Skip to main content
Erschienen in: Cellulose 10/2017

29.07.2017 | Original Paper

Thermoresponsive poly(poly(ethylene glycol) methylacrylate)s grafted cellulose nanocrystals through SI-ATRP polymerization

verfasst von: Xiuqiang Zhang, Jinlong Zhang, Lili Dong, Suxia Ren, Qinglin Wu, Tingzhou Lei

Erschienen in: Cellulose | Ausgabe 10/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We report a series of thermoresponsive cellulose nanocrystals (CNCs) decorated with poly(poly(ethylene glycol) methylacrylate) copolymers (poly(PEGMA)-g-CNCs) synthesized by surface initiated-atom transfer radical polymerization (SI-ATRP). The chemical structures and surface morphologies were subsequently confirmed by FT-IR, XPS, and AFM measurements. With regard to thermally responsive behavior, poly(PEGMA)-g-CNCs show tunable lower critical solution temperature (LCST) values in the range of 34–66 °C by varying the feeding ratios of comonomers. The reversible morphological transformation from individual nano-rod structures to larger globule aggregates was further verified by AFM during the LCST transition. These functionalized CNCs have potential as smart film filters and biosensors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Adamcik J, Lara C, Usov I, Jeong JS, Ruggeri FS, Dietler G, Lashuel HA, Hamley IW, Mezzenga R (2012) Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method. Nanoscale 4(15):4426–4429. doi:10.1039/c2nr30768e CrossRef Adamcik J, Lara C, Usov I, Jeong JS, Ruggeri FS, Dietler G, Lashuel HA, Hamley IW, Mezzenga R (2012) Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method. Nanoscale 4(15):4426–4429. doi:10.​1039/​c2nr30768e CrossRef
Zurück zum Zitat Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17(1):21–27. doi:10.1021/la001070m CrossRef Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17(1):21–27. doi:10.​1021/​la001070m CrossRef
Zurück zum Zitat Azzam F, Heux L, Putaux JL, Jean B (2010) Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromol 11(12):3652–3659. doi:10.1021/Bm101106c CrossRef Azzam F, Heux L, Putaux JL, Jean B (2010) Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromol 11(12):3652–3659. doi:10.​1021/​Bm101106c CrossRef
Zurück zum Zitat Azzam F, Siqueira E, Fort S, Hassaini R, Pignon F, Travelet C, Putaux JL, Jean B (2016) Tunable aggregation and gelation of thermoresponsive suspensions of polymer-grafted cellulose nanocrystals. Biomacromol 17(6):2112–2119. doi:10.1021/acs.biomac.6b00344 CrossRef Azzam F, Siqueira E, Fort S, Hassaini R, Pignon F, Travelet C, Putaux JL, Jean B (2016) Tunable aggregation and gelation of thermoresponsive suspensions of polymer-grafted cellulose nanocrystals. Biomacromol 17(6):2112–2119. doi:10.​1021/​acs.​biomac.​6b00344 CrossRef
Zurück zum Zitat Barbey R, Lavanant L, Paripovic D, Schuwer N, Sugnaux C, Tugulu S, Klok HA (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109(11):5437–5527. doi:10.1021/cr900045a CrossRef Barbey R, Lavanant L, Paripovic D, Schuwer N, Sugnaux C, Tugulu S, Klok HA (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109(11):5437–5527. doi:10.​1021/​cr900045a CrossRef
Zurück zum Zitat Chen G, Wright PM, Geng J, Mantovani G, Haddleton DM (2008) Tunable thermoresponsive water-dispersed multiwalled carbon nanotubes. Chem Commun 9:1097–1099. doi:10.1039/b718112d CrossRef Chen G, Wright PM, Geng J, Mantovani G, Haddleton DM (2008) Tunable thermoresponsive water-dispersed multiwalled carbon nanotubes. Chem Commun 9:1097–1099. doi:10.​1039/​b718112d CrossRef
