Skip to main content
Erschienen in: Journal of Materials Science 3/2018

02.11.2017 | Energy materials

Three-dimensional Si/hard-carbon/graphene network as high-performance anode material for lithium ion batteries

verfasst von: Miao-lun Jiao, Jie Qi, Zhi-qiang Shi, Cheng-yang Wang

Erschienen in: Journal of Materials Science | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Si/hard-carbon/graphene (Si/HC/G) composite material used as lithium ion battery (LIB) anode was synthesized by emulsion polymerization of the mixture of resorcinol and formaldehyde in the suspension of silicon nanoparticles, followed by loading on the graphene sheets and annealing treatment of 800 °C. The as-prepared three-dimensional Si/HC/G composite is composed of the Si/HC microspheres on the graphene network. In the portion about Si/HC, some of the Si nanoparticles are embedded into the hard carbon, which can provide the great strength alleviating the volume expansion and shrinkage of Si. The graphene portion can connect Si/HC microspheres preventing the electrode cracks and can provide the pathway to improve the transport of electrons and diffusion of lithium ions. Hence, the Si/HC/G composite could not only avoid the pulverization of the Si-based material but also enhance the electronic conductivity, displaying excellent electrochemical performances. Compared with the HC and Si/HC samples, the Si/HC/G composite possesses the specific charge capacity of 514.8 mA h g−1 at the high current density of 2 A g−1 and has the high charge capacity of 818 mA h g−1 at the current density of 100 mA g−1 after 100 charge and discharge cycles. Resultantly, the Si/HC/G composite shows great potential for the application of lithium ion battery anode material in the future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rahman MA, Song G, Bhatt AI, Wong YC, Wen C (2016) Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv Funct Mater 26:647–678CrossRef Rahman MA, Song G, Bhatt AI, Wong YC, Wen C (2016) Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv Funct Mater 26:647–678CrossRef
2.
Zurück zum Zitat Kim H, Kim H, Ding Z, Lee MH, Lim K, Yoon G, Kang K (2016) Recent progress in electrode materials for sodium-ion batteries. Adv Energy Mater 6:1600943CrossRef Kim H, Kim H, Ding Z, Lee MH, Lim K, Yoon G, Kang K (2016) Recent progress in electrode materials for sodium-ion batteries. Adv Energy Mater 6:1600943CrossRef
3.
Zurück zum Zitat Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206CrossRef Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206CrossRef
4.
Zurück zum Zitat Fu KK, Wang ZY, Dai JQ, Carter M, Hu LB (2016) Transient electronics: materials and devices. Chem Mater 28:3527–3539CrossRef Fu KK, Wang ZY, Dai JQ, Carter M, Hu LB (2016) Transient electronics: materials and devices. Chem Mater 28:3527–3539CrossRef
5.
Zurück zum Zitat David L, Bhandavat R, Barrera U, Singh G (2016) Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries. Nat Commun 7:10998CrossRef David L, Bhandavat R, Barrera U, Singh G (2016) Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries. Nat Commun 7:10998CrossRef
6.
Zurück zum Zitat Park SW, Kim JC, Dar MA, Shim HW, Kim DW (2017) Enhanced cycle stability of silicon coated with waste poly(vinyl butyral)-directed carbon for lithium-ion battery anodes. J Alloy Compd 698:525–531CrossRef Park SW, Kim JC, Dar MA, Shim HW, Kim DW (2017) Enhanced cycle stability of silicon coated with waste poly(vinyl butyral)-directed carbon for lithium-ion battery anodes. J Alloy Compd 698:525–531CrossRef
7.
Zurück zum Zitat Kim N, Oh C, Kim J, Kim J-S, Jeong ED, Bae JS, Hong TE, Lee JK (2017) High-performance Li-ion battery anodes based on silicon-graphene self-assemblies. J Electrochem Soc 164:A6075–A6083CrossRef Kim N, Oh C, Kim J, Kim J-S, Jeong ED, Bae JS, Hong TE, Lee JK (2017) High-performance Li-ion battery anodes based on silicon-graphene self-assemblies. J Electrochem Soc 164:A6075–A6083CrossRef
8.
