Skip to main content
Erschienen in: Microsystem Technologies 10/2021

20.05.2021 | Technical Paper

Tight-binding theory of graphene mechanical properties

verfasst von: Kun Huang, Yajun Yin, Benning Qu

Erschienen in: Microsystem Technologies | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Since the atomistic mechanism against monolayer graphene deformations has not been well comprehended, modeling graphene’s mechanical properties is still an open question. The torsional stiffness associated with Gaussian curvature, in particular, is extremely difficult to understand and estimate via either experiments or simulations. In this paper, using the bond-orbital model (BOM) based on the tight-binding (TB) method, we find out that graphene can be model as the Föppl-von Karman plate with four independent mechanical parameters, and present the clear connections between the mechanical parameters and the chemical bonds for the first time. Our TB theory reveals that the Gaussian modulus only relies on the torsion of the adjacent \(\pi\)-orbitals, and elucidates that the independence between out-of-plane and in-plane mechanical parameters comes from the geometrical irrelevance between the bond-formation energy of \(\sigma\)-bonds and that of \(\pi\)-bonds. Besides, the constraints on two out-of-plane mechanical parameters are given through the thermodynamic stability requirement: the Gaussian modulus \(k_{G} < 0\) and the bending modulus \(k_{B} > - k_{G} /2\). The mechanical parameters obtained by our TB theory are well agreed with experiments and Quantum calculations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akinwande D et al (2017) A review on mechanics and mechanical properties of 2D materials—graphene and beyond. Extreme Mech Lett 13:42CrossRef Akinwande D et al (2017) A review on mechanics and mechanical properties of 2D materials—graphene and beyond. Extreme Mech Lett 13:42CrossRef
Zurück zum Zitat Atalaya J, Isacsson A, Kinaret JM (2008) Continuum elastic modeling of graphene resonators. Nano Lett 8:4196CrossRef Atalaya J, Isacsson A, Kinaret JM (2008) Continuum elastic modeling of graphene resonators. Nano Lett 8:4196CrossRef
Zurück zum Zitat Audoly B, Pomeau Y (2010) Elasticity and geometry: from hair curls to the non-linear response of shells. Oxford University Press, New YorkMATH Audoly B, Pomeau Y (2010) Elasticity and geometry: from hair curls to the non-linear response of shells. Oxford University Press, New YorkMATH
Zurück zum Zitat Bechstedt F, Harrison WA (1989) Lattice relaxation around substitutional defects in semiconductors. Phys Rev B 39(8):5041–5050CrossRef Bechstedt F, Harrison WA (1989) Lattice relaxation around substitutional defects in semiconductors. Phys Rev B 39(8):5041–5050CrossRef
Zurück zum Zitat Bera S, Arnold A, Evers F, Narayanan R, Wölfle P (2010) Elastic properties of graphene flakes: boundary effects and lattice vibrations. Phys Rev B 82:195445CrossRef Bera S, Arnold A, Evers F, Narayanan R, Wölfle P (2010) Elastic properties of graphene flakes: boundary effects and lattice vibrations. Phys Rev B 82:195445CrossRef
Zurück zum Zitat Brenner DW et al (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condensed Matter 14:783CrossRef Brenner DW et al (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condensed Matter 14:783CrossRef
Zurück zum Zitat Bunch JS et al (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8:2458CrossRef Bunch JS et al (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8:2458CrossRef
Zurück zum Zitat Cadelano E, Palla PL, Giordano S, Colombo L (2009) Nonlinear elasticity of monolayer graphene. Phys Rev Lett 102:235502CrossRef Cadelano E, Palla PL, Giordano S, Colombo L (2009) Nonlinear elasticity of monolayer graphene. Phys Rev Lett 102:235502CrossRef
Zurück zum Zitat Chen X, Yi C, Ke C (2015) Bending stiffness and interlayer shear modulus of few-layer graphene. Appl Phys Lett 106:101907CrossRef Chen X, Yi C, Ke C (2015) Bending stiffness and interlayer shear modulus of few-layer graphene. Appl Phys Lett 106:101907CrossRef
Zurück zum Zitat David T, Schluter MA (1991) Growth regimes of carbon clusters. Phys Rev Lett 67:2331CrossRef David T, Schluter MA (1991) Growth regimes of carbon clusters. Phys Rev Lett 67:2331CrossRef
Zurück zum Zitat Davini C, Favata A, Paroni R (2017) The Gaussian stiffness of graphene deduced from a continuum model based on Molecular Dynamics potentials. J Mech Phys Solids 104:96MathSciNetCrossRef Davini C, Favata A, Paroni R (2017) The Gaussian stiffness of graphene deduced from a continuum model based on Molecular Dynamics potentials. J Mech Phys Solids 104:96MathSciNetCrossRef
