kang, L. Chen, L. Ren, E.S. Thian, G.W. Ho, R. Ji, M. Hong, Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics. ACS Appl. Mater. Interfaces 9, 26341–26349 (2017)PubMedCrossRef K. Xu, Z. Wang, C.F. Tan, N. Kang, L. Chen, L. Ren, E.S. Thian, G.W. Ho, R. Ji, M. Hong, Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics. ACS Appl. Mater. Interfaces 9, 26341–26349 (2017)PubMedCrossRef
165.
Zurück zum Zitat S.M. Park, X.G. Liang, B.D. Harteneck, T.E. Pick, N. Hiroshiba, Y. Wu, B.A. Helms, D.L. Olynick, Sub-10 nm nanofabrication nanoimprint directed self-assembly of block copolymers. ACS Nano 5, 8523–8531 (2011)PubMedCrossRef S.M. Park, X.G. Liang, B.D. Harteneck, T.E. Pick, N. Hiroshiba, Y. Wu, B.A. Helms, D.L. Olynick, Sub-10 nm nanofabrication nanoimprint directed self-assembly of block copolymers. ACS Nano 5, 8523–8531 (2011)PubMedCrossRef
166.
Zurück zum Zitat B.W. Liu, X. Yao, L. Zhang, H.X. Lin, S. Chen, J.H. Zhong, S. Liu, L. Wang, B. Ren, Efficient platform for flexible engineering of superradiant, fano-type, and subradiant resonances. ACS Photon. 2, 1725–1731 (2015)CrossRef B.W. Liu, X. Yao, L. Zhang, H.X. Lin, S. Chen, J.H. Zhong, S. Liu, L. Wang, B. Ren, Efficient platform for flexible engineering of superradiant, fano-type, and subradiant resonances. ACS Photon. 2, 1725–1731 (2015)CrossRef
167.
Zurück zum Zitat J. Park, K.I. Kim, K. Kim, D.C. Kim, D. Cho, J.H. Lee, S. Jeon, Rapid, high-resolution 3D interference printing of multilevel ultralong nanochannel arrays for high-throughput nanofluidic transport. Adv. Mater. 27, 8000–8006 (2015)PubMedCrossRef J. Park, K.I. Kim, K. Kim, D.C. Kim, D. Cho, J.H. Lee, S. Jeon, Rapid, high-resolution 3D interference printing of multilevel ultralong nanochannel arrays for high-throughput nanofluidic transport. Adv. Mater. 27, 8000–8006 (2015)PubMedCrossRef
168.
Zurück zum Zitat X. Zhang, M. Theuring, Q. Song, W. Mao, M. Begliarbekov, S. Strauf, Holographic control of motive shape in plasmonic nanogap arrays. Nano Lett. 11, 2715–2719 (2011)PubMedCrossRef X. Zhang, M. Theuring, Q. Song, W. Mao, M. Begliarbekov, S. Strauf, Holographic control of motive shape in plasmonic nanogap arrays. Nano Lett. 11, 2715–2719 (2011)PubMedCrossRef
169.
Zurück zum Zitat L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, L. Novotny, Color rendering plasmonic aluminum substrates with angular symmetry breaking. ACS Nano 9, 12383–12391 (2015)PubMedCrossRef L. Duempelmann, D. Casari, A. Luu-Dinh, B. Gallinet, L. Novotny, Color rendering plasmonic aluminum substrates with angular symmetry breaking. ACS Nano 9, 12383–12391 (2015)PubMedCrossRef
170.
Zurück zum Zitat H.G. Duan, H.L. Hu, K. Kumar, Z.X. Shen, J.K.W. Yang, Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps. ACS Nano 5, 7593–7600 (2011)PubMedCrossRef H.G. Duan, H.L. Hu, K. Kumar, Z.X. Shen, J.K.W. Yang, Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps. ACS Nano 5, 7593–7600 (2011)PubMedCrossRef
171.
