Skip to main content
Erschienen in: Meccanica 6/2018

30.03.2017 | Novel Computational Approaches to Old and New Problems in Mechanics

Three-dimensional dynamic simulation of elastocapillarity

verfasst von: Jesus Bueno, Hugo Casquero, Yuri Bazilevs, Hector Gomez

Erschienen in: Meccanica | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

At small scales, the interaction of multicomponent fluids and solids can be dominated by capillary forces giving rise to elastocapillarity. Surface tension may deform or even collapse slender structures and thus, cause important damage in microelectromechanical systems. However, under control, elastocapillarity could be used as a fabrication technique for the design of new materials and structures. Here, we propose a computational model for elastocapillarity that couples nonlinear hyperelastic solids with two-component immiscible fluids described by the Navier–Stokes–Cahn–Hilliard equations. As fluid–structure interaction computational technique, we employ a boundary-fitted approach. For the spatial discretization of the problem we adopt a NURBS-based isogeometric analysis methodology. A strongly-coupled algorithm is proposed for the solution of the problem. The potential of this model is illustrated by solving several numerical examples, including, capillary origami, the static wetting of soft substrates, the deformation of micropillars and the three dimensional wrapping of a liquid droplet.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aarts DGAL, Lekkerkerker HNW, Guo H, Wegdam GH, Bonn D (2005) Hydrodynamics of droplet coalescence. Phys Rev Lett 95:164503ADSCrossRef Aarts DGAL, Lekkerkerker HNW, Guo H, Wegdam GH, Bonn D (2005) Hydrodynamics of droplet coalescence. Phys Rev Lett 95:164503ADSCrossRef
2.
Zurück zum Zitat Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199(58):229–263ADSMathSciNetCrossRefMATH Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199(58):229–263ADSMathSciNetCrossRefMATH
3.
Zurück zum Zitat Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43(1):3–37MathSciNetCrossRefMATH Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43(1):3–37MathSciNetCrossRefMATH
4.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41MathSciNetCrossRefMATH Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41MathSciNetCrossRefMATH
5.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21(4):359–398MathSciNetCrossRefMATH Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21(4):359–398MathSciNetCrossRefMATH
6.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction. Methods and applications. Wiley, LondonCrossRefMATH Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction. Methods and applications. Wiley, LondonCrossRefMATH
7.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21(4):359–398MathSciNetCrossRefMATH Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21(4):359–398MathSciNetCrossRefMATH
8.
Zurück zum Zitat Beirao da Veiga L, Buffa A, Sangalli G, Vazquez R (2013) Analysis suitable T-splines of arbitrary degree: definition, linear independence, and approximation properties. Math Models Methods Appl Sci 23(11):1979–2003MathSciNetCrossRefMATH Beirao da Veiga L, Buffa A, Sangalli G, Vazquez R (2013) Analysis suitable T-splines of arbitrary degree: definition, linear independence, and approximation properties. Math Models Methods Appl Sci 23(11):1979–2003MathSciNetCrossRefMATH
9.
Zurück zum Zitat Bico J, Roman B, Moulin L, Boudaoud A (2004) Adhesion: elastocapillary coalescence in wet hair. Nature 432(7018):690–690ADSCrossRef Bico J, Roman B, Moulin L, Boudaoud A (2004) Adhesion: elastocapillary coalescence in wet hair. Nature 432(7018):690–690ADSCrossRef
10.
