Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

05.12.2016 | Ausgabe 3/2017

Data Mining and Knowledge Discovery 3/2017

Tiers for peers: a practical algorithm for discovering hierarchy in weighted networks

Zeitschrift:
Data Mining and Knowledge Discovery > Ausgabe 3/2017
Autor:
Nikolaj Tatti
Wichtige Hinweise
Responsible editor : Srinivasan Parthasarathy.
The research described in this paper builds upon and extends the work appearing in ICDM15 as Tatti (2015).

Abstract

Interactions in many real-world phenomena can be explained by a strong hierarchical structure. Typically, this structure or ranking is not known; instead we only have observed outcomes of the interactions, and the goal is to infer the hierarchy from these observations. Discovering a hierarchy in the context of directed networks can be formulated as follows: given a graph, partition vertices into levels such that, ideally, there are only edges from upper levels to lower levels. The ideal case can only happen if the graph is acyclic. Consequently, in practice we have to introduce a penalty function that penalizes edges violating the hierarchy. A practical variant for such penalty is agony, where each violating edge is penalized based on the severity of the violation. Hierarchy minimizing agony can be discovered in https://static-content.springer.com/image/art%3A10.1007%2Fs10618-016-0485-7/MediaObjects/10618_2016_485_IEq1_HTML.gif time, and much faster in practice. In this paper we introduce several extensions to agony. We extend the definition for weighted graphs and allow a cardinality constraint that limits the number of levels. While, these are conceptually trivial extensions, current algorithms cannot handle them, nor they can be easily extended. We solve the problem by showing the connection to the capacitated circulation problem, and we demonstrate that we can compute the exact solution fast in practice for large datasets. We also introduce a provably fast heuristic algorithm that produces rankings with competitive scores. In addition, we show that we can compute agony in polynomial time for any convex penalty, and, to complete the picture, we show that minimizing hierarchy with any concave penalty is an NP-hard problem.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2017

Data Mining and Knowledge Discovery 3/2017 Zur Ausgabe

Premium Partner

    Bildnachweise