Zurück zum Zitat M.K. Kim, H. Sim, S.J. Yoon, S.H. Gong, C.W. Ahn, Y.H. Cho, Y.H. Lee, Squeezing photons into a point-like space. Nano Lett. 15, 4102–4107 (2015)PubMedCrossRef M.K. Kim, H. Sim, S.J. Yoon, S.H. Gong, C.W. Ahn, Y.H. Cho, Y.H. Lee, Squeezing photons into a point-like space. Nano Lett. 15, 4102–4107 (2015)PubMedCrossRef
172.
Zurück zum Zitat X. Zhu, C. Vannahme, E. Hojlund-Nielsen, N.A. Mortensen, A. Kristensen, Plasmonic colour laser printing. Nat. Nanotechnol. 11, 325–329 (2016)PubMedCrossRef X. Zhu, C. Vannahme, E. Hojlund-Nielsen, N.A. Mortensen, A. Kristensen, Plasmonic colour laser printing. Nat. Nanotechnol. 11, 325–329 (2016)PubMedCrossRef
173.
Zurück zum Zitat X. Zhu, J. Engelberg, S. Remennik, B. Zhou, J.N. Pedersen, P. Uhd Jepsen, U. Levy, A. Kristensen, Resonant laser printing of optical metasurfaces. Nano Lett. 22, 2786–2792 (2022) X. Zhu, J. Engelberg, S. Remennik, B. Zhou, J.N. Pedersen, P. Uhd Jepsen, U. Levy, A. Kristensen, Resonant laser printing of optical metasurfaces. Nano Lett. 22, 2786–2792 (2022)
174.
Zurück zum Zitat L. Chen, Y. Zhou, Y. Li, M. Hong, Microsphere enhanced optical imaging and patterning: From physics to applications. Appl. Phys. Rev. 6 (2019) L. Chen, Y. Zhou, Y. Li, M. Hong, Microsphere enhanced optical imaging and patterning: From physics to applications. Appl. Phys. Rev. 6 (2019)
175.
Zurück zum Zitat Q.C. Tong, D.T.T. Nguyen, M.T. Do, M.H. Luong, B. Journet, I. Ledoux-Rak, N.D. Lai, Direct laser writing of polymeric nanostructures via optically induced local thermal effect. Appl. Phys. Lett. 108 (2016) Q.C. Tong, D.T.T. Nguyen, M.T. Do, M.H. Luong, B. Journet, I. Ledoux-Rak, N.D. Lai, Direct laser writing of polymeric nanostructures via optically induced local thermal effect. Appl. Phys. Lett. 108 (2016)
176.
Zurück zum Zitat L. Qin, Y. Huang, F. Xia, L. Wang, J. Ning, H. Chen, X. Wang, W. Zhang, Y. Peng, Q. Liu, Z. Zhang, 5 nm nanogap electrodes and arrays by super-resolution laser lithography. Nano Lett. 20, 4916–4923 (2020)PubMedCrossRef L. Qin, Y. Huang, F. Xia, L. Wang, J. Ning, H. Chen, X. Wang, W. Zhang, Y. Peng, Q. Liu, Z. Zhang, 5 nm nanogap electrodes and arrays by super-resolution laser lithography. Nano Lett. 20, 4916–4923 (2020)PubMedCrossRef
177.
Zurück zum Zitat Z. Lin, H. Liu, L. Ji, W. Lin, M. Hong, Realization of approximately 10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient air. Nano Lett. 20, 4947–4952 (2020)PubMedCrossRef Z. Lin, H. Liu, L. Ji, W. Lin, M. Hong, Realization of approximately 10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient air. Nano Lett. 20, 4947–4952 (2020)PubMedCrossRef
178.
Zurück zum Zitat H.C. Jeon, T.Y. Jeon, T.S. Shim, S.M. Yang, Direct fabrication of hexagonally ordered ridged nanoarchitectures via dual interference lithography for efficient sensing applications. Small 10, 1490–1494 (2014)PubMedCrossRef H.C. Jeon, T.Y. Jeon, T.S. Shim, S.M. Yang, Direct fabrication of hexagonally ordered ridged nanoarchitectures via dual interference lithography for efficient sensing applications. Small 10, 1490–1494 (2014)PubMedCrossRef
179.
