Skip to main content
Erschienen in: Neuroinformatics 3/2013

01.07.2013 | Original Article

Three Tools for the Real-Time Simulation of Embodied Spiking Neural Networks Using GPUs

verfasst von: Andreas K. Fidjeland, David Gamez, Murray P. Shanahan, Edgars Lazdins

Erschienen in: Neuroinformatics | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a toolbox of solutions that enable the user to construct biologically-inspired spiking neural networks with tens of thousands of neurons and millions of connections that can be simulated in real time, visualized in 3D and connected to robots and other devices. NeMo is a high performance simulator that works with a variety of neural and oscillator models and performs parallel simulations on either GPUs or multi-core processors. SpikeStream is a visualization and analysis environment that works with NeMo and can construct networks, store them in a database and visualize their activity in 3D. The iSpike library provides biologically-inspired conversion between real data and spike representations to support work with robots, such as the iCub. Each of the tools described in this paper can be used independently with other software, and they also work well together.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
PyNN (Davison et al. 2008) is a common SNN simulator interface written in Python. By default PyNN is supported by several simulators including NEURON (Carnevale and Hines 2006), NEST (Gewaltig and Diesmann 2007), and Brian (Goodman and Brette 2009). PyNN support for NeMo is currently found in its development branch.
 
2
The Matlab and Python interfaces also provide vector versions of the network construction functions.
 
3
Both SpikeStream and PyNN provides such connectivity patterns, for example, to create topographic connections.
 
4
Another application called SpikeStream was created after the one described in this paper and given this name independently: http://​spikestream.​bitbucket.​org. ‘SpikeStream’ has also been used to name a component of the C2 simulator (Ananthanarayanan et al. 2009).
 
5
Instructions for writing SpikeStream plugins are given in the SpikeStream manual (Gamez 2011b).
 
6
NRM stands for Neural Representation Modeller, a simulator of weightless neurons that was developed by Barry Dunmall and Igor Aleksander (Aleksander 2005).
 
7
Player/Stage: http://​playerstage.​sf.​net; Orocos: http://​www.​orocos.​org; Urbi: http://​gostai.​com/​products/​urbi/​; Robot Operating System (ROS): http://​www.​ros.​org. While iSpike’s YARP interface should make it relatively straightforward to interface with these other systems, it has only been tested with the iCub robot.
 
8
Rods are not included in the current implementation of iSpike because it is designed for daylight conditions, during which the light intensity is too high for rod photoreceptors to operate.
 
9
The neuron that receives the most current will be the first to spike and it will also fire at the highest rate. The neuron with the most current will also be likely to fire before the one with the second highest current, and so on, producing a rank order code.
 
10
These effects relate to changes to the temporal grid on which the spike events take place. A reduction of the step size used in the numerical integration within each simulation time step would only have a minimal effect on performance.
 