Zurück zum Zitat Bostwick JB, Daniels KE (2013) Capillary fracture of soft gels. Phys Rev E 88(4):042410ADSCrossRef Bostwick JB, Daniels KE (2013) Capillary fracture of soft gels. Phys Rev E 88(4):042410ADSCrossRef
11.
Zurück zum Zitat Brennen CE (2005) Fundamentals of multiphase flow. Cambridge University Press, CambridgeCrossRefMATH Brennen CE (2005) Fundamentals of multiphase flow. Cambridge University Press, CambridgeCrossRefMATH
12.
Zurück zum Zitat Bueno J, Bazilevs Y, Juanes R, Gomez H (2017) Droplet motion driven by tensotaxis. Extrem Mech Lett 13:10–16CrossRef Bueno J, Bazilevs Y, Juanes R, Gomez H (2017) Droplet motion driven by tensotaxis. Extrem Mech Lett 13:10–16CrossRef
13.
Zurück zum Zitat Bueno J, Bona-Casas C, Bazilevs Y, Gomez H (2015) Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion. Comput Mech 55(6):1105–1118MathSciNetCrossRefMATH Bueno J, Bona-Casas C, Bazilevs Y, Gomez H (2015) Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion. Comput Mech 55(6):1105–1118MathSciNetCrossRefMATH
14.
Zurück zum Zitat Bueno J, Gomez H (2016) Liquid-vapor transformations with surfactants. Phase-field model and isogeometric analysis. J Comput Phys 321:797–818ADSMathSciNetCrossRefMATH Bueno J, Gomez H (2016) Liquid-vapor transformations with surfactants. Phase-field model and isogeometric analysis. J Comput Phys 321:797–818ADSMathSciNetCrossRefMATH
15.
Zurück zum Zitat Casquero H, Bona-Casas C, Gomez H (2015) A NURBS-based immersed methodology for fluid-structure interaction. Comput Methods Appl Mech Eng 284:943–970ADSMathSciNetCrossRef Casquero H, Bona-Casas C, Gomez H (2015) A NURBS-based immersed methodology for fluid-structure interaction. Comput Methods Appl Mech Eng 284:943–970ADSMathSciNetCrossRef
16.
Zurück zum Zitat Casquero H, Bona-Casas C, Gomez H (2017) NURBS-based numerical proxies for red blood cells and circulating tumor cells in microscale blood flow. Comput Methods Appl Mech Eng 316:646–667 (2017 Special Issue on Isogeometric Analysis: Progress and Challenges)ADSMathSciNetCrossRef Casquero H, Bona-Casas C, Gomez H (2017) NURBS-based numerical proxies for red blood cells and circulating tumor cells in microscale blood flow. Comput Methods Appl Mech Eng 316:646–667 (2017 Special Issue on Isogeometric Analysis: Progress and Challenges)ADSMathSciNetCrossRef
17.
Zurück zum Zitat Casquero H, Lei L, Zhang J, Reali A, Gomez H (2016) Isogeometric collocation using analysis-suitable T-splines of arbitrary degree. Comput Methods Appl Mech Eng 301:164–186ADSMathSciNetCrossRef Casquero H, Lei L, Zhang J, Reali A, Gomez H (2016) Isogeometric collocation using analysis-suitable T-splines of arbitrary degree. Comput Methods Appl Mech Eng 301:164–186ADSMathSciNetCrossRef
18.
Zurück zum Zitat Casquero H, Lei L, Zhang Y, Reali A, Kiendl J, Gomez H (2017) Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff–Love shells. Comput Aided Design 82:140–153MathSciNetCrossRef Casquero H, Lei L, Zhang Y, Reali A, Kiendl J, Gomez H (2017) Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff–Love shells. Comput Aided Design 82:140–153MathSciNetCrossRef
19.
Zurück zum Zitat Casquero H, Liu L, Bona-Casas C, Zhang Y, Gomez H (2016) A hybrid variational-collocation immersed method for fluid–structure interaction using unstructured T-splines. Int J Numer Methods Eng 105(11):855–880MathSciNetCrossRef Casquero H, Liu L, Bona-Casas C, Zhang Y, Gomez H (2016) A hybrid variational-collocation immersed method for fluid–structure interaction using unstructured T-splines. Int J Numer Methods Eng 105(11):855–880MathSciNetCrossRef
20.
Zurück zum Zitat Cerda E, Mahadevan L (2003) Geometry and physics of wrinkling. Phys Rev Lett 90(7):074302ADSCrossRef Cerda E, Mahadevan L (2003) Geometry and physics of wrinkling. Phys Rev Lett 90(7):074302ADSCrossRef
21.