Zurück zum Zitat Liu Z, Guo P, Liu B, Xie W, Liu D, He D (2017) Carbon-coated Si nanoparticles/reduced graphene oxide multilayer anchored to nanostructured current collector as lithium-ion battery anode. Appl Surf Sci 396:41–47CrossRef Liu Z, Guo P, Liu B, Xie W, Liu D, He D (2017) Carbon-coated Si nanoparticles/reduced graphene oxide multilayer anchored to nanostructured current collector as lithium-ion battery anode. Appl Surf Sci 396:41–47CrossRef
9.
Zurück zum Zitat Wang C, Luo F, Lu H, Rong X, Liu B, Chu G, Sun Y, Quan B, Zheng J, Li J, Gu C, Qiu X, Li H, Chen L (2017) A well-defined silicon nanocone–carbon structure for demonstrating exclusive influences of carbon coating on silicon anode of lithium-ion batteries. ACS Appl Mater Interfaces 9(3):2806–2814CrossRef Wang C, Luo F, Lu H, Rong X, Liu B, Chu G, Sun Y, Quan B, Zheng J, Li J, Gu C, Qiu X, Li H, Chen L (2017) A well-defined silicon nanocone–carbon structure for demonstrating exclusive influences of carbon coating on silicon anode of lithium-ion batteries. ACS Appl Mater Interfaces 9(3):2806–2814CrossRef
10.
Zurück zum Zitat Higgins TM, Park SH, King PJ, Zhang CJ, McEvoy N, Berner NC, Daly D, Shmeliov A, Khan U, Duesberg G, Nicolosi V, Coleman JN (2016) A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 10:3702–3713CrossRef Higgins TM, Park SH, King PJ, Zhang CJ, McEvoy N, Berner NC, Daly D, Shmeliov A, Khan U, Duesberg G, Nicolosi V, Coleman JN (2016) A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 10:3702–3713CrossRef
11.
Zurück zum Zitat Wei L, Hou Z, Wei H (2017) Porous sandwiched graphene/silicon anodes for lithium storage. Electrochim Acta 229:445–451CrossRef Wei L, Hou Z, Wei H (2017) Porous sandwiched graphene/silicon anodes for lithium storage. Electrochim Acta 229:445–451CrossRef
12.
Zurück zum Zitat Ashuri M, He Q, Shaw LL (2015) Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 8:74–103CrossRef Ashuri M, He Q, Shaw LL (2015) Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 8:74–103CrossRef
13.
Zurück zum Zitat Wang D, Gao M, Pan H, Wang J, Liu Y (2014) High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization. J Power Sour 256:190–199CrossRef Wang D, Gao M, Pan H, Wang J, Liu Y (2014) High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization. J Power Sour 256:190–199CrossRef
14.
Zurück zum Zitat Xiao Q, Gu M, Yang H, Li B, Zhang C, Liu Y, Liu F, Dai F, Yang L, Liu Z, Xiao X, Liu G, Zhao P, Zhang S, Wang C, Lu Y, Cai M (2015) Inward lithium-ion breathing of hierarchically porous silicon anodes. Nat Commun 6:8844CrossRef Xiao Q, Gu M, Yang H, Li B, Zhang C, Liu Y, Liu F, Dai F, Yang L, Liu Z, Xiao X, Liu G, Zhao P, Zhang S, Wang C, Lu Y, Cai M (2015) Inward lithium-ion breathing of hierarchically porous silicon anodes. Nat Commun 6:8844CrossRef
15.
Zurück zum Zitat Wu X, Shi ZQ, Wang CY, Jin J (2015) Nanostructured SiO2/C composites prepared via electrospinning and their electrochemical properties for lithium ion batteries. J Electroanal Chem 746:62–67CrossRef Wu X, Shi ZQ, Wang CY, Jin J (2015) Nanostructured SiO2/C composites prepared via electrospinning and their electrochemical properties for lithium ion batteries. J Electroanal Chem 746:62–67CrossRef
16.
Zurück zum Zitat Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J (2009) Silicon nanotube battery anodes. Nano Lett 9:3844–3847CrossRef Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J (2009) Silicon nanotube battery anodes. Nano Lett 9:3844–3847CrossRef
17.
Zurück zum Zitat Kim SY, Lee J, Kim B-H, Kim YJ, Yang KS, Park M-S (2016) Facile synthesis of carbon-coated silicon/graphite spherical composites for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 8:12109–12117CrossRef Kim SY, Lee J, Kim B-H, Kim YJ, Yang KS, Park M-S (2016) Facile synthesis of carbon-coated silicon/graphite spherical composites for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 8:12109–12117CrossRef
18.