Literatur
Zurück zum Zitat Aleksander, I. (2005). The world in my mind, my mind in the world. Exeter: Imprint Academic. Aleksander, I. (2005). The world in my mind, my mind in the world. Exeter: Imprint Academic.
Zurück zum Zitat Ananthanarayanan, R., Esser, S.K., Simon, H.D., Modha, D.S. (2009). The cat is out of the bag: cortical simulations with 109 neurons, 1013 synapses. In Proc. conf. high performance computing networking, storage and analysis (pp. 1–12). New York: ACM.CrossRef Ananthanarayanan, R., Esser, S.K., Simon, H.D., Modha, D.S. (2009). The cat is out of the bag: cortical simulations with 109 neurons, 1013 synapses. In Proc. conf. high performance computing networking, storage and analysis (pp. 1–12). New York: ACM.CrossRef
Zurück zum Zitat Andreou, A., & Boahen, K. (1994). A 48,000 pixel silicon retina in current-mode subthreshold cmos. In 37th midwest symposium on circuits and systems (pp. 97–102). Andreou, A., & Boahen, K. (1994). A 48,000 pixel silicon retina in current-mode subthreshold cmos. In 37th midwest symposium on circuits and systems (pp. 97–102).
Zurück zum Zitat Bergenheim, M., Ribot-Ciscar, E., Roll, J.P. (2000). Proprioceptive population coding of two-dimensional limb movements in humans: I. Muscle spindle feedback during spatially oriented movements. Experimental Brain Research, 134(3), 301–310.CrossRef Bergenheim, M., Ribot-Ciscar, E., Roll, J.P. (2000). Proprioceptive population coding of two-dimensional limb movements in humans: I. Muscle spindle feedback during spatially oriented movements. Experimental Brain Research, 134(3), 301–310.CrossRef
Zurück zum Zitat Bernardet, U., & Verschure, P.F. (2010). iqr: a tool for the construction of multi-level simulations of brain and behaviour. Neuroinformatics, 8(2), 113–134.PubMedCrossRef Bernardet, U., & Verschure, P.F. (2010). iqr: a tool for the construction of multi-level simulations of brain and behaviour. Neuroinformatics, 8(2), 113–134.PubMedCrossRef
Zurück zum Zitat Bernhard, F., & Keriven, R. (2006). Spiking neurons on GPUs. In Proc. 6th int. conf. computational science (pp. 236–243). Bernhard, F., & Keriven, R. (2006). Spiking neurons on GPUs. In Proc. 6th int. conf. computational science (pp. 236–243).
Zurück zum Zitat Bhowmik, D., & Shanahan, M. (2012). How well do oscillator models capture the behaviour of biological neurons? In Proc. int. joint conf. neural networks. Bhowmik, D., & Shanahan, M. (2012). How well do oscillator models capture the behaviour of biological neurons? In Proc. int. joint conf. neural networks.
Zurück zum Zitat Binzegger, T., Douglas, R.J., Martin, K.A. (2004). A quantitative map of the circuit of cat primary visual cortex. Journal of Neuroscience, 24(39), 8441–8453.PubMedCrossRef Binzegger, T., Douglas, R.J., Martin, K.A. (2004). A quantitative map of the circuit of cat primary visual cortex. Journal of Neuroscience, 24(39), 8441–8453.PubMedCrossRef
Zurück zum Zitat Bolduc, M., & Levine, M. (1998). A review of biologically motivated space-variant data reduction models for robotic vision. Computer Vision and Image Understanding, 69, 170–184.CrossRef Bolduc, M., & Levine, M. (1998). A review of biologically motivated space-variant data reduction models for robotic vision. Computer Vision and Image Understanding, 69, 170–184.CrossRef
Zurück zum Zitat Bouganis, A., & Shanahan, M. (2010). Training a spiking neural network to control a 4-DoF robotic arm based on spike timing-dependent plasticity. In Proc. int. joint conf. neural networks (pp. 4104–4111). Bouganis, A., & Shanahan, M. (2010). Training a spiking neural network to control a 4-DoF robotic arm based on spike timing-dependent plasticity. In Proc. int. joint conf. neural networks (pp. 4104–4111).
Zurück zum Zitat Bower, J.M., Beeman, D., Hucka, M. (2003). The GENESIS simulation system In M. Arbib (Ed.), In The handbook of brain theory and neural networks (2nd ed., 475–478). Cambridge: MIT Press. Bower, J.M., Beeman, D., Hucka, M. (2003). The GENESIS simulation system In M. Arbib (Ed.), In The handbook of brain theory and neural networks (2nd ed., 475–478). Cambridge: MIT Press.