Zurück zum Zitat Chakrapani N, Wei B, Carrillo A, Ajayan PM, Kane RS (2004) Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams. Proc Natl Acad Sci 101(12):4009–4012ADSCrossRef Chakrapani N, Wei B, Carrillo A, Ajayan PM, Kane RS (2004) Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams. Proc Natl Acad Sci 101(12):4009–4012ADSCrossRef
22.
Zurück zum Zitat Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-\(\alpha\) method. J Appl Mech 60:371–375MathSciNetCrossRefMATH Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-\(\alpha\) method. J Appl Mech 60:371–375MathSciNetCrossRefMATH
23.
Zurück zum Zitat Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis toward integration of CAD and FEA. Wiley, LondonCrossRefMATH Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis toward integration of CAD and FEA. Wiley, LondonCrossRefMATH
24.
25.
Zurück zum Zitat DeVolder M, Hart AJ (2013) Engineering hierarchical nanostructures by elastocapillary self-assembly. Angew Chem Int Ed 52(9):2412–2425CrossRef DeVolder M, Hart AJ (2013) Engineering hierarchical nanostructures by elastocapillary self-assembly. Angew Chem Int Ed 52(9):2412–2425CrossRef
26.
Zurück zum Zitat Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, LondonCrossRef Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, LondonCrossRef
27.
Zurück zum Zitat Donea J, Huerta A, Ponthot J-Ph, Rodrguez-Ferran A (2004) Encyclopedia of computational mechanics. Arbitrary Lagrangian–Eulerian methods, chapter 14, vol 1. Wiley, London Donea J, Huerta A, Ponthot J-Ph, Rodrguez-Ferran A (2004) Encyclopedia of computational mechanics. Arbitrary Lagrangian–Eulerian methods, chapter 14, vol 1. Wiley, London
28.
Zurück zum Zitat Duprat C, Bick AD, Warren PB, Stone HA (2013) Evaporation of drops on two parallel fibers: influence of the liquid morphology and fiber elasticity. Langmuir 29(25):7857–7863 PMID: 23705986CrossRef Duprat C, Bick AD, Warren PB, Stone HA (2013) Evaporation of drops on two parallel fibers: influence of the liquid morphology and fiber elasticity. Langmuir 29(25):7857–7863 PMID: 23705986CrossRef
29.
Zurück zum Zitat Duprat C, Protiere S, Beebe AY, Stone HA (2012) Wetting of flexible fibre arrays. Nature 482(7386):510–513ADSCrossRef Duprat C, Protiere S, Beebe AY, Stone HA (2012) Wetting of flexible fibre arrays. Nature 482(7386):510–513ADSCrossRef
31.
Zurück zum Zitat Gomez H, Calo VM, Bazilevs Y, Hughes TJR (2008) Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput Methods Appl Mech Eng 197:43334352MathSciNetCrossRefMATH Gomez H, Calo VM, Bazilevs Y, Hughes TJR (2008) Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput Methods Appl Mech Eng 197:43334352MathSciNetCrossRefMATH
32.
Zurück zum Zitat Gomez H, Hughes TJR (2011) Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J Comput Phys 230(13):5310–5327ADSMathSciNetCrossRefMATH Gomez H, Hughes TJR (2011) Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J Comput Phys 230(13):5310–5327ADSMathSciNetCrossRefMATH
33.
Zurück zum Zitat Gomez H, Reali A, Sangalli G (2014) Accurate, efficient, and (iso) geometrically flexible collocation methods for phase-field models. J Comput Phys 262:153–171ADSMathSciNetCrossRefMATH Gomez H, Reali A, Sangalli G (2014) Accurate, efficient, and (iso) geometrically flexible collocation methods for phase-field models. J Comput Phys 262:153–171ADSMathSciNetCrossRefMATH
34.
Zurück zum Zitat Gomez H, van der Zee K (2016) Encyclopedia of computational mechanics. Computational phase-field modeling. Wiley, London Gomez H, van der Zee K (2016) Encyclopedia of computational mechanics. Computational phase-field modeling. Wiley, London
35.
Zurück zum Zitat Hsu M-C, Akkerman I, Bazilevs Y (2014) Finite element simulation of wind turbine aerodynamics: validation study using nrel phase vi experiment. Wind Energy 17(3):461–481ADSCrossRef Hsu M-C, Akkerman I, Bazilevs Y (2014) Finite element simulation of wind turbine aerodynamics: validation study using nrel phase vi experiment. Wind Energy 17(3):461–481ADSCrossRef
36.
Zurück zum Zitat Huang J, Juszkiewicz M, de Jeu WH, Cerda E, Emrick T, Menon N, Russell TP (2007) Capillary wrinkling of floating thin polymer films. Science 317(5838):650–653ADSCrossRef Huang J, Juszkiewicz M, de Jeu WH, Cerda E, Emrick T, Menon N, Russell TP (2007) Capillary wrinkling of floating thin polymer films. Science 317(5838):650–653ADSCrossRef
37.
Zurück zum Zitat Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195ADSMathSciNetCrossRefMATH Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195ADSMathSciNetCrossRefMATH
38.
Zurück zum Zitat Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29(3):329–349ADSMathSciNetCrossRefMATH Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29(3):329–349ADSMathSciNetCrossRefMATH
39.
Zurück zum Zitat Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha\) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(34):305–319ADSMathSciNetCrossRefMATH Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha\) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(34):305–319ADSMathSciNetCrossRefMATH
40.
Zurück zum Zitat Jeong JH, Goldenfeld N, Dantzig JA (2001) Phase field model for three-dimensional dendritic growth with fluid flow. Phys Rev E 64:041602ADSCrossRef Jeong JH, Goldenfeld N, Dantzig JA (2001) Phase field model for three-dimensional dendritic growth with fluid flow. Phys Rev E 64:041602ADSCrossRef
41.
Zurück zum Zitat Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94ADSCrossRefMATH Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94ADSCrossRefMATH
42.
Zurück zum Zitat Kamensky D, Hsu MC, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid–structure interaction. Comput Methods Appl Mech Eng 284:1005–1053ADSCrossRef Kamensky D, Hsu MC, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid–structure interaction. Comput Methods Appl Mech Eng 284:1005–1053ADSCrossRef
43.
Zurück zum Zitat Kamensky D, Hsu M-C, Yu Y, Evans JA, Sacks MS, Hughes TJR (2017) Immersogeometric cardiovascular fluid–structure interaction analysis with divergence-conforming b-splines. Comput Methods Appl Mech Eng 314:408–472ADSMathSciNetCrossRef Kamensky D, Hsu M-C, Yu Y, Evans JA, Sacks MS, Hughes TJR (2017) Immersogeometric cardiovascular fluid–structure interaction analysis with divergence-conforming b-splines. Comput Methods Appl Mech Eng 314:408–472ADSMathSciNetCrossRef
44.
45.
Zurück zum Zitat Liu J, Landis CM, Gomez H, Hughes TJR (2015) Liquid-vapor phase transition: thermomechanical theory, entropy stable numerical formulation, and boiling simulations. Comput Methods Appl Mech Eng 297:476–553ADSMathSciNetCrossRef Liu J, Landis CM, Gomez H, Hughes TJR (2015) Liquid-vapor phase transition: thermomechanical theory, entropy stable numerical formulation, and boiling simulations. Comput Methods Appl Mech Eng 297:476–553ADSMathSciNetCrossRef
46.
Zurück zum Zitat Lorenzo G, Scott MA, Tew K, Hughes TJR, Zhang YJ, Liu L, Vilanova G, Gomez H (2016) Tissue-scale, personalized modeling and simulation of prostate cancer growth. Proc Natl Acad Sci 113(48):E7663–E7671 Lorenzo G, Scott MA, Tew K, Hughes TJR, Zhang YJ, Liu L, Vilanova G, Gomez H (2016) Tissue-scale, personalized modeling and simulation of prostate cancer growth. Proc Natl Acad Sci 113(48):E7663–E7671
47.
Zurück zum Zitat Moure A, Gomez H (2016) Computational model for amoeboid motion: coupling membrane and cytosol dynamics. Phys Rev E 94(4):042423ADSCrossRef Moure A, Gomez H (2016) Computational model for amoeboid motion: coupling membrane and cytosol dynamics. Phys Rev E 94(4):042423ADSCrossRef
