Skip to main content
Erschienen in: Polymer Science, Series D 4/2019

01.10.2019

Thermotropic Liquid Crystalline Polyesters with Mesogenic Fragments Based on the p-Oxybenzoate Unit

verfasst von: A. I. Akhmetshina, E. K. Ignat’eva, T. R. Deberdeev, L. K. Karimova, Yu. N. Yuminova, A. A. Berlin, R. Ya. Deberdeev

Erschienen in: Polymer Science, Series D | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Main trends in the development of thermotropic liquid crystalline (LC) polymers based on p‑hydroxybenzoic acid are described in this review. The relationship between the structure of the main chain of copolymers and their thermal and mechanical properties is shown. The possibility of creating biodegradable LC polymers is demonstrated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. P. Shibaev and A. Yu. Bobrovskii, “Liquid crystalline polymers: development trends and photocontrollable materials,” Usp. Khim. 86 (11), 1024–1072 (2017).CrossRef V. P. Shibaev and A. Yu. Bobrovskii, “Liquid crystalline polymers: development trends and photocontrollable materials,” Usp. Khim. 86 (11), 1024–1072 (2017).CrossRef
2.
Zurück zum Zitat V. K. Thakur and M. R. Kessler, Liquid Crystalline Polymers (Springer International Publishing, Dordrecht, 2016), Vol. 1.CrossRef V. K. Thakur and M. R. Kessler, Liquid Crystalline Polymers (Springer International Publishing, Dordrecht, 2016), Vol. 1.CrossRef
3.
Zurück zum Zitat V. K. Thakur and M. R. Kessler, Liquid Crystalline Polymers (Springer International Publishing, Dordrecht, 2015), Vol. 2.CrossRef V. K. Thakur and M. R. Kessler, Liquid Crystalline Polymers (Springer International Publishing, Dordrecht, 2015), Vol. 2.CrossRef
4.
Zurück zum Zitat T. Kato, J. Uchida, T. Ichikawa, et al., “Functional liquid-crystalline polymers and supramolecular liquid crystals,” Polym. J. 50 (1), 149–166 (2018).CrossRef T. Kato, J. Uchida, T. Ichikawa, et al., “Functional liquid-crystalline polymers and supramolecular liquid crystals,” Polym. J. 50 (1), 149–166 (2018).CrossRef
5.
Zurück zum Zitat M. O’Neill and S. M. Kelly, “Ordered materials for organic electronics and photonics,” Adv. Mater. 23 (5), 566–584 (2011).CrossRef M. O’Neill and S. M. Kelly, “Ordered materials for organic electronics and photonics,” Adv. Mater. 23 (5), 566–584 (2011).CrossRef
6.
Zurück zum Zitat B. Mu, B. Wu, and D.-Z. Chen, “Macromolecular engineering on triphenylene based discotic side-chain liquid crystalline polymers,” Acta Polym. Sin., No. 10, 1574–1590 (2017). B. Mu, B. Wu, and D.-Z. Chen, “Macromolecular engineering on triphenylene based discotic side-chain liquid crystalline polymers,” Acta Polym. Sin., No. 10, 1574–1590 (2017).
7.
Zurück zum Zitat T. Kato, M. Yoshio, T. Ichikawa, et al., “Transport of ions and electrons in nanostructured liquid crystals,” Nat. Rev. Mater. 2 (4) (2017). T. Kato, M. Yoshio, T. Ichikawa, et al., “Transport of ions and electrons in nanostructured liquid crystals,” Nat. Rev. Mater. 2 (4) (2017).
8.
Zurück zum Zitat S. Kim, T. Ogata, and S. Kurihara, “Azobenzene-containing polymers for photonic crystal materials,” Polym. J. 49 (5), 407–412 (2017).CrossRef S. Kim, T. Ogata, and S. Kurihara, “Azobenzene-containing polymers for photonic crystal materials,” Polym. J. 49 (5), 407–412 (2017).CrossRef
9.
Zurück zum Zitat M. Kumar and S. Kumar, “Liquid crystals in photovoltaics: A new generation of organic photovoltaics,” Polym. J. 49 (1), 85–111 (2017).CrossRef M. Kumar and S. Kumar, “Liquid crystals in photovoltaics: A new generation of organic photovoltaics,” Polym. J. 49 (1), 85–111 (2017).CrossRef
10.