Zurück zum Zitat Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J.M., Diesmann, M.,Morrison, A., Goodman, P.H., Harris, F.C. Jr., Zirpe, M., Natschlager, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., Davison, A.P., El Boustani, S., Destexhe, A. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. Journal of Computational Neuroscience, 23(3), 349–398.PubMedCrossRef Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J.M., Diesmann, M.,Morrison, A., Goodman, P.H., Harris, F.C. Jr., Zirpe, M., Natschlager, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., Davison, A.P., El Boustani, S., Destexhe, A. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. Journal of Computational Neuroscience, 23(3), 349–398.PubMedCrossRef
Zurück zum Zitat Buchmann, T. (2011). Stock market trading with spiking neural networks. MSc thesis, Imperial College London. Buchmann, T. (2011). Stock market trading with spiking neural networks. MSc thesis, Imperial College London.
Zurück zum Zitat Cannata, G., Maggiali, M., Metta, G., Sandini, G. (2008). An embedded artificial skin for humanoid robots. In IEEE int. conf. multisensor fusion and integration for intelligent systems (pp. 434–438). Cannata, G., Maggiali, M., Metta, G., Sandini, G. (2008). An embedded artificial skin for humanoid robots. In IEEE int. conf. multisensor fusion and integration for intelligent systems (pp. 434–438).
Zurück zum Zitat Carnevale, N.T., & Hines, M.L. (2006). The NEURON book. Cambridge: Cambridge University Press.CrossRef Carnevale, N.T., & Hines, M.L. (2006). The NEURON book. Cambridge: Cambridge University Press.CrossRef
Zurück zum Zitat Cheung, K., Schultz, S.R., Leong, P.H.W. (2009). A parallel spiking neural network simulator. In Proc. IEEE. int. conf. field-programmable technology (pp. 247–254). Cheung, K., Schultz, S.R., Leong, P.H.W. (2009). A parallel spiking neural network simulator. In Proc. IEEE. int. conf. field-programmable technology (pp. 247–254).
Zurück zum Zitat Clark, A. (2008). Supersizing the mind: Embodiment, action, and cognitive extension. New York: Oxford University Press. Clark, A. (2008). Supersizing the mind: Embodiment, action, and cognitive extension. New York: Oxford University Press.
Zurück zum Zitat Collins, D.F., & Prochazka, A. (1996). Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand. Journal of Physiology, 496(Pt 3), 857–71.PubMed Collins, D.F., & Prochazka, A. (1996). Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand. Journal of Physiology, 496(Pt 3), 857–71.PubMed
Zurück zum Zitat Collins, D.F., Refshauge, K.M., Todd, G., Gandevia, S.C. (2005). Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee. Journal of Neurophysiology, 94(3), 1699–1706.PubMedCrossRef Collins, D.F., Refshauge, K.M., Todd, G., Gandevia, S.C. (2005). Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee. Journal of Neurophysiology, 94(3), 1699–1706.PubMedCrossRef
Zurück zum Zitat Davison, A.P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., Yger, P. (2008). PyNN: a common interface for neuronal network simulators. Frontiers in Neuroinformatics, 2, article 11. Davison, A.P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., Yger, P. (2008). PyNN: a common interface for neuronal network simulators. Frontiers in Neuroinformatics, 2, article 11.
Zurück zum Zitat Djurfeldt, M., Lundqvist, M., Johansson, C., Rehn, M., Ekeberg, O., Lansner, A. (2008). Brain-scale simulation of the neocortex on the IBM Blue Gene/L supercomputer. IBM Journal of Research and Development, 52(1–2), 31–41.CrossRef Djurfeldt, M., Lundqvist, M., Johansson, C., Rehn, M., Ekeberg, O., Lansner, A. (2008). Brain-scale simulation of the neocortex on the IBM Blue Gene/L supercomputer. IBM Journal of Research and Development, 52(1–2), 31–41.CrossRef
Zurück zum Zitat Edin, B.B., & Johansson, N. (1995). Skin strain patterns provide kinaesthetic information to the human central nervous system. Journal of Physiology, 487(Pt 1), 243–251.PubMed Edin, B.B., & Johansson, N. (1995). Skin strain patterns provide kinaesthetic information to the human central nervous system. Journal of Physiology, 487(Pt 1), 243–251.PubMed
Zurück zum Zitat Enroth-Cugell, C., & Robson, J. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology, 187(3), 517–552.PubMed Enroth-Cugell, C., & Robson, J. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology, 187(3), 517–552.PubMed