Zurück zum Zitat Wang C, Wu H, Chen Z, McDowell MT, Cui Y, Bao Z (2013) Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat Chem 5:1042–1048CrossRef Wang C, Wu H, Chen Z, McDowell MT, Cui Y, Bao Z (2013) Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat Chem 5:1042–1048CrossRef
19.
Zurück zum Zitat Sun W, Hu R, Liu H, Zhang H, Liu J, Yang L, Wang H, Zhu M (2016) Silicon/Wolfram Carbide@Graphene composite: enhancing conductivity and structure stability in amorphous-silicon for high lithium storage performance. Electrochim Acta 191:462–472CrossRef Sun W, Hu R, Liu H, Zhang H, Liu J, Yang L, Wang H, Zhu M (2016) Silicon/Wolfram Carbide@Graphene composite: enhancing conductivity and structure stability in amorphous-silicon for high lithium storage performance. Electrochim Acta 191:462–472CrossRef
20.
Zurück zum Zitat Loveridge MJ, Lain MJ, Huang Q, Wan C, Roberts AJ, Pappas GS, Bhagat R (2016) Enhancing cycling durability of Li-ion batteries with hierarchical structured silicon–graphene hybrid anodes. Phys Chem Chem Phys 18:30677–30685CrossRef Loveridge MJ, Lain MJ, Huang Q, Wan C, Roberts AJ, Pappas GS, Bhagat R (2016) Enhancing cycling durability of Li-ion batteries with hierarchical structured silicon–graphene hybrid anodes. Phys Chem Chem Phys 18:30677–30685CrossRef
21.
Zurück zum Zitat Sun W, Hu R, Zhang M, Liu J, Zhu M (2016) Binding of carbon coated nano-silicon in graphene sheets by wet ball-milling and pyrolysis as high performance anodes for lithium-ion batteries. J Power Sour 318:113–120CrossRef Sun W, Hu R, Zhang M, Liu J, Zhu M (2016) Binding of carbon coated nano-silicon in graphene sheets by wet ball-milling and pyrolysis as high performance anodes for lithium-ion batteries. J Power Sour 318:113–120CrossRef
22.
Zurück zum Zitat Hu R, Sun W, Chen Y, Zeng M, Zhu M (2014) Silicon/graphene based nanocomposite anode: large-scale production and stable high capacity for lithium ion batteries. J Mater Chem A 2:9118–9125CrossRef Hu R, Sun W, Chen Y, Zeng M, Zhu M (2014) Silicon/graphene based nanocomposite anode: large-scale production and stable high capacity for lithium ion batteries. J Mater Chem A 2:9118–9125CrossRef
23.
Zurück zum Zitat Agyeman DA, Song K, Lee GH, Park M, Kang YM (2016) Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery. Adv Energy Mater 6:1600904CrossRef Agyeman DA, Song K, Lee GH, Park M, Kang YM (2016) Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery. Adv Energy Mater 6:1600904CrossRef
24.
Zurück zum Zitat Ji D, Wan Y, Yang Z, Li C, Xiong G, Li L, Han M, Guo R, Luo H (2016) Nitrogen-doped graphene enwrapped silicon nanoparticles with nitrogen-doped carbon shell: a novel nanocomposite for lithium-ion batteries. Electrochim Acta 192:22–29CrossRef Ji D, Wan Y, Yang Z, Li C, Xiong G, Li L, Han M, Guo R, Luo H (2016) Nitrogen-doped graphene enwrapped silicon nanoparticles with nitrogen-doped carbon shell: a novel nanocomposite for lithium-ion batteries. Electrochim Acta 192:22–29CrossRef
25.
Zurück zum Zitat Zhu J, Wang T, Fan F, Mei L, Lu B (2016) Atomic-scale control of silicon expansion space as ultrastable battery anodes. ACS Nano 10:8243–8251CrossRef Zhu J, Wang T, Fan F, Mei L, Lu B (2016) Atomic-scale control of silicon expansion space as ultrastable battery anodes. ACS Nano 10:8243–8251CrossRef
26.