Zurück zum Zitat T. Yamamoto, T. Kimura, M. Komura, et al., “Block copolymer permeable membrane with visualized high-density straight channels of poly(ethylene oxide),” Adv. Funct. Mater. 21 (5), 918–926 (2011).CrossRef T. Yamamoto, T. Kimura, M. Komura, et al., “Block copolymer permeable membrane with visualized high-density straight channels of poly(ethylene oxide),” Adv. Funct. Mater. 21 (5), 918–926 (2011).CrossRef
11.
Zurück zum Zitat A. Concellón, T. Liang, A. P. H. J. Schenning, et al., “Proton-conductive materials formed by coumarin photocrosslinked ionic liquid crystal dendrimers,” J. Mater. Chem. 6 (5), 1000–1007 (2018).CrossRef A. Concellón, T. Liang, A. P. H. J. Schenning, et al., “Proton-conductive materials formed by coumarin photocrosslinked ionic liquid crystal dendrimers,” J. Mater. Chem. 6 (5), 1000–1007 (2018).CrossRef
12.
Zurück zum Zitat R. Cervera-Procas, C. Sánchez-Somolinos, J. L. Serrano, et al., “A polymer network prepared by the thiol-yne photocrosslinking of a liquid crystalline dendrimer,” Macromol. Rapid Commun. 34 (6), 498–503 (2013).CrossRef R. Cervera-Procas, C. Sánchez-Somolinos, J. L. Serrano, et al., “A polymer network prepared by the thiol-yne photocrosslinking of a liquid crystalline dendrimer,” Macromol. Rapid Commun. 34 (6), 498–503 (2013).CrossRef
13.
Zurück zum Zitat X.-J. Wang and Q.-F. Zhou, Liquid Crystalline Polymers (World Scientific, Singapore, 2004).CrossRef X.-J. Wang and Q.-F. Zhou, Liquid Crystalline Polymers (World Scientific, Singapore, 2004).CrossRef
14.
Zurück zum Zitat Z. Terzopoulou, E. Karakatsianopoulou, N. Kasmi, et al., “Effect of catalyst type on molecular weight increase and coloration of poly(ethylene furanoate) biobased polyester during melt polycondensation,” Polym. Chem. 8 (44), 6895–6908 (2017).CrossRef Z. Terzopoulou, E. Karakatsianopoulou, N. Kasmi, et al., “Effect of catalyst type on molecular weight increase and coloration of poly(ethylene furanoate) biobased polyester during melt polycondensation,” Polym. Chem. 8 (44), 6895–6908 (2017).CrossRef
15.
Zurück zum Zitat P. Wei, L. Wang, S. Huang, et al., “Synthesis and characterization of novel thermotropic aromaticaliphatic biodegradable copolyesters containing D, L-lactic acid (LA), poly(butylene terephthalate) (PBT) and biomesogenic units,” Polym.-Plast. Technol. Eng. 53 (16), 1697–1705 (2014).CrossRef P. Wei, L. Wang, S. Huang, et al., “Synthesis and characterization of novel thermotropic aromaticaliphatic biodegradable copolyesters containing D, L-lactic acid (LA), poly(butylene terephthalate) (PBT) and biomesogenic units,” Polym.-Plast. Technol. Eng. 53 (16), 1697–1705 (2014).CrossRef
16.
Zurück zum Zitat D. Demus, J. Goodby, G. W. Gray, et al., Handbook of Liquid Crystals (WILEY-VCH, Weinheim, 2008), pp. 52–65. D. Demus, J. Goodby, G. W. Gray, et al., Handbook of Liquid Crystals (WILEY-VCH, Weinheim, 2008), pp. 52–65.
17.
Zurück zum Zitat V. O. Startsev, M. V. Molokov, A. N. Blaznov, M. E. Zhurkovskii, V. T. Erofeev, and I. V. Smirnov, “Determination of the heat resistance of polymer construction materials by the dynamic mechanical method,” Polym. Sci., Ser. D 10 (4), 313–317 (2017). V. O. Startsev, M. V. Molokov, A. N. Blaznov, M. E. Zhurkovskii, V. T. Erofeev, and I. V. Smirnov, “Determination of the heat resistance of polymer construction materials by the dynamic mechanical method,” Polym. Sci., Ser. D 10 (4), 313–317 (2017).