Zurück zum Zitat Ferrell,W.R., Gandevia, S.C., Mccloskey, D.I. (1987). The role of joint receptors in human kinaesthesia when intramuscular receptors cannot contribute. Journal of Physiology, 386, 63–71.PubMed Ferrell,W.R., Gandevia, S.C., Mccloskey, D.I. (1987). The role of joint receptors in human kinaesthesia when intramuscular receptors cannot contribute. Journal of Physiology, 386, 63–71.PubMed
Zurück zum Zitat Fitzpatrick, P., Metta, G., Natale, L. (2008). Towards long-lived robot genes. Robotics and Autonomous Systems, 56(1), 29–45.CrossRef Fitzpatrick, P., Metta, G., Natale, L. (2008). Towards long-lived robot genes. Robotics and Autonomous Systems, 56(1), 29–45.CrossRef
Zurück zum Zitat Fidjeland, A.K., Roesch, E.B., Shanahan, M.P., Luk, W. (2009). NeMo: a platform for neural modelling of spiking neurons using GPUs. In Proc. IEEE int. conf application-specific systems, architectures and processors (pp. 137–144). Fidjeland, A.K., Roesch, E.B., Shanahan, M.P., Luk, W. (2009). NeMo: a platform for neural modelling of spiking neurons using GPUs. In Proc. IEEE int. conf application-specific systems, architectures and processors (pp. 137–144).
Zurück zum Zitat Fidjeland, A., & Shanahan, M. (2010). Accelerated simulation of spiking neural networks using GPUs. In Proc. int. joint conf. neural networks (pp. 536–543). Piscataway: IEEE. Fidjeland, A., & Shanahan, M. (2010). Accelerated simulation of spiking neural networks using GPUs. In Proc. int. joint conf. neural networks (pp. 536–543). Piscataway: IEEE.
Zurück zum Zitat Fontaine, B., Goodman, D., Benichoux, V., Brette, R. (2011). Brian hears: online auditory processing using vectorization over channels. Frontiers in Neuroinformatics, 5, 9.PubMedCrossRef Fontaine, B., Goodman, D., Benichoux, V., Brette, R. (2011). Brian hears: online auditory processing using vectorization over channels. Frontiers in Neuroinformatics, 5, 9.PubMedCrossRef
Zurück zum Zitat Fountas, Z., Gamez, D., Fidjeland, A. (2011). A neuronal global workspace for human-like control of a computer game character. In IEEE conf. computational intelligence and games (pp. 350–357). Fountas, Z., Gamez, D., Fidjeland, A. (2011). A neuronal global workspace for human-like control of a computer game character. In IEEE conf. computational intelligence and games (pp. 350–357).
Zurück zum Zitat Gamez, D. (2007). Spikestream: a fast and flexible simulator of spiking neural networks. In Proceedings of the International Conference on Artificial Neural Networks (ICANN). Lecture Notes in Computer Science (Vol. 4668, pp. 360–369). Gamez, D. (2007). Spikestream: a fast and flexible simulator of spiking neural networks. In Proceedings of the International Conference on Artificial Neural Networks (ICANN). Lecture Notes in Computer Science (Vol. 4668, pp. 360–369).
Zurück zum Zitat Gamez, D. (2010). Information integration based predictions about the conscious states of a spiking neural network. Consciousness and Cognition, 19(1), 294–310.PubMedCrossRef Gamez, D. (2010). Information integration based predictions about the conscious states of a spiking neural network. Consciousness and Cognition, 19(1), 294–310.PubMedCrossRef
Zurück zum Zitat Gamez, D., & Aleksander, I. (2011). Accuracy and performance of the state-based phi and liveliness measures of information integration. Consciousness and Cognition, 20(4), 1403–1424.PubMedCrossRef Gamez, D., & Aleksander, I. (2011). Accuracy and performance of the state-based phi and liveliness measures of information integration. Consciousness and Cognition, 20(4), 1403–1424.PubMedCrossRef
Zurück zum Zitat Gamez, D., Fidjeland, A., Lazdins, E. (2012). iSpike: a spiking neural interface for the icub robot. Bioinspiration and Biomimetics, 7, 025008.PubMedCrossRef Gamez, D., Fidjeland, A., Lazdins, E. (2012). iSpike: a spiking neural interface for the icub robot. Bioinspiration and Biomimetics, 7, 025008.PubMedCrossRef
Zurück zum Zitat Gamez, D., Newcombe, R., Holland, O., Knight, R. (2006). Two simulation tools for biologically inspired virtual robotics. In Proc. IEEE 5th chapter conf. on advances in cybernetic systems (pp. 85–90). Gamez, D., Newcombe, R., Holland, O., Knight, R. (2006). Two simulation tools for biologically inspired virtual robotics. In Proc. IEEE 5th chapter conf. on advances in cybernetic systems (pp. 85–90).