Zurück zum Zitat B. Liu, X. Yao, S. Chen, H. Lin, Z. Yang, S. Liu, B. Ren, Large-area hybrid plasmonic optical cavity (HPOC) substrates for surface-enhanced Raman spectroscopy. Adv. Funct. Mater. 28 (2018) B. Liu, X. Yao, S. Chen, H. Lin, Z. Yang, S. Liu, B. Ren, Large-area hybrid plasmonic optical cavity (HPOC) substrates for surface-enhanced Raman spectroscopy. Adv. Funct. Mater. 28 (2018)
180.
Zurück zum Zitat C. Zhan, B.W. Liu, Y.F. Huang, S. Hu, B. Ren, M. Moskovits, Z.Q. Tian, Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures. Nat. Commun. 10, 2671 (2019)PubMedPubMedCentralCrossRef C. Zhan, B.W. Liu, Y.F. Huang, S. Hu, B. Ren, M. Moskovits, Z.Q. Tian, Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures. Nat. Commun. 10, 2671 (2019)PubMedPubMedCentralCrossRef
181.
Zurück zum Zitat B. Liu, C. Zhan, X. Yao, S. Yan, B. Ren, Nanobowtie arrays with tunable materials and geometries fabricated by holographic lithography. Nanoscale 12, 21401–21408 (2020)PubMedCrossRef B. Liu, C. Zhan, X. Yao, S. Yan, B. Ren, Nanobowtie arrays with tunable materials and geometries fabricated by holographic lithography. Nanoscale 12, 21401–21408 (2020)PubMedCrossRef
182.
Zurück zum Zitat T.T. Tran, D. Wang, Z.Q. Xu, A. Yang, M. Toth, T.W. Odom, I. Aharonovich, Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett. 17, 2634–2639 (2017)PubMedCrossRef T.T. Tran, D. Wang, Z.Q. Xu, A. Yang, M. Toth, T.W. Odom, I. Aharonovich, Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett. 17, 2634–2639 (2017)PubMedCrossRef
183.
Zurück zum Zitat B. Lee, J. Park, G.H. Han, H.S. Ee, C.H. Naylor, W. Liu, A.T. Johnson, R. Agarwal, Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array. Nano Lett. 15, 3646–3653 (2015)PubMedCrossRef B. Lee, J. Park, G.H. Han, H.S. Ee, C.H. Naylor, W. Liu, A.T. Johnson, R. Agarwal, Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array. Nano Lett. 15, 3646–3653 (2015)PubMedCrossRef
184.
Zurück zum Zitat P. Yang, J. Zheng, Y. Xu, Q. Zhang, L. Jiang, Colloidal synthesis and applications of plasmonic metal nanoparticles. Adv. Mater. 28, 10508–10517 (2016)PubMedCrossRef P. Yang, J. Zheng, Y. Xu, Q. Zhang, L. Jiang, Colloidal synthesis and applications of plasmonic metal nanoparticles. Adv. Mater. 28, 10508–10517 (2016)PubMedCrossRef
185.
Zurück zum Zitat Q.N. Nguyen, C. Wang, Y. Shang, A. Janssen, Y. Xia, Colloidal synthesis of metal nanocrystals: from asymmetrical growth to symmetry breaking. Chem. Rev. 123, 3693–3760 (2023)PubMedCrossRef Q.N. Nguyen, C. Wang, Y. Shang, A. Janssen, Y. Xia, Colloidal synthesis of metal nanocrystals: from asymmetrical growth to symmetry breaking. Chem. Rev. 123, 3693–3760 (2023)PubMedCrossRef
186.
Zurück zum Zitat T. Hueckel, G.M. Hocky, S. Sacanna, Total synthesis of colloidal matter. Nat. Rev. Mater. 6, 1053–1069 (2021)CrossRef T. Hueckel, G.M. Hocky, S. Sacanna, Total synthesis of colloidal matter. Nat. Rev. Mater. 6, 1053–1069 (2021)CrossRef
187.
Zurück zum Zitat G. Schmid, L.F. Chi, Metal clusters and colloids. Adv. Mater. 10, 515–526 (1998)CrossRef G. Schmid, L.F. Chi, Metal clusters and colloids. Adv. Mater. 10, 515–526 (1998)CrossRef
188.