Zurück zum Zitat Cheng ZP, Zhu XL, Kang ET, Neoh KG (2005) Brush-type amphiphilic diblock copolymers from “living”/controlled radical polymerizations and their aggregation behavior. Langmuir 21(16):7180–7185. doi:10.1021/la051038y CrossRef Cheng ZP, Zhu XL, Kang ET, Neoh KG (2005) Brush-type amphiphilic diblock copolymers from “living”/controlled radical polymerizations and their aggregation behavior. Langmuir 21(16):7180–7185. doi:10.​1021/​la051038y CrossRef
Zurück zum Zitat Guo YF, van Beek JD, Zhang BZ, Colussi M, Walde P, Zhang A, Kroger M, Halperin A, Schluter AD (2009) Tuning polymer thickness: synthesis and scaling theory of homologous series of dendronized polymers. J Am Chem Soc 131(33):11841–11854. doi:10.1021/ja9032132 CrossRef Guo YF, van Beek JD, Zhang BZ, Colussi M, Walde P, Zhang A, Kroger M, Halperin A, Schluter AD (2009) Tuning polymer thickness: synthesis and scaling theory of homologous series of dendronized polymers. J Am Chem Soc 131(33):11841–11854. doi:10.​1021/​ja9032132 CrossRef
Zurück zum Zitat Hemraz UD, Lu A, Sunasee R, Boluk Y (2014) Structure of poly(N-isopropylacrylamide) brushes and steric stability of their grafted cellulose nanocrystal dispersions. J Colloid Interface Sci 430:157–165. doi:10.1016/j.jcis.2014.05.011 CrossRef Hemraz UD, Lu A, Sunasee R, Boluk Y (2014) Structure of poly(N-isopropylacrylamide) brushes and steric stability of their grafted cellulose nanocrystal dispersions. J Colloid Interface Sci 430:157–165. doi:10.​1016/​j.​jcis.​2014.​05.​011 CrossRef
Zurück zum Zitat Kan KHM, Li J, Wijesekera K, Cranston ED (2013) Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants. Biomacromol 14(9):3130–3139. doi:10.1021/bm400752k CrossRef Kan KHM, Li J, Wijesekera K, Cranston ED (2013) Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants. Biomacromol 14(9):3130–3139. doi:10.​1021/​bm400752k CrossRef
Zurück zum Zitat Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466. doi:10.1002/anie.201001273 CrossRef Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466. doi:10.​1002/​anie.​201001273 CrossRef
Zurück zum Zitat Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromol 6(6):3160–3165. doi:10.1021/bm050479t CrossRef Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromol 6(6):3160–3165. doi:10.​1021/​bm050479t CrossRef
Zurück zum Zitat Lacerda PSS, Barros-Timmons AMMV, Freire CSR, Silvestre AJD, Neto CP (2013) Nanostructured composites obtained by ATRP sleeving of bacterial cellulose nanofibers with acrylate polymers. Biomacromol 14(6):2063–2073. doi:10.1021/bm400432b CrossRef Lacerda PSS, Barros-Timmons AMMV, Freire CSR, Silvestre AJD, Neto CP (2013) Nanostructured composites obtained by ATRP sleeving of bacterial cellulose nanofibers with acrylate polymers. Biomacromol 14(6):2063–2073. doi:10.​1021/​bm400432b CrossRef
Zurück zum Zitat Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26(6):4480–4488. doi:10.1021/la903111j CrossRef Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26(6):4480–4488. doi:10.​1021/​la903111j CrossRef
Zurück zum Zitat Lutz JF (2008) Polymerization of oligo (ethylene glycol)(meth) acrylates: toward new generations of smart biocompatible materials. J Polym Sci Pol Chem 46(11):3459–3470. doi:10.1002/Pola.22706 CrossRef Lutz JF (2008) Polymerization of oligo (ethylene glycol)(meth) acrylates: toward new generations of smart biocompatible materials. J Polym Sci Pol Chem 46(11):3459–3470. doi:10.​1002/​Pola.​22706 CrossRef