18.
Zurück zum Zitat V. A. Ryzhov, V. V. Zhizhenkov, and I. A. Gorshkova, “The study of the orientation state of a fully aromatic thermotropic liquid crystal copolymer,” Fiz.-Khim. Polim.: Sint. Svoistva Primen., No. 21, 3–8 (2015). V. A. Ryzhov, V. V. Zhizhenkov, and I. A. Gorshkova, “The study of the orientation state of a fully aromatic thermotropic liquid crystal copolymer,” Fiz.-Khim. Polim.: Sint. Svoistva Primen., No. 21, 3–8 (2015).
19.
Zurück zum Zitat Q. Guan, B. Norder, and T. J. Dingemans, “Flexible all-aromatic polyesterimide films with high glass transition temperatures,” J. Appl. Polym. Sci. 134 (18) (2017). Q. Guan, B. Norder, and T. J. Dingemans, “Flexible all-aromatic polyesterimide films with high glass transition temperatures,” J. Appl. Polym. Sci. 134 (18) (2017).
20.
Zurück zum Zitat G. Guerriero, R. Alderliesten, T. Dingemans, et al., “Thermotropic liquid crystalline polymers as protective coatings for aerospace,” Prog. Org. Coat. 70 (4), 245–251 (2011).CrossRef G. Guerriero, R. Alderliesten, T. Dingemans, et al., “Thermotropic liquid crystalline polymers as protective coatings for aerospace,” Prog. Org. Coat. 70 (4), 245–251 (2011).CrossRef
21.
Zurück zum Zitat M. Iqbal, S. J. Picken, and T. J. Dingemans, “Synthesis and properties of aligned all-aromatic liquid crystal networks,” High Perform. Polym. 26 (4), 381–391 (2014).CrossRef M. Iqbal, S. J. Picken, and T. J. Dingemans, “Synthesis and properties of aligned all-aromatic liquid crystal networks,” High Perform. Polym. 26 (4), 381–391 (2014).CrossRef
22.
Zurück zum Zitat T. Ohnishi, T. Uchida, S. Yamazaki, et al., “Preparation of poly(ester-imide) ribbons comprised of helical and non-helical blocks by copolymerization,” RSC Adv. 6 (104), 101 995–102 002 (2016).CrossRef T. Ohnishi, T. Uchida, S. Yamazaki, et al., “Preparation of poly(ester-imide) ribbons comprised of helical and non-helical blocks by copolymerization,” RSC Adv. 6 (104), 101 995–102 002 (2016).CrossRef
23.
Zurück zum Zitat L. F. Ferreira, L. M. Souza, D. L. Franco, et al., “Formation of novel polymeric films derived from 4-hydroxybenzoic acid,” Mater. Chem. Phys. 129 (1), 46–52 (2011).CrossRef L. F. Ferreira, L. M. Souza, D. L. Franco, et al., “Formation of novel polymeric films derived from 4-hydroxybenzoic acid,” Mater. Chem. Phys. 129 (1), 46–52 (2011).CrossRef
24.
Zurück zum Zitat K. Tsuchiya, Y. Ishida, T. Higashihara, et al., “Synthesis of poly(arylene ether sulfone): 18-Crown-6 catalyzed phase-transfer polycondensation of bisphenol A with 4,4'-dichlorodiphenyl sulfone,” Polym. J. 47 (5), 353–354 (2015).CrossRef K. Tsuchiya, Y. Ishida, T. Higashihara, et al., “Synthesis of poly(arylene ether sulfone): 18-Crown-6 catalyzed phase-transfer polycondensation of bisphenol A with 4,4'-dichlorodiphenyl sulfone,” Polym. J. 47 (5), 353–354 (2015).CrossRef
25.
Zurück zum Zitat S. Y. Lee, Y. Kwon, B. H. Kim, et al., “Synthesis of high molecular weight sulfonated poly(arylene ether sulfone) copolymer without azeotropic reaction,” Solid State Ionics 275, 92–96 (2015).CrossRef S. Y. Lee, Y. Kwon, B. H. Kim, et al., “Synthesis of high molecular weight sulfonated poly(arylene ether sulfone) copolymer without azeotropic reaction,” Solid State Ionics 275, 92–96 (2015).CrossRef
26.