Zurück zum Zitat Georgopoulos, A.P., Schwartz, A.B., Kettner, R.E. (1986). Neuronal population coding of movement direction. Science, 233(4771), 1416–1419.PubMedCrossRef Georgopoulos, A.P., Schwartz, A.B., Kettner, R.E. (1986). Neuronal population coding of movement direction. Science, 233(4771), 1416–1419.PubMedCrossRef
Zurück zum Zitat Gewaltig, M.O., & Diesmann, M. (2007). NEST. Scholarpedia, 2(4), 1430.CrossRef Gewaltig, M.O., & Diesmann, M. (2007). NEST. Scholarpedia, 2(4), 1430.CrossRef
Zurück zum Zitat Goodman, D.F. (2010). Code generation: a strategy for neural network simulators. Neuroinformatics, 8(3), 183–196.PubMedCrossRef Goodman, D.F. (2010). Code generation: a strategy for neural network simulators. Neuroinformatics, 8(3), 183–196.PubMedCrossRef
Zurück zum Zitat Goodman, D.F., & Brette, R. (2009). The Brian simulator. Frontiers in Neuroscience, 3(2), 192–197.PubMedCrossRef Goodman, D.F., & Brette, R. (2009). The Brian simulator. Frontiers in Neuroscience, 3(2), 192–197.PubMedCrossRef
Zurück zum Zitat Grill-Spector, K., & Malach, R. (2004). The human visual cortex. Annual Review of Neuroscience, 27, 649–677.PubMedCrossRef Grill-Spector, K., & Malach, R. (2004). The human visual cortex. Annual Review of Neuroscience, 27, 649–677.PubMedCrossRef
Zurück zum Zitat Grillner, S., Hellgren, J., Menard, A., Saitoh, K., Wikstrom, M.A. (2005). Mechanisms for selection of basic motor programs–roles for the striatum and pallidum. Trends in Neuroscience, 28(7), 364–370.CrossRef Grillner, S., Hellgren, J., Menard, A., Saitoh, K., Wikstrom, M.A. (2005). Mechanisms for selection of basic motor programs–roles for the striatum and pallidum. Trends in Neuroscience, 28(7), 364–370.CrossRef
Zurück zum Zitat Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol, 6(7), e159.PubMedCrossRef Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol, 6(7), e159.PubMedCrossRef
Zurück zum Zitat Hammarlund, P., & Ekeberg, O. (1998). Large neural network simulations on multiple hardware platforms. Journal of Computational Neuroscience, 5(4), 443–459.PubMedCrossRef Hammarlund, P., & Ekeberg, O. (1998). Large neural network simulations on multiple hardware platforms. Journal of Computational Neuroscience, 5(4), 443–459.PubMedCrossRef
Zurück zum Zitat Han, B., & Taha, T.M. (2010). Neuromorphic models on a GPGPU cluster. In Proc int. joint conf. neural networks (pp. 3050–3057). Piscataway: IEEE. Han, B., & Taha, T.M. (2010). Neuromorphic models on a GPGPU cluster. In Proc int. joint conf. neural networks (pp. 3050–3057). Piscataway: IEEE.
Zurück zum Zitat Hellwig, B. (2000). A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biological Cybernetics, 82(2), 111–121.PubMedCrossRef Hellwig, B. (2000). A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biological Cybernetics, 82(2), 111–121.PubMedCrossRef
Zurück zum Zitat Hoshi, T., & Shinoda, H. (2006). Robot skin based on touch-area-sensitive tactile element. In Proc. IEEE int. conf. robotics and automation (pp. 3463–3468). Hoshi, T., & Shinoda, H. (2006). Robot skin based on touch-area-sensitive tactile element. In Proc. IEEE int. conf. robotics and automation (pp. 3463–3468).
Zurück zum Zitat Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.M. (2007). From swimming to walking with a salamander robot driven by a spinal cord model. Science, 315(5817), 1416–1420.PubMedCrossRef Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.M. (2007). From swimming to walking with a salamander robot driven by a spinal cord model. Science, 315(5817), 1416–1420.PubMedCrossRef
Zurück zum Zitat Indiveri, G., Linares-Barranco, B., Hamilton, T.J., van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S.C., Dudek, P., Hafliger, P., Renaud, S., Schemmel, J., Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F., Saighi, S., Serrano-Gotarredona, T., Wijekoon, J., Wang, Y., Boahen, K. (2011). Neuromorphic silicon neuron circuits. Frontiers Neuroscience, 5, 73. Indiveri, G., Linares-Barranco, B., Hamilton, T.J., van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S.C., Dudek, P., Hafliger, P., Renaud, S., Schemmel, J., Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F., Saighi, S., Serrano-Gotarredona, T., Wijekoon, J., Wang, Y., Boahen, K. (2011). Neuromorphic silicon neuron circuits. Frontiers Neuroscience, 5, 73.