Zurück zum Zitat P.S.J. Turkevich, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 55–75 (1951) P.S.J. Turkevich, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 55–75 (1951)
189.
Zurück zum Zitat G.B. Matthew Pelton, Introduction to Metal-Nanoparticle Plasmonics (Wiley, 2013), p 275 G.B. Matthew Pelton, Introduction to Metal-Nanoparticle Plasmonics (Wiley, 2013), p 275
190.
Zurück zum Zitat M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. J. Chem. Soc. Chem. Commun. 801–802 (1994) M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. J. Chem. Soc. Chem. Commun. 801–802 (1994)
191.
Zurück zum Zitat S. Shrestha, B. Wang, P. Dutta, Nanoparticle processing: understanding and controlling aggregation. Adv. Coll. Interface. Sci. 279, 102162 (2020)CrossRef S. Shrestha, B. Wang, P. Dutta, Nanoparticle processing: understanding and controlling aggregation. Adv. Coll. Interface. Sci. 279, 102162 (2020)CrossRef
192.
Zurück zum Zitat Y. Xia, K.D. Gilroy, H.C. Peng, X. Xia, Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem. 56, 60–95 (2017)CrossRef Y. Xia, K.D. Gilroy, H.C. Peng, X. Xia, Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem. 56, 60–95 (2017)CrossRef
193.
Zurück zum Zitat S.E. Skrabalak, Y. Xia, Pushing nanocrystal synthesis toward nanomanufacturing. ACS Nano 3, 10–15 (2009)PubMedCrossRef S.E. Skrabalak, Y. Xia, Pushing nanocrystal synthesis toward nanomanufacturing. ACS Nano 3, 10–15 (2009)PubMedCrossRef
194.
Zurück zum Zitat S. Gwo, H.Y. Chen, M.H. Lin, L. Sun, X. Li, Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics. Chem. Soc. Rev. 45, 5672–5716 (2016)PubMedCrossRef S. Gwo, H.Y. Chen, M.H. Lin, L. Sun, X. Li, Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics. Chem. Soc. Rev. 45, 5672–5716 (2016)PubMedCrossRef
195.
Zurück zum Zitat M. Mayer, M.J. Schnepf, T.A.F. König, A. Fery, Colloidal self-assembly concepts for plasmonic metasurfaces. Adv. Opt. Mater. 7 (2018) M. Mayer, M.J. Schnepf, T.A.F. König, A. Fery, Colloidal self-assembly concepts for plasmonic metasurfaces. Adv. Opt. Mater. 7 (2018)
196.
Zurück zum Zitat O.N. Oliveira Jr., L. Caseli, K. Ariga, The past and the future of langmuir and langmuir-blodgett films. Chem. Rev. 122, 6459–6513 (2022)PubMedCrossRef O.N. Oliveira Jr., L. Caseli, K. Ariga, The past and the future of langmuir and langmuir-blodgett films. Chem. Rev. 122, 6459–6513 (2022)PubMedCrossRef
197.
Zurück zum Zitat J.A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N.J. Halas, V.N. Manoharan, P. Nordlander, G. Shvets, F. Capasso, Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010)PubMedCrossRef J.A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N.J. Halas, V.N. Manoharan, P. Nordlander, G. Shvets, F. Capasso, Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010)PubMedCrossRef
198.
Zurück zum Zitat B. Tim, M. Kotkowiak, N. Kowalska, A.B. Nowicka, W. Lewandowski, Influence of gold nanoparticle assembly in langmuir-schaefer monolayers on the surface-enhanced spectroscopy response of a nanoplatform. J. Phys. Chem. C 127, 15978–15987 (2023)CrossRef B. Tim, M. Kotkowiak, N. Kowalska, A.B. Nowicka, W. Lewandowski, Influence of gold nanoparticle assembly in langmuir-schaefer monolayers on the surface-enhanced spectroscopy response of a nanoplatform. J. Phys. Chem. C 127, 15978–15987 (2023)CrossRef
199.