Zurück zum Zitat E. N. Kablov, L. V. Chursova, N. F. Lukina, et al., “A study of epoxide-polysulfone polymer systems for high-strength adhesives of aviation purpose,” Polym. Sci., Ser. D 10 (3), 225–229 (2017). E. N. Kablov, L. V. Chursova, N. F. Lukina, et al., “A study of epoxide-polysulfone polymer systems for high-strength adhesives of aviation purpose,” Polym. Sci., Ser. D 10 (3), 225–229 (2017).
27.
Zurück zum Zitat M. Kihara, Y. Sakakiyama, S. Yamazaki, et al., “Preparation of aromatic polyesters by direct polymerization in the presence of boronic anhydride under non-stoichiometric condition,” Polymer 66, 222–229 (2015).CrossRef M. Kihara, Y. Sakakiyama, S. Yamazaki, et al., “Preparation of aromatic polyesters by direct polymerization in the presence of boronic anhydride under non-stoichiometric condition,” Polymer 66, 222–229 (2015).CrossRef
28.
Zurück zum Zitat M. Iqbal and T. J. Dingemans, “High Tg nematic thermosets: Synthesis, characterization and thermo-mechanical properties,” Eur. Polym. J. 46 (11), 2174–2180 (2010).CrossRef M. Iqbal and T. J. Dingemans, “High Tg nematic thermosets: Synthesis, characterization and thermo-mechanical properties,” Eur. Polym. J. 46 (11), 2174–2180 (2010).CrossRef
29.
Zurück zum Zitat P. Wei, M. Cakmak, Y. Chen, et al., “The influence of bisphenol AF unit on thermal behavior of thermotropic liquid crystal copolyesters,” Thermochim. Acta 586, 45–51 (2014).CrossRef P. Wei, M. Cakmak, Y. Chen, et al., “The influence of bisphenol AF unit on thermal behavior of thermotropic liquid crystal copolyesters,” Thermochim. Acta 586, 45–51 (2014).CrossRef
30.
Zurück zum Zitat P. Wei, L. Wang, X. Wang, et al., “Nonisothermal and isothermal oxidative degradation behavior of thermotropic liquid crystal polyesters containing kinked bisphenol AF and bisphenol A units,” High Perform. Polym. 26 (8), 935–945 (2014).CrossRef P. Wei, L. Wang, X. Wang, et al., “Nonisothermal and isothermal oxidative degradation behavior of thermotropic liquid crystal polyesters containing kinked bisphenol AF and bisphenol A units,” High Perform. Polym. 26 (8), 935–945 (2014).CrossRef
31.
Zurück zum Zitat P. Liu, T. Wu, M. Shi, et al., “Synthesis and characterization of readily soluble polyarylates derived from either 1,1-bis(4-hydroxyphenyl)-1-phenylethane or tetramethylbisphenol A and aromatic diacid chlorides,” J. Appl. Polym. Sci. 119 (4), 1923–1930 (2010).CrossRef P. Liu, T. Wu, M. Shi, et al., “Synthesis and characterization of readily soluble polyarylates derived from either 1,1-bis(4-hydroxyphenyl)-1-phenylethane or tetramethylbisphenol A and aromatic diacid chlorides,” J. Appl. Polym. Sci. 119 (4), 1923–1930 (2010).CrossRef
32.
Zurück zum Zitat P. Liu, T. Wu, G. Ye, et al., “Novel polyarylates containing aryl ether units: Synthesis, characterization and properties,” Polym. Int. 62 (5), 751–758 (2012).CrossRef P. Liu, T. Wu, G. Ye, et al., “Novel polyarylates containing aryl ether units: Synthesis, characterization and properties,” Polym. Int. 62 (5), 751–758 (2012).CrossRef
33.
Zurück zum Zitat A. M. Nelson, G. B. Fahs, R. B. Moore, et al., “High-performance segmented liquid crystalline copolyesters,” Macromol. Chem. Phys. 216 (16), 1754–1763 (2015).CrossRef A. M. Nelson, G. B. Fahs, R. B. Moore, et al., “High-performance segmented liquid crystalline copolyesters,” Macromol. Chem. Phys. 216 (16), 1754–1763 (2015).CrossRef
34.