Zurück zum Zitat Lutz JF, Hoth A (2006) Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate and oligo (ethylene glycol)methacrylate. Macromolecules 39(2):893–896. doi:10.1021/ma0517042 CrossRef Lutz JF, Hoth A (2006) Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate and oligo (ethylene glycol)methacrylate. Macromolecules 39(2):893–896. doi:10.​1021/​ma0517042 CrossRef
Zurück zum Zitat Lutz JF, Akdemir O, Hoth A (2006) Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: Is the age of poly(NIPAM) over? J Am Chem Soc 128(40):13046–13047. doi:10.1021/Ja065324n CrossRef Lutz JF, Akdemir O, Hoth A (2006) Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: Is the age of poly(NIPAM) over? J Am Chem Soc 128(40):13046–13047. doi:10.​1021/​Ja065324n CrossRef
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994. doi:10.1039/C0cs00108b CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994. doi:10.​1039/​C0cs00108b CrossRef
Zurück zum Zitat Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25(14):8280–8286. doi:10.1021/La900452a CrossRef Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25(14):8280–8286. doi:10.​1021/​La900452a CrossRef
Zurück zum Zitat Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6(2):612–626. doi:10.1021/bm0493685 CrossRef Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6(2):612–626. doi:10.​1021/​bm0493685 CrossRef
Zurück zum Zitat Shaune J, Hanley JG, Revol Jean-François, Gray Derek G (1992) Atomic force microscopy of cellulose microfibrils: comparison with transmission electron microscopy. Polymer 33(21):4639–4642. doi:10.1016/0032-3861(92)90426-W CrossRef Shaune J, Hanley JG, Revol Jean-François, Gray Derek G (1992) Atomic force microscopy of cellulose microfibrils: comparison with transmission electron microscopy. Polymer 33(21):4639–4642. doi:10.​1016/​0032-3861(92)90426-W CrossRef
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26(1):402–411. doi:10.1021/la9028595 CrossRef Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26(1):402–411. doi:10.​1021/​la9028595 CrossRef
Zurück zum Zitat Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9(2):101–113. doi:10.1038/NMAT2614 CrossRef Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9(2):101–113. doi:10.​1038/​NMAT2614 CrossRef
Zurück zum Zitat Tang JT, Lee MFX, Zhang W, Zhao BX, Berry RM, Tam KC (2014) Dual responsive pickering emulsion stabilized by poly[2-(dimethylamino)ethyl methacrylate] grafted cellulose nanocrystals. Biomacromol 15(8):3052–3060. doi:10.1021/Bm500663w CrossRef Tang JT, Lee MFX, Zhang W, Zhao BX, Berry RM, Tam KC (2014) Dual responsive pickering emulsion stabilized by poly[2-(dimethylamino)ethyl methacrylate] grafted cellulose nanocrystals. Biomacromol 15(8):3052–3060. doi:10.​1021/​Bm500663w CrossRef
Zurück zum Zitat Wu WB, Huang F, Pan SB, Mu W, Meng XZ, Yang HT, Xu ZY, Ragauskas AJ, Deng YL (2015) Thermo-responsive and fluorescent cellulose nanocrystals grafted with polymer brushes. J Mater Chem A 3(5):1995–2005. doi:10.1039/C4ta04761c CrossRef Wu WB, Huang F, Pan SB, Mu W, Meng XZ, Yang HT, Xu ZY, Ragauskas AJ, Deng YL (2015) Thermo-responsive and fluorescent cellulose nanocrystals grafted with polymer brushes. J Mater Chem A 3(5):1995–2005. doi:10.​1039/​C4ta04761c CrossRef