Zurück zum Zitat Izhikevich, E.M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14, 1569–1572.PubMedCrossRef Izhikevich, E.M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14, 1569–1572.PubMedCrossRef
Zurück zum Zitat Izhikevich, E., & Edelman, G. (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Science of the United States of America, 105(9), 3593–3598. doi:10.1073/pnas.0712231105.CrossRef Izhikevich, E., & Edelman, G. (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Science of the United States of America, 105(9), 3593–3598. doi:10.​1073/​pnas.​0712231105.CrossRef
Zurück zum Zitat Jiirgens, R., Becker, W., Kornhuber, H. (1981). Natural and drug-induced variations of velocity and duration of human saccadic eye movements: evidence for a control of the neural pulse generator by local feedback. Biological Cybernetics, 39, 87–96. 1507CrossRef Jiirgens, R., Becker, W., Kornhuber, H. (1981). Natural and drug-induced variations of velocity and duration of human saccadic eye movements: evidence for a control of the neural pulse generator by local feedback. Biological Cybernetics, 39, 87–96. 1507CrossRef
Zurück zum Zitat Jones, K.E., Wessberg, J., Vallbo, A.B. (2001). Directional tuning of human forearm muscle afferents during voluntary wrist movements. Journal of Physiology, 536(2), 635–647.PubMedCrossRef Jones, K.E., Wessberg, J., Vallbo, A.B. (2001). Directional tuning of human forearm muscle afferents during voluntary wrist movements. Journal of Physiology, 536(2), 635–647.PubMedCrossRef
Zurück zum Zitat Krichmar, J.L., Nitz, D.A., Gally, J.A., Edelman, G.M. (2005). Characterizing functional hippocampal pathways in a brain-based device as it solves a spatial memory task. Proceedings of the National Academy of Science of the United States of America, 102(6), 2111–2116.CrossRef Krichmar, J.L., Nitz, D.A., Gally, J.A., Edelman, G.M. (2005). Characterizing functional hippocampal pathways in a brain-based device as it solves a spatial memory task. Proceedings of the National Academy of Science of the United States of America, 102(6), 2111–2116.CrossRef
Zurück zum Zitat Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin: Springer.CrossRef Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin: Springer.CrossRef
Zurück zum Zitat Linares-Barranco, A., Gomez-Rodriguez, F., Jimenez-Fernandez, A., Delbruck, T., Lichtensteiner, P. (2007). Using FPGA for visuomotor control with a silicon retina and a humanoid robot. In IEEE int. symp. circuits and systems (pp. 1192–1195). Linares-Barranco, A., Gomez-Rodriguez, F., Jimenez-Fernandez, A., Delbruck, T., Lichtensteiner, P. (2007). Using FPGA for visuomotor control with a silicon retina and a humanoid robot. In IEEE int. symp. circuits and systems (pp. 1192–1195).
Zurück zum Zitat Liu, J.D., & Hu, H. (2006). Biologically inspired behaviour design for autonomous robotic fish. Internation Journal of Automation and Computing, 3, 336–347.CrossRef Liu, J.D., & Hu, H. (2006). Biologically inspired behaviour design for autonomous robotic fish. Internation Journal of Automation and Computing, 3, 336–347.CrossRef
Zurück zum Zitat Lyon, R. (1982). A computational model of filtering, detection, and compression in the cochlea. IEEE International Conference on Acoustics, Speech, and Signal Processing, 7, 1282–1285. Lyon, R. (1982). A computational model of filtering, detection, and compression in the cochlea. IEEE International Conference on Acoustics, Speech, and Signal Processing, 7, 1282–1285.
Zurück zum Zitat Macefield, G., Gandevia, S.C., Burke, D. (1990). Perceptual responses to microstimulation of single afferents innervating joints, muscles and skin of the human hand. Journal of Physiology, 429, 113–129.PubMed Macefield, G., Gandevia, S.C., Burke, D. (1990). Perceptual responses to microstimulation of single afferents innervating joints, muscles and skin of the human hand. Journal of Physiology, 429, 113–129.PubMed
Zurück zum Zitat Maguire, L.P., McGinnity, T.M., Glackin, B., Ghani, A., Belatreche, A., Harkin, J. (2007). Challenges for large-scale implementations of spiking neural networks on FPGAs. Neurocomputing, 71(1–3), 13–29.CrossRef Maguire, L.P., McGinnity, T.M., Glackin, B., Ghani, A., Belatreche, A., Harkin, J. (2007). Challenges for large-scale implementations of spiking neural networks on FPGAs. Neurocomputing, 71(1–3), 13–29.CrossRef