Zurück zum Zitat Mi H, Li F, Xu S, Li Z, Chai X, He C, Li Y, Liu J (2016) A tremella-like nanostructure of silicon@void@graphene-like nanosheets composite as an anode for lithium-ion batteries. Nanoscale Res Lett 11:1–9CrossRef Mi H, Li F, Xu S, Li Z, Chai X, He C, Li Y, Liu J (2016) A tremella-like nanostructure of silicon@void@graphene-like nanosheets composite as an anode for lithium-ion batteries. Nanoscale Res Lett 11:1–9CrossRef
27.
Zurück zum Zitat Kim SJ, Kim MC, Han SB, Lee GH, Choe HS, Kwak DH, Choi SY, Son BG, Shin MS, Park KW (2016) 3D flexible Si based-composite (Si@Si3N4)/CNF electrode with enhanced cyclability and high rate capability for lithium-ion batteries. Nano Energy 27:545–553CrossRef Kim SJ, Kim MC, Han SB, Lee GH, Choe HS, Kwak DH, Choi SY, Son BG, Shin MS, Park KW (2016) 3D flexible Si based-composite (Si@Si3N4)/CNF electrode with enhanced cyclability and high rate capability for lithium-ion batteries. Nano Energy 27:545–553CrossRef
28.
Zurück zum Zitat Li X, Tian X, Zhao N, Wang K, Song Y, Guo Q, Chen C, Liu L (2016) A self-assembly strategy for fabricating highly stable silicon/reduced graphene oxide anodes for lithium-ion batteries. New J Chem 40:8961–8968CrossRef Li X, Tian X, Zhao N, Wang K, Song Y, Guo Q, Chen C, Liu L (2016) A self-assembly strategy for fabricating highly stable silicon/reduced graphene oxide anodes for lithium-ion batteries. New J Chem 40:8961–8968CrossRef
29.
Zurück zum Zitat Jiao M, Liu K, Shi Z, Wang C (2017) SiO2/carbon composite microspheres with hollow core-shell structure as a high-stability electrode for lithium-ion batteries. Chem Electro Chem 4:542–549 Jiao M, Liu K, Shi Z, Wang C (2017) SiO2/carbon composite microspheres with hollow core-shell structure as a high-stability electrode for lithium-ion batteries. Chem Electro Chem 4:542–549
30.
Zurück zum Zitat Yu ZL, Xin S, You Y, Yu L, Lin Y, Xu DW, Qiao C, Huang ZH, Yang N, Yu SH, Goodenough JB (2016) Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J Am Chem Soc 138:14915–14922CrossRef Yu ZL, Xin S, You Y, Yu L, Lin Y, Xu DW, Qiao C, Huang ZH, Yang N, Yu SH, Goodenough JB (2016) Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J Am Chem Soc 138:14915–14922CrossRef
31.
Zurück zum Zitat Tokur M, Algul H, Ozcan S, Cetinkaya T, Uysal M, Akbulut H (2016) Closing to scaling-up high reversible Si/rGO nanocomposite anodes for lithium ion batteries. Electrochim Acta 216:312–319CrossRef Tokur M, Algul H, Ozcan S, Cetinkaya T, Uysal M, Akbulut H (2016) Closing to scaling-up high reversible Si/rGO nanocomposite anodes for lithium ion batteries. Electrochim Acta 216:312–319CrossRef
32.
Zurück zum Zitat Sun W, Wan L, Li X, Zhao X, Yan X (2016) Bean pod-like Si@dopamine-derived amorphous carbon@N-doped graphene nanosheet scrolls for high performance lithium storage. J Mater Chem A 4:10948–10955CrossRef Sun W, Wan L, Li X, Zhao X, Yan X (2016) Bean pod-like Si@dopamine-derived amorphous carbon@N-doped graphene nanosheet scrolls for high performance lithium storage. J Mater Chem A 4:10948–10955CrossRef
33.
Zurück zum Zitat Fei L, Williams BP, Yoo SH, Kim J, Shoorideh G, Joo YL (2016) Graphene folding in Si rich carbon nanofibers for highly stable, high capacity Li-Ion battery anodes. ACS Appl Mater Interfaces 8:5243–5250CrossRef Fei L, Williams BP, Yoo SH, Kim J, Shoorideh G, Joo YL (2016) Graphene folding in Si rich carbon nanofibers for highly stable, high capacity Li-Ion battery anodes. ACS Appl Mater Interfaces 8:5243–5250CrossRef
34.
Zurück zum Zitat Ryu J, Hong D, Choi S, Park S (2016) Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes. ACS Nano 10:2843–2851CrossRef Ryu J, Hong D, Choi S, Park S (2016) Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes. ACS Nano 10:2843–2851CrossRef
35.