Zurück zum Zitat Xiong Z, Zhao L, Wang F, Zhu J, Qin H, Wu R, Zhang W, Zou H (2012) Synthesis of branched PEG brushes hybrid hydrophilic magnetic nanoparticles for the selective enrichment of N-linked glycopeptides. Chem Commun 48(65):8138–8140. doi:10.1039/c2cc33600f CrossRef Xiong Z, Zhao L, Wang F, Zhu J, Qin H, Wu R, Zhang W, Zou H (2012) Synthesis of branched PEG brushes hybrid hydrophilic magnetic nanoparticles for the selective enrichment of N-linked glycopeptides. Chem Commun 48(65):8138–8140. doi:10.​1039/​c2cc33600f CrossRef
Zurück zum Zitat Yi J, Xu QX, Zhang XF, Zhang HL (2009) Temperature-induced chiral nematic phase changes of suspensions of poly(N,N-dimethylaminoethyl methacrylate)-grafted cellulose nanocrystals. Cellulose 16(6):989–997. doi:10.1007/s10570-009-9350-9 CrossRef Yi J, Xu QX, Zhang XF, Zhang HL (2009) Temperature-induced chiral nematic phase changes of suspensions of poly(N,N-dimethylaminoethyl methacrylate)-grafted cellulose nanocrystals. Cellulose 16(6):989–997. doi:10.​1007/​s10570-009-9350-9 CrossRef
Zurück zum Zitat Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H (2014) Nanocrystalline cellulose grafted random copolymers of N-isopropylacrylamide and acrylic acid synthesized by RAFT polymerization: effect of different acrylic acid contents on LCST behavior. RSC Adv 4(59):31428–31442. doi:10.1039/C4ra05442c CrossRef Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H (2014) Nanocrystalline cellulose grafted random copolymers of N-isopropylacrylamide and acrylic acid synthesized by RAFT polymerization: effect of different acrylic acid contents on LCST behavior. RSC Adv 4(59):31428–31442. doi:10.​1039/​C4ra05442c CrossRef
Zurück zum Zitat Zhou CJ, Wu QL, Zhang QG (2011) Dynamic rheology studies of in situ polymerization process of polyacrylamide-cellulose nanocrystal composite hydrogels. Colloid Polym Sci 289(3):247–255. doi:10.1007/s00396-010-2342-3 CrossRef Zhou CJ, Wu QL, Zhang QG (2011) Dynamic rheology studies of in situ polymerization process of polyacrylamide-cellulose nanocrystal composite hydrogels. Colloid Polym Sci 289(3):247–255. doi:10.​1007/​s00396-010-2342-3 CrossRef
Zurück zum Zitat Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Osterberg M, Laine J (2010) Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromol 11(10):2683–2691. doi:10.1021/Bm100719d CrossRef Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Osterberg M, Laine J (2010) Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromol 11(10):2683–2691. doi:10.​1021/​Bm100719d CrossRef
Zurück zum Zitat Zoppe JO, Osterberg M, Venditti RA, Laine J, Rojas OJ (2011) Surface interaction forces of cellulose nanocrystals grafted with thermoresponsive polymer brushes. Biomacromol 12(7):2788–2796. doi:10.1021/Bm200551p CrossRef Zoppe JO, Osterberg M, Venditti RA, Laine J, Rojas OJ (2011) Surface interaction forces of cellulose nanocrystals grafted with thermoresponsive polymer brushes. Biomacromol 12(7):2788–2796. doi:10.​1021/​Bm200551p CrossRef
Metadaten
Titel
Thermoresponsive poly(poly(ethylene glycol) methylacrylate)s grafted cellulose nanocrystals through SI-ATRP polymerization
verfasst von
Xiuqiang Zhang
Jinlong Zhang
Lili Dong
Suxia Ren
Qinglin Wu
Tingzhou Lei
Publikationsdatum
29.07.2017
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 10/2017
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1414-7

Weitere Artikel der Ausgabe 10/2017

Cellulose 10/2017 Zur Ausgabe