Zurück zum Zitat Marques, H., Jäntsch, M., Wittmeier, S., Alessandro, C., Holland, O., Diamond, A., Lungarella, M., Knight, R. (2010). ECCE1: the first of a series of anthropomimetic musculoskelal upper torsos. In Proc. IEEE int. conf. humanoid robotics (pp. 391–396). Marques, H., Jäntsch, M., Wittmeier, S., Alessandro, C., Holland, O., Diamond, A., Lungarella, M., Knight, R. (2010). ECCE1: the first of a series of anthropomimetic musculoskelal upper torsos. In Proc. IEEE int. conf. humanoid robotics (pp. 391–396).
Zurück zum Zitat Masquelier, T., & Thorpe, S. (2007). Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Computational Biology, 3(2), e31.PubMedCrossRef Masquelier, T., & Thorpe, S. (2007). Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Computational Biology, 3(2), e31.PubMedCrossRef
Zurück zum Zitat Metta, G., Sandini, G., Vernon, D., Natale, L., Nori, F. (2008). The iCub humanoid robot: an open platform for research in embodied cognition. In Proc. workshop on performance metrics for intelligent systems. Metta, G., Sandini, G., Vernon, D., Natale, L., Nori, F. (2008). The iCub humanoid robot: an open platform for research in embodied cognition. In Proc. workshop on performance metrics for intelligent systems.
Zurück zum Zitat Meuth, R.J., & Wunsch, D.C. (2007). A survey of neural computation on graphics processing hardware. In 2007 IEEE 22nd international symposium on intelligent control (pp. 524–527). Piscataway: IEEE.CrossRef Meuth, R.J., & Wunsch, D.C. (2007). A survey of neural computation on graphics processing hardware. In 2007 IEEE 22nd international symposium on intelligent control (pp. 524–527). Piscataway: IEEE.CrossRef
Zurück zum Zitat Morrison, A., Diesmann, M., Gerstner, W. (2008). Phenomenological models of synaptic plasticity based on spike timing. Biological Cybernetics, 98(6), 459–478.PubMedCrossRef Morrison, A., Diesmann, M., Gerstner, W. (2008). Phenomenological models of synaptic plasticity based on spike timing. Biological Cybernetics, 98(6), 459–478.PubMedCrossRef
Zurück zum Zitat Nageswaran, J.M., Dutt, N., Krichmar, J.L., Nicolau, A., Veidenbaum, A.V. (2009). A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors. Neural Networks, 22, 791–800.PubMedCrossRef Nageswaran, J.M., Dutt, N., Krichmar, J.L., Nicolau, A., Veidenbaum, A.V. (2009). A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors. Neural Networks, 22, 791–800.PubMedCrossRef
Zurück zum Zitat Noë, A., & Thompson, E. (2004). Are there neural correlates of consciousness? Journal of Consciousness Studies, 11(1), 3–28. Noë, A., & Thompson, E. (2004). Are there neural correlates of consciousness? Journal of Consciousness Studies, 11(1), 3–28.
Zurück zum Zitat Nowotny, T. (2011). Flexible neuronal network simulation framework using code generation for NVidia CUDA. BMC Neuroscience, 12(1), 239.CrossRef Nowotny, T. (2011). Flexible neuronal network simulation framework using code generation for NVidia CUDA. BMC Neuroscience, 12(1), 239.CrossRef
Zurück zum Zitat Rast, A., Galluppi, F., Davies, S., Plana, L., Patterson, C., Sharp, T., Lester, D., Furber, S. (2011). Concurrent heterogeneous neural model simulation on real-time neuromimetic hardware. Neural Networks, 24(9), 961–978.PubMedCrossRef Rast, A., Galluppi, F., Davies, S., Plana, L., Patterson, C., Sharp, T., Lester, D., Furber, S. (2011). Concurrent heterogeneous neural model simulation on real-time neuromimetic hardware. Neural Networks, 24(9), 961–978.PubMedCrossRef
Zurück zum Zitat Ribot-Ciscar, E., Bergenheim, M., Albert, F., Roll, J.P. (2003). Proprioceptive population coding of limb position in humans. Experimental Brain Research, 149(4), 512–519. Ribot-Ciscar, E., Bergenheim, M., Albert, F., Roll, J.P. (2003). Proprioceptive population coding of limb position in humans. Experimental Brain Research, 149(4), 512–519.
Zurück zum Zitat Richert, M., Nageswaran, J.M., Dutt, N., Krichmar, J.L. (2011). An efficient simulation environment for modeling large-scale cortical processing. Frontiers in Neuroinformatics, 5, 19.PubMedCrossRef Richert, M., Nageswaran, J.M., Dutt, N., Krichmar, J.L. (2011). An efficient simulation environment for modeling large-scale cortical processing. Frontiers in Neuroinformatics, 5, 19.PubMedCrossRef