Zurück zum Zitat A. I. Burya, in Int. Sci.-Tech. Conf. Polymer Composites and Tribology (Gomel, June 27–30,2017) (Gomel, 2017), p. 19. A. I. Burya, in Int. Sci.-Tech. Conf. Polymer Composites and Tribology (Gomel, June 27–30,2017) (Gomel, 2017), p. 19.
35.
Zurück zum Zitat Kh. M. Abdullaev, E. D. Shaimov, F. S. Tabarov, et al., “Features of the flow curves of liquid crystal copolyesters and structural-mechanical parameters of extrudates obtained in different phase states of the melt,” Dokl. Akad. Nauk Resp. Tadzh. 57 (4), 309–314 (2014). Kh. M. Abdullaev, E. D. Shaimov, F. S. Tabarov, et al., “Features of the flow curves of liquid crystal copolyesters and structural-mechanical parameters of extrudates obtained in different phase states of the melt,” Dokl. Akad. Nauk Resp. Tadzh. 57 (4), 309–314 (2014).
36.
Zurück zum Zitat Z. S. Khasbulatova, “Polyesters based on derivatives of n-hydroxybenzoic acid,” Plast. Massy, No. 3, 31–36 (2010). Z. S. Khasbulatova, “Polyesters based on derivatives of n-hydroxybenzoic acid,” Plast. Massy, No. 3, 31–36 (2010).
37.
Zurück zum Zitat Z. S. Khasbulatova, “Compositions of polyesters of n‑hydroxybenzoic acid,” Plast. Massy, No. 5, 16–22 (2010). Z. S. Khasbulatova, “Compositions of polyesters of n‑hydroxybenzoic acid,” Plast. Massy, No. 5, 16–22 (2010).
38.
Zurück zum Zitat A. K. Mikitaev and Z. S. Khasbulatova, “Copolyesters and block copolyesters of n-hydroxybenzoic and phthalic acids,” Plast. Massy, No. 5, 27–33 (2012). A. K. Mikitaev and Z. S. Khasbulatova, “Copolyesters and block copolyesters of n-hydroxybenzoic and phthalic acids,” Plast. Massy, No. 5, 27–33 (2012).
39.
Zurück zum Zitat A. M. Kharaev, R. Ch. Bazheva, F. K. Kazancheva, et al., “Modified aromatic polyesters,” Nauchn. Al’m. 12 (10-3), 385–388 (2015). A. M. Kharaev, R. Ch. Bazheva, F. K. Kazancheva, et al., “Modified aromatic polyesters,” Nauchn. Al’m. 12 (10-3), 385–388 (2015).
40.
Zurück zum Zitat C. H. R. M. Wilsens, J. M. G. A. Verhoeven, B. A. J. Noordover, et al., “Thermotropic polyesters from 2,5-furandicarboxylic acid and vanillic acid: Synthesis. Thermal properties. Melt behavior and mechanical performance,” Macromolecules 47 (10), 3306–3316 (2014).CrossRef C. H. R. M. Wilsens, J. M. G. A. Verhoeven, B. A. J. Noordover, et al., “Thermotropic polyesters from 2,5-furandicarboxylic acid and vanillic acid: Synthesis. Thermal properties. Melt behavior and mechanical performance,” Macromolecules 47 (10), 3306–3316 (2014).CrossRef
Metadaten
Titel
Thermotropic Liquid Crystalline Polyesters with Mesogenic Fragments Based on the p-Oxybenzoate Unit
verfasst von
A. I. Akhmetshina
E. K. Ignat’eva
T. R. Deberdeev
L. K. Karimova
Yu. N. Yuminova
A. A. Berlin
R. Ya. Deberdeev
Publikationsdatum
01.10.2019
Verlag
Pleiades Publishing
Erschienen in
Polymer Science, Series D / Ausgabe 4/2019
Print ISSN: 1995-4212
Elektronische ISSN: 1995-4220
DOI
https://doi.org/10.1134/S1995421219040026

Weitere Artikel der Ausgabe 4/2019

Polymer Science, Series D 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.