Zurück zum Zitat L. Scarabelli, D. Vila-Liarte, A. Mihi, L.M. Liz-Marzán, Templated colloidal self-assembly for lattice plasmon engineering. Accounts Mater. Res. 2, 816–827 (2021)CrossRef L. Scarabelli, D. Vila-Liarte, A. Mihi, L.M. Liz-Marzán, Templated colloidal self-assembly for lattice plasmon engineering. Accounts Mater. Res. 2, 816–827 (2021)CrossRef
200.
Zurück zum Zitat M.R. Jones, K.D. Osberg, R.J. Macfarlane, M.R. Langille, C.A. Mirkin, Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 111, 3736–3827 (2011)PubMedCrossRef M.R. Jones, K.D. Osberg, R.J. Macfarlane, M.R. Langille, C.A. Mirkin, Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 111, 3736–3827 (2011)PubMedCrossRef
201.
Zurück zum Zitat B.J. Jankiewicz, D. Jamiola, J. Choma, M. Jaroniec, Silica-metal core-shell nanostructures. Adv. Coll. Interface. Sci. 170, 28–47 (2012)CrossRef B.J. Jankiewicz, D. Jamiola, J. Choma, M. Jaroniec, Silica-metal core-shell nanostructures. Adv. Coll. Interface. Sci. 170, 28–47 (2012)CrossRef
202.
Zurück zum Zitat Q. Xu, G. Meng, F. Han, Porous AAO template-assisted rational synthesis of large-scale 1D hybrid and hierarchically branched nanoarchitectures. Prog. Mater. Sci. 95, 243–285 (2018)CrossRef Q. Xu, G. Meng, F. Han, Porous AAO template-assisted rational synthesis of large-scale 1D hybrid and hierarchically branched nanoarchitectures. Prog. Mater. Sci. 95, 243–285 (2018)CrossRef
203.
Zurück zum Zitat K. Wang, G. Liu, N. Hoivik, E. Johannessen, H. Jakobsen, Electrochemical engineering of hollow nanoarchitectures: pulse/step anodization (Si, Al, Ti) and their applications. Chem. Soc. Rev. 43, 1476–1500 (2014)PubMedCrossRef K. Wang, G. Liu, N. Hoivik, E. Johannessen, H. Jakobsen, Electrochemical engineering of hollow nanoarchitectures: pulse/step anodization (Si, Al, Ti) and their applications. Chem. Soc. Rev. 43, 1476–1500 (2014)PubMedCrossRef
204.
Zurück zum Zitat W. Lee, S.J. Park, Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev. 114, 7487–7556 (2014)PubMedCrossRef W. Lee, S.J. Park, Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev. 114, 7487–7556 (2014)PubMedCrossRef
205.
Zurück zum Zitat Z. Liu, N. Liu, J. Schroers, Nanofabrication through molding. Prog. Mater. Sci. 125, 100891 (2022)CrossRef Z. Liu, N. Liu, J. Schroers, Nanofabrication through molding. Prog. Mater. Sci. 125, 100891 (2022)CrossRef
206.
Zurück zum Zitat V. Flauraud, M. Mastrangeli, G.D. Bernasconi, J. Butet, D.T. Alexander, E. Shahrabi, O.J. Martin, J. Brugger, Nanoscale topographical control of capillary assembly of nanoparticles. Nat. Nanotechnol. 12, 73–80 (2017)PubMedCrossRef V. Flauraud, M. Mastrangeli, G.D. Bernasconi, J. Butet, D.T. Alexander, E. Shahrabi, O.J. Martin, J. Brugger, Nanoscale topographical control of capillary assembly of nanoparticles. Nat. Nanotechnol. 12, 73–80 (2017)PubMedCrossRef
207.
Zurück zum Zitat Y. Yin, Y. Lu, B. Gates, Y. Xia, Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J. Am. Chem. Soc. 123, 8718–8729 (2001)PubMedCrossRef Y. Yin, Y. Lu, B. Gates, Y. Xia, Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J. Am. Chem. Soc. 123, 8718–8729 (2001)PubMedCrossRef
Metadaten
Titel
Thermoplasmonic Materials
verfasst von
Guohua Liu
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8332-8_3