Zurück zum Zitat Robinson, D.A. (1964). The mechanics of human saccadic eye movement. Journal of Physiology, 174, 245–264.PubMed Robinson, D.A. (1964). The mechanics of human saccadic eye movement. Journal of Physiology, 174, 245–264.PubMed
Zurück zum Zitat Roll, J.P., Albert, F., Ribot-Ciscar, E., Bergenheim, M. (2004). “Proprioceptive signature” of cursive writing in humans: a multi-population coding. Experimental Brain Research, 157(3), 359–368.CrossRef Roll, J.P., Albert, F., Ribot-Ciscar, E., Bergenheim, M. (2004). “Proprioceptive signature” of cursive writing in humans: a multi-population coding. Experimental Brain Research, 157(3), 359–368.CrossRef
Zurück zum Zitat Roll, J.P., Bergenheim, M., Ribot-Ciscar, E. (2000). Proprioceptive population coding of two-dimensional limb movements in humans: II. Muscle-spindle feedback during “drawing-like” movements. Experimental Brain Research, 134(3), 311–321.CrossRef Roll, J.P., Bergenheim, M., Ribot-Ciscar, E. (2000). Proprioceptive population coding of two-dimensional limb movements in humans: II. Muscle-spindle feedback during “drawing-like” movements. Experimental Brain Research, 134(3), 311–321.CrossRef
Zurück zum Zitat Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., Millner, S. (2010). A wafer-scale neuromorphic hardware system for large-scale neural modeling. In Proc. IEEE int. conf. circuits and systems (pp. 1947–1950). Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., Millner, S. (2010). A wafer-scale neuromorphic hardware system for large-scale neural modeling. In Proc. IEEE int. conf. circuits and systems (pp. 1947–1950).
Zurück zum Zitat Schwartz, E.L. (1980). Computational anatomy and functional architecture of striate cortex—a spatial-mapping approach to perceptual coding. Vision Research, 20(8), 645–669.PubMedCrossRef Schwartz, E.L. (1980). Computational anatomy and functional architecture of striate cortex—a spatial-mapping approach to perceptual coding. Vision Research, 20(8), 645–669.PubMedCrossRef
Zurück zum Zitat Song, S., Miller, K.D., Abbott, L.F. (2000). Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3(9), 919–926.PubMedCrossRef Song, S., Miller, K.D., Abbott, L.F. (2000). Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3(9), 919–926.PubMedCrossRef
Zurück zum Zitat Thomas, D.B., & Luk, W. (2009). FPGA accelerated simulation of biologically plausible spiking neural networks. In Proc. IEEE symp. field-programmable custom computing machines. Thomas, D.B., & Luk, W. (2009). FPGA accelerated simulation of biologically plausible spiking neural networks. In Proc. IEEE symp. field-programmable custom computing machines.
Zurück zum Zitat Tiesel, J.P., & Maida, A.S. (2009). Using parallel GPU architecture for simulation of planar I/F networks. In Proc int. joint conf. neural networks (pp. 754–759). 1602 Tiesel, J.P., & Maida, A.S. (2009). Using parallel GPU architecture for simulation of planar I/F networks. In Proc int. joint conf. neural networks (pp. 754–759). 1602
Zurück zum Zitat Tononi, G. (2008). Consciousness as integrated information: a provisional manifesto. Biological Bulletin, 215(3), 216–242.PubMedCrossRef Tononi, G. (2008). Consciousness as integrated information: a provisional manifesto. Biological Bulletin, 215(3), 216–242.PubMedCrossRef
Zurück zum Zitat Vogels, T.P., & Abbott, L.F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25(46), 10786–10795.PubMedCrossRef Vogels, T.P., & Abbott, L.F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25(46), 10786–10795.PubMedCrossRef
Zurück zum Zitat Yudanov, D., Shaaban, M., Melton, R., Reznik, L. (2010). GPU-based simulation of spiking neural networks with real-time performance and high accuracy. In Proc. int. joint conf. neural networks. Yudanov, D., Shaaban, M., Melton, R., Reznik, L. (2010). GPU-based simulation of spiking neural networks with real-time performance and high accuracy. In Proc. int. joint conf. neural networks.
Metadaten
Titel
Three Tools for the Real-Time Simulation of Embodied Spiking Neural Networks Using GPUs
verfasst von
Andreas K. Fidjeland
David Gamez
Murray P. Shanahan
Edgars Lazdins
Publikationsdatum
01.07.2013
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 3/2013
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-012-9174-x

Weitere Artikel der Ausgabe 3/2013

Neuroinformatics 3/2013 Zur Ausgabe