Zurück zum Zitat Ren W, Wang Y, Zhang Z, Tan Q, Zhong Z, Su F (2016) Carbon-coated porous silicon composites as high performance Li-ion battery anode materials: can the production process be cheaper and greener? J Mater Chem A 4:552–560CrossRef Ren W, Wang Y, Zhang Z, Tan Q, Zhong Z, Su F (2016) Carbon-coated porous silicon composites as high performance Li-ion battery anode materials: can the production process be cheaper and greener? J Mater Chem A 4:552–560CrossRef
36.
Zurück zum Zitat Wu J, Qin X, Miao C, He Y-B, Liang G, Zhou D, Liu M, Han C, Li B, Kang F (2016) A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes. Carbon 98:582–591CrossRef Wu J, Qin X, Miao C, He Y-B, Liang G, Zhou D, Liu M, Han C, Li B, Kang F (2016) A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes. Carbon 98:582–591CrossRef
37.
Zurück zum Zitat Shen X, Jiang W, Sun H, Wang Y, Dong A, Hu J, Yang D (2017) Ionic liquid assist to prepare Si@N-doped carbon nanoparticles and its high performance in lithium ion batteries. J Alloy Compd 691:178–184CrossRef Shen X, Jiang W, Sun H, Wang Y, Dong A, Hu J, Yang D (2017) Ionic liquid assist to prepare Si@N-doped carbon nanoparticles and its high performance in lithium ion batteries. J Alloy Compd 691:178–184CrossRef
38.
Zurück zum Zitat Tao H, Xiong L, Zhu S, Yang X, Zhang L (2016) Flexible binder-free reduced graphene oxide wrapped Si/carbon fibers paper anode for high-performance lithium ion batteries. Int J Hydrog Energy 41:21268–21277CrossRef Tao H, Xiong L, Zhu S, Yang X, Zhang L (2016) Flexible binder-free reduced graphene oxide wrapped Si/carbon fibers paper anode for high-performance lithium ion batteries. Int J Hydrog Energy 41:21268–21277CrossRef
39.
Zurück zum Zitat Wang T, Zhu J, Chen Y, Yang H, Qin Y, Li F, Cheng Q, Yu X, Xu Z, Lu B (2017) Large-scale production of silicon nanoparticles@graphene embedded in nanotubes as ultra-robust battery anodes. J Mater Chem A 5:4809–4817CrossRef Wang T, Zhu J, Chen Y, Yang H, Qin Y, Li F, Cheng Q, Yu X, Xu Z, Lu B (2017) Large-scale production of silicon nanoparticles@graphene embedded in nanotubes as ultra-robust battery anodes. J Mater Chem A 5:4809–4817CrossRef
40.
Zurück zum Zitat Jeena MT, Bok T, Kim SH, Park S, Kim JY, Park S, Ryu JH (2016) A siloxane-incorporated copolymer as an in situ cross-linkable binder for high performance silicon anodes in Li-ion batteries. Nanoscale 8:9245–9253CrossRef Jeena MT, Bok T, Kim SH, Park S, Kim JY, Park S, Ryu JH (2016) A siloxane-incorporated copolymer as an in situ cross-linkable binder for high performance silicon anodes in Li-ion batteries. Nanoscale 8:9245–9253CrossRef
41.
Zurück zum Zitat Sun W, Hu R, Zhang H, Wang Y, Yang L, Liu J, Zhu M (2016) A long-life nano-silicon anode for lithium ion batteries: supporting of graphene nanosheets exfoliated from expanded graphite by plasma-assisted milling. Electrochim Acta 187:1–10CrossRef Sun W, Hu R, Zhang H, Wang Y, Yang L, Liu J, Zhu M (2016) A long-life nano-silicon anode for lithium ion batteries: supporting of graphene nanosheets exfoliated from expanded graphite by plasma-assisted milling. Electrochim Acta 187:1–10CrossRef
Metadaten
Titel
Three-dimensional Si/hard-carbon/graphene network as high-performance anode material for lithium ion batteries
verfasst von
Miao-lun Jiao
Jie Qi
Zhi-qiang Shi
Cheng-yang Wang
Publikationsdatum
02.11.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 3/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1676-3

Weitere Artikel der Ausgabe 3/2018

Journal of Materials Science 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.