48.
Zurück zum Zitat Prosperetti A, Tryggvason G (2009) Comput methods for multiphase flow. Cambridge University Press, CambridgeMATH Prosperetti A, Tryggvason G (2009) Comput methods for multiphase flow. Cambridge University Press, CambridgeMATH
49.
Zurück zum Zitat Py C, Reverdy P, Doppler L, Bico J, Roman B, Baroud CN (2007) Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys Rev Lett 98:156103ADSCrossRefMATH Py C, Reverdy P, Doppler L, Bico J, Roman B, Baroud CN (2007) Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys Rev Lett 98:156103ADSCrossRefMATH
50.
Zurück zum Zitat Raccurt O, Tardif F, d’Avitaya FA, Vareine T (2004) Influence of liquid surface tension on stiction of SOI MEMS. J Micromech Microeng 14(7):1083CrossRef Raccurt O, Tardif F, d’Avitaya FA, Vareine T (2004) Influence of liquid surface tension on stiction of SOI MEMS. J Micromech Microeng 14(7):1083CrossRef
51.
Zurück zum Zitat Roman B, Bico J (2010) Elasto-capillarity: deforming an elastic structure with a liquid droplet. J Phys Condens Matter 22(49):493101CrossRef Roman B, Bico J (2010) Elasto-capillarity: deforming an elastic structure with a liquid droplet. J Phys Condens Matter 22(49):493101CrossRef
52.
Zurück zum Zitat Shao D, Levine H, Rappel W-J (2012) Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proc Natl Acad Sci 109(18):6851–6856ADSCrossRef Shao D, Levine H, Rappel W-J (2012) Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proc Natl Acad Sci 109(18):6851–6856ADSCrossRef
54.
Zurück zum Zitat Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New YoirkMATH Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New YoirkMATH
55.
Zurück zum Zitat Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid-structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190(3):373–386ADSCrossRefMATH Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid-structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190(3):373–386ADSCrossRefMATH
56.
Zurück zum Zitat Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70:58–63CrossRefMATH Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70:58–63CrossRefMATH
57.
Zurück zum Zitat Style RW, Boltyanskiy R, Che Y, Wettlaufer JS, Wilen LA, Dufresne ER (2013) Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Phys Rev Lett 110:066103ADSCrossRef Style RW, Boltyanskiy R, Che Y, Wettlaufer JS, Wilen LA, Dufresne ER (2013) Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Phys Rev Lett 110:066103ADSCrossRef
58.
Zurück zum Zitat Style RW, Jagota A, Hui C-Y, Dufresne ER (2016) Elastocapillarity: surface tension and the mechanics of soft solids. arXiv preprint arXiv:1604.02052 Style RW, Jagota A, Hui C-Y, Dufresne ER (2016) Elastocapillarity: surface tension and the mechanics of soft solids. arXiv preprint arXiv:​1604.​02052
59.
60.
Zurück zum Zitat Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19(2):171–225MathSciNetCrossRefMATH Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19(2):171–225MathSciNetCrossRefMATH
61.
Zurück zum Zitat Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci 24:2437–2486MathSciNetCrossRefMATH Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci 24:2437–2486MathSciNetCrossRefMATH
62.
Zurück zum Zitat Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2016) Heart valve flow computation with the integrated space–time VMS, slip interface, topology change and isogeometric discretization methods. Comput Fluids. doi:10.1016/j.compfluid.2016.11.012 Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2016) Heart valve flow computation with the integrated space–time VMS, slip interface, topology change and isogeometric discretization methods. Comput Fluids. doi:10.​1016/​j.​compfluid.​2016.​11.​012
63.
