Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

28.11.2019 | Original Paper | Ausgabe 2/2020

Acta Mechanica 2/2020

Three-dimensional nonlocal anisotropic elasticity: a generalized continuum theory of Ångström-mechanics

Zeitschrift:
Acta Mechanica > Ausgabe 2/2020
Autoren:
Markus Lazar, Eleni Agiasofitou, Giacomo Po
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

In this work, based on Eringen’s theory of nonlocal anisotropic elasticity, the three-dimensional nonlocal anisotropic elasticity of generalized Helmholtz type is developed. The derivation of a new three-dimensional nonlocal anisotropic kernel, which is the Green function of the three-dimensional anisotropic Helmholtz equation, enables to capture anisotropic length scale effects by means of a length scale tensor, which is a symmetric tensor of rank two. The derived nonlocal kernel function possesses up to six internal characteristic lengths on the Ångström-scale. The presented theory of nonlocal elasticity possesses the appropriate property to be a generalized continuum theory of Ångström-mechanics, since the range of its validity and applicability is up to the Ångström-scale. The connection between the theory of nonlocal anisotropic elasticity and lattice theory is established. The tensor function of nonlocal elastic moduli as well as the nonlocal kernel function is given in terms of the Hessian matrix in the lattice approach. In the framework of the considered theory, the modeling of dislocations in anisotropic materials taking into consideration anisotropic dislocation core effects is presented. Important dislocation key formulas, namely the anisotropic Peach–Koehler stress formula, the Peach–Koehler force and the anisotropic Blin’s formula, are derived. A major tool used in deriving the expression of anisotropic Blin’s formula is Kirchner’s so-called \({\varvec{F}}\)-tensor, which is here generalized toward nonlocal anisotropic elasticity. The main feature and advantage of the derived fields, compared with the corresponding ones in classical anisotropic elasticity, is that they are free of singularities. Numerical applications to straight dislocations in bcc Fe are given, revealing the ability and advantage of the considered theory to describe adequately nonsingular anisotropic stress and self-energy fields capturing the effects of anisotropy on the Ångström-scale.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2020

Acta Mechanica 2/2020 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise