Skip to main content

2013 | OriginalPaper | Buchkapitel

Three-Dimensional Simulation and Experimental Investigation of a Novel Biomass Fast Pyrolysis Reactor

verfasst von : H. Y. Zhang, S. S. Shao, R. Xiao, Q. W. Pan, R. Chen, J. B. Zhang

Erschienen in: Cleaner Combustion and Sustainable World

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel autothermal reactor, named internally interconnected fluidized beds (IIFB), was developed for biomass fast pyrolysis to produce liquid fuels and chemicals. The IIFB reactor includes a pyrolysis bed and a combustion bed to conduct biomass pyrolysis and char burning, respectively. In this study, numerical simulation and experimental studies on volume fraction of particles, solid circulation rate and pressure distribution of the IIFB are reported. The stable flow photographed from the simulations coincides with that in the experiments at the same operating conditions. At the same height, the velocity of gas is twice as larger as the velocity of solid, which is favorable for catalytic reactions. The particles move up unsteadily in the draft tube, and yet they fall down with an almost constant velocity 0.07 m/s in the dipleg. The pressure in the fluidization region is higher than that in the spouted region at H=10mm and it shows an opposite pressure distribution. It is also observed that the experimental value of pressure is in well agreement with that obtained from simulations on the bottom, and yet it shows very different characteristics on the two outlets. Simulation results show that solid circulation rate at different cross-sections converged to 110kg/h which is in well agreement with experimental data of 104.5kg/h.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kunkes EL, Simonetti DA. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science. 2008;322(5900):417–21.CrossRef Kunkes EL, Simonetti DA. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science. 2008;322(5900):417–21.CrossRef
2.
Zurück zum Zitat Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev. 2006;106(9):4044–98.CrossRef Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev. 2006;106(9):4044–98.CrossRef
3.
Zurück zum Zitat Vispute TP, Zhang HY. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science. 2010;330(6008):1222–7.CrossRef Vispute TP, Zhang HY. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science. 2010;330(6008):1222–7.CrossRef
4.
Zurück zum Zitat Demirbas A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manage. 2001;42(11):1357–78.CrossRef Demirbas A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manage. 2001;42(11):1357–78.CrossRef
5.
Zurück zum Zitat Klass DL. Biomass for renewable energy, fuels and chemicals. San Diego: Academic Press; 1998. Klass DL. Biomass for renewable energy, fuels and chemicals. San Diego: Academic Press; 1998.
6.
Zurück zum Zitat Sims REH, Hastings A. Energy crops: current status and future prospects. Glob Change Biol. 2006;12(11):2054–76.CrossRef Sims REH, Hastings A. Energy crops: current status and future prospects. Glob Change Biol. 2006;12(11):2054–76.CrossRef
7.
Zurück zum Zitat Luque R, Herrero-Davila L. Biofuels: a technological perspective. Energy Environ Sci. 2008;1(5):542–64.CrossRef Luque R, Herrero-Davila L. Biofuels: a technological perspective. Energy Environ Sci. 2008;1(5):542–64.CrossRef
8.
Zurück zum Zitat Anex RP, Aden A. Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel. 2010;89:S29–35.CrossRef Anex RP, Aden A. Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel. 2010;89:S29–35.CrossRef
9.
Zurück zum Zitat Bridgwater AV. Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrolysis. 1999;51(1–2):3–22.CrossRef Bridgwater AV. Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrolysis. 1999;51(1–2):3–22.CrossRef
10.
Zurück zum Zitat Bridgwater AV, Meier D. An overview of fast pyrolysis of biomass. Org Geochem. 1999;30(12):1479–93.CrossRef Bridgwater AV, Meier D. An overview of fast pyrolysis of biomass. Org Geochem. 1999;30(12):1479–93.CrossRef
11.
Zurück zum Zitat Czernik S, Bridgwater AV. Overview of applications of biomass fast pyrolysis oil. Energy Fuels. 2004;18(2):590–8.CrossRef Czernik S, Bridgwater AV. Overview of applications of biomass fast pyrolysis oil. Energy Fuels. 2004;18(2):590–8.CrossRef
12.
Zurück zum Zitat Lappas AA, Samolada MC. Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals. Fuel. 2002;81(16):2087–95.CrossRef Lappas AA, Samolada MC. Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals. Fuel. 2002;81(16):2087–95.CrossRef
13.
Zurück zum Zitat Lappas AA, Dimitropoulos VS. Design, construction, and operation of a transported fluid bed process development unit for biomass fast pyrolysis: effect of pyrolysis temperature. Ind Eng Chem Res. 2008;47(3):742–7.CrossRef Lappas AA, Dimitropoulos VS. Design, construction, and operation of a transported fluid bed process development unit for biomass fast pyrolysis: effect of pyrolysis temperature. Ind Eng Chem Res. 2008;47(3):742–7.CrossRef
14.
Zurück zum Zitat Atutxa A, Aguado R. Kinetic description of the catalytic pyrolysis of biomass in a conical spouted bed reactor. Energy Fuels. 2005;19(3):765–74.CrossRef Atutxa A, Aguado R. Kinetic description of the catalytic pyrolysis of biomass in a conical spouted bed reactor. Energy Fuels. 2005;19(3):765–74.CrossRef
15.
Zurück zum Zitat Xiao R, Zhang MY. Solids circulation flux and gas bypassing in a pressurized spout-fluid bed with a draft tube. Can J Chem Eng. 2002;80(5):800–8.CrossRef Xiao R, Zhang MY. Solids circulation flux and gas bypassing in a pressurized spout-fluid bed with a draft tube. Can J Chem Eng. 2002;80(5):800–8.CrossRef
16.
Zurück zum Zitat Aguado R, Olazar M. Pyrolysis of sawdust in a conical spouted bed reactor: yields and product composition. Ind Eng Chem Res. 2000;39(6):1925–33.CrossRef Aguado R, Olazar M. Pyrolysis of sawdust in a conical spouted bed reactor: yields and product composition. Ind Eng Chem Res. 2000;39(6):1925–33.CrossRef
17.
Zurück zum Zitat Zhang HY, Xiao R. Catalytic fast pyrolysis of biomass in a fluidized bed with fresh and spent fluidized catalytic cracking (FCC) catalysts. Energy Fuels. 2009;23:6199–206.CrossRef Zhang HY, Xiao R. Catalytic fast pyrolysis of biomass in a fluidized bed with fresh and spent fluidized catalytic cracking (FCC) catalysts. Energy Fuels. 2009;23:6199–206.CrossRef
18.
Zurück zum Zitat Zhang HY, Xiao R. Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresour Technol. 2009;100(3):1428–34.CrossRef Zhang HY, Xiao R. Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresour Technol. 2009;100(3):1428–34.CrossRef
19.
Zurück zum Zitat Carlson TR, Cheng YT. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy Environ Sci. 2011;4(1):145–61.CrossRef Carlson TR, Cheng YT. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy Environ Sci. 2011;4(1):145–61.CrossRef
20.
Zurück zum Zitat Aho A, Kumar N. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure. Fuel. 2008;87(12):2493–501.CrossRef Aho A, Kumar N. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure. Fuel. 2008;87(12):2493–501.CrossRef
21.
Zurück zum Zitat Aho A, Kumar N. Catalytic pyrolysis of biomass in a fluidized bed reactor: influence of the acidity of H-beta zeolite. Process Saf Environ Prot. 2007;85(B5):473–80.CrossRef Aho A, Kumar N. Catalytic pyrolysis of biomass in a fluidized bed reactor: influence of the acidity of H-beta zeolite. Process Saf Environ Prot. 2007;85(B5):473–80.CrossRef
22.
Zurück zum Zitat Lin YC, Huber GW. The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energy Environ Sci. 2009;2(1):68–80.CrossRef Lin YC, Huber GW. The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energy Environ Sci. 2009;2(1):68–80.CrossRef
23.
Zurück zum Zitat Jae J, Tompsett GA. Investigation of the shape selectivity of zeolite catalysts for biomass conversion. J Catal. 2011;279(2):257–68.CrossRef Jae J, Tompsett GA. Investigation of the shape selectivity of zeolite catalysts for biomass conversion. J Catal. 2011;279(2):257–68.CrossRef
24.
Zurück zum Zitat Jae JH, Tompsett GA. Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis. Energy Environ Sci. 2010;3(3):358–65.CrossRef Jae JH, Tompsett GA. Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis. Energy Environ Sci. 2010;3(3):358–65.CrossRef
25.
Zurück zum Zitat Zhang HY, Xiao R. Hydrodynamics of a novel biomass autothermal fast pyrolysis reactor: flow pattern and pressure drop. Chem Eng Technol. 2009;32(1):27–37.CrossRef Zhang HY, Xiao R. Hydrodynamics of a novel biomass autothermal fast pyrolysis reactor: flow pattern and pressure drop. Chem Eng Technol. 2009;32(1):27–37.CrossRef
26.
Zurück zum Zitat Zhang HY, Xiao R. Hydrodynamics of a novel biomass autothermal fast pyrolysis reactor: solid circulation rate and gas bypassing. Chem Eng J. 2011 (submitted). Zhang HY, Xiao R. Hydrodynamics of a novel biomass autothermal fast pyrolysis reactor: solid circulation rate and gas bypassing. Chem Eng J. 2011 (submitted).
27.
Zurück zum Zitat Huilin L, Gidaspow D. Hydrodynamic simulation of gas-solid flow in a riser using kinetic theory of granular flow. Chem Eng J. 2003;95(1–3):1–13.CrossRef Huilin L, Gidaspow D. Hydrodynamic simulation of gas-solid flow in a riser using kinetic theory of granular flow. Chem Eng J. 2003;95(1–3):1–13.CrossRef
28.
Zurück zum Zitat Gunn DJ. Transfer of heat or mass to particles in fixed and fluidized-beds. Int J Heat Mass Transf. 1978;21(4):467–76.CrossRef Gunn DJ. Transfer of heat or mass to particles in fixed and fluidized-beds. Int J Heat Mass Transf. 1978;21(4):467–76.CrossRef
29.
Zurück zum Zitat Gidaspow D, Bezburuah R. Hydrodynamics of circulating fluidized beds, kinetic theory approach. In: Proceedings of the 7th engineering foundation conference on fluidization, Brisbane, Australia, 3–8 May 1992. p. 75–82. Gidaspow D, Bezburuah R. Hydrodynamics of circulating fluidized beds, kinetic theory approach. In: Proceedings of the 7th engineering foundation conference on fluidization, Brisbane, Australia, 3–8 May 1992. p. 75–82.
30.
Zurück zum Zitat Schaeffer DG. Instability in the evolution-equations describing incompressible antigranulocytes flow. J Differ Equ. 1987;66(1):19–50.MathSciNetMATHCrossRef Schaeffer DG. Instability in the evolution-equations describing incompressible antigranulocytes flow. J Differ Equ. 1987;66(1):19–50.MathSciNetMATHCrossRef
Metadaten
Titel
Three-Dimensional Simulation and Experimental Investigation of a Novel Biomass Fast Pyrolysis Reactor
verfasst von
H. Y. Zhang
S. S. Shao
R. Xiao
Q. W. Pan
R. Chen
J. B. Zhang
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-30445-3_76