Zurück zum Zitat Tanaka T, Morigami M, Atoda N (1993) Mechanism of resist pattern collapse during development process. Jpn J Appl Phys 32(12S):6059ADSCrossRef Tanaka T, Morigami M, Atoda N (1993) Mechanism of resist pattern collapse during development process. Jpn J Appl Phys 32(12S):6059ADSCrossRef
65.
Zurück zum Zitat Tawfick SH, Bico J, Barcelo S (2016) Three-dimensional lithography by elasto-capillary engineering of filamentary materials. MRS Bull 41(02):108–114CrossRef Tawfick SH, Bico J, Barcelo S (2016) Three-dimensional lithography by elasto-capillary engineering of filamentary materials. MRS Bull 41(02):108–114CrossRef
66.
Zurück zum Zitat Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130CrossRefMATH Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130CrossRefMATH
67.
Zurück zum Zitat Tezduyar TE, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36CrossRefMATH Tezduyar TE, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36CrossRefMATH
68.
Zurück zum Zitat Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900CrossRefMATH Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900CrossRefMATH
69.
Zurück zum Zitat Travasso RDM, Poiré EC, Castro M, Rodrguez-Manzaneque JC, Hernández-Machado A (2011) Tumor angiogenesis and vascular patterning: a mathematical model. PloS ONE 6(5):e19989ADSCrossRef Travasso RDM, Poiré EC, Castro M, Rodrguez-Manzaneque JC, Hernández-Machado A (2011) Tumor angiogenesis and vascular patterning: a mathematical model. PloS ONE 6(5):e19989ADSCrossRef
70.
71.
Zurück zum Zitat Vilanova G, Colominas I, Gomez H (2017) A mathematical model of tumour angiogenesis: growth, regression and regrowth. J R Soc Interface 14(126):20160918CrossRef Vilanova G, Colominas I, Gomez H (2017) A mathematical model of tumour angiogenesis: growth, regression and regrowth. J R Soc Interface 14(126):20160918CrossRef
72.
Zurück zum Zitat Wei X, Zhang YJ, Hughes TJR, Scott MA (2015) Truncated hierarchical Catmull–Clark subdivision with local refinement. Comput Methods Appl Mech Eng 291:1–20ADSMathSciNetCrossRef Wei X, Zhang YJ, Hughes TJR, Scott MA (2015) Truncated hierarchical Catmull–Clark subdivision with local refinement. Comput Methods Appl Mech Eng 291:1–20ADSMathSciNetCrossRef
73.
Zurück zum Zitat Wei X, Zhang YJ, Hughes TJR, Scott MA (2016) Extended truncated hierarchical Catmull–Clark subdivision. Comput Methods Appl Mech Eng 299:316–336ADSMathSciNetCrossRef Wei X, Zhang YJ, Hughes TJR, Scott MA (2016) Extended truncated hierarchical Catmull–Clark subdivision. Comput Methods Appl Mech Eng 299:316–336ADSMathSciNetCrossRef
74.
Zurück zum Zitat Xu J, Vilanova G, Gomez H (2017) Full-scale, three-dimensional simulation of early-stage tumor growth: the onset of malignancy. Comput Methods Appl Mech Eng 314:126–146ADSMathSciNetCrossRef Xu J, Vilanova G, Gomez H (2017) Full-scale, three-dimensional simulation of early-stage tumor growth: the onset of malignancy. Comput Methods Appl Mech Eng 314:126–146ADSMathSciNetCrossRef
75.
Metadaten
Titel
Three-dimensional dynamic simulation of elastocapillarity
verfasst von
Jesus Bueno
Hugo Casquero
Yuri Bazilevs
Hector Gomez
Publikationsdatum
30.03.2017
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 6/2018
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-017-0667-4

Weitere Artikel der Ausgabe 6/2018

Meccanica 6/2018 Zur Ausgabe

Novel Computational Approaches to Old and New Problems in Mechanics

A phase-field approach to conchoidal fracture

Novel Computational Approaches to Old and New Problems in Mechanics

Preface to: Novel computational approaches to old and new problems in mechanics

Novel Computational Approaches to Old and New Problems in Mechanics

Numerical solution of smooth and rough contact problems

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.