Zurück zum Zitat Davydov SY (2009) Estimates of the elastic characteristics of graphenes. Phys Solid State 51:2166CrossRef Davydov SY (2009) Estimates of the elastic characteristics of graphenes. Phys Solid State 51:2166CrossRef
Zurück zum Zitat Davydov SY, Posrednik OV (2015) On the theory of elastic properties of two-dimensional hexagonal structures. Phys Solid State 57:837CrossRef Davydov SY, Posrednik OV (2015) On the theory of elastic properties of two-dimensional hexagonal structures. Phys Solid State 57:837CrossRef
Zurück zum Zitat Guo Y, Qiu J, Guo W (2016) Mechanical and electronic coupling in few-layer graphene and hBN wrinkles: a first-principles study. Nanotechnology 27:505702CrossRef Guo Y, Qiu J, Guo W (2016) Mechanical and electronic coupling in few-layer graphene and hBN wrinkles: a first-principles study. Nanotechnology 27:505702CrossRef
Zurück zum Zitat Haddon RC (1986) Hybridization and the orientation and alignment of π-orbitals in nonplanar conjugated organic molecules: π-orbital axis vector analysis (POAV2). J Am Chem Soc 108:2837CrossRef Haddon RC (1986) Hybridization and the orientation and alignment of π-orbitals in nonplanar conjugated organic molecules: π-orbital axis vector analysis (POAV2). J Am Chem Soc 108:2837CrossRef
Zurück zum Zitat Haddon RC, Scott LT (1986) π-Orbital conjugation and rehybridization in bridged annulenes and deformed molecules in general: π-orbital axis vector analysis. Pure Appl Chem 58:137CrossRef Haddon RC, Scott LT (1986) π-Orbital conjugation and rehybridization in bridged annulenes and deformed molecules in general: π-orbital axis vector analysis. Pure Appl Chem 58:137CrossRef
Zurück zum Zitat Harrison WA (2004) Elementary Electronic Structure, Rev. Ed., World Scientific, Singapore Harrison WA (2004) Elementary Electronic Structure, Rev. Ed., World Scientific, Singapore
Zurück zum Zitat Harrison WA, Phillips JC (1974) Angular forces in tetrahedral solids. Phys Rev Lett 33(7):410–411CrossRef Harrison WA, Phillips JC (1974) Angular forces in tetrahedral solids. Phys Rev Lett 33(7):410–411CrossRef
Zurück zum Zitat Koskinen P, Kit OO (2010) Approximate modeling of spherical membranes. Phys Rev B 82:235420CrossRef Koskinen P, Kit OO (2010) Approximate modeling of spherical membranes. Phys Rev B 82:235420CrossRef
Zurück zum Zitat Kudin KN, Scuseria GE, Yakobson BI (2001) C2F, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 64:235406CrossRef Kudin KN, Scuseria GE, Yakobson BI (2001) C2F, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 64:235406CrossRef
Zurück zum Zitat Landau LD, Lifshitz EM (1997) Theory of Elasticity 3rd. Butterworth Heinemann, Oxford Landau LD, Lifshitz EM (1997) Theory of Elasticity 3rd. Butterworth Heinemann, Oxford
Zurück zum Zitat Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385CrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385CrossRef
Zurück zum Zitat Levine IN, Busch DH, Shull H (2000) Quantum chemistry. Prentice Hall, Upper Saddle River, NJ Levine IN, Busch DH, Shull H (2000) Quantum chemistry. Prentice Hall, Upper Saddle River, NJ
Zurück zum Zitat Lindahl N, Midtvedt D, Svensson J, Nerushev OA, Lindvall N, Isacsson A, Campbell EE (2012) Determination of the bending rigidity of graphene via electrostatic actuation of buckled membranes. Nano Lett 12:3526CrossRef Lindahl N, Midtvedt D, Svensson J, Nerushev OA, Lindvall N, Isacsson A, Campbell EE (2012) Determination of the bending rigidity of graphene via electrostatic actuation of buckled membranes. Nano Lett 12:3526CrossRef
Zurück zum Zitat Lindsay L, Broido DA (2010) Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys Rev B 81:205441CrossRef Lindsay L, Broido DA (2010) Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys Rev B 81:205441CrossRef
Zurück zum Zitat Lu Q, Arroyo M, Huang R (2009) Elastic bending modulus of monolayer graphene. J Phys D: Appl Phys 42:102002CrossRef Lu Q, Arroyo M, Huang R (2009) Elastic bending modulus of monolayer graphene. J Phys D: Appl Phys 42:102002CrossRef
Zurück zum Zitat Neto AC, Uinea FG, Peres NM, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Modern Phys 81:109CrossRef Neto AC, Uinea FG, Peres NM, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Modern Phys 81:109CrossRef
Zurück zum Zitat Nikiforov I, Dontsova E, James RD, Dumitrică T (2014) Tight-binding theory of graphene bending. Phys Rev B 89:155437CrossRef Nikiforov I, Dontsova E, James RD, Dumitrică T (2014) Tight-binding theory of graphene bending. Phys Rev B 89:155437CrossRef
Zurück zum Zitat O’neill B (2006) Elementary differential geometry. Elsevier, SingaporeMATH O’neill B (2006) Elementary differential geometry. Elsevier, SingaporeMATH
Zurück zum Zitat Peng Q, Liang C, Ji W, De S (2013) A theoretical analysis of the effect of the hydrogenation of graphene to graphane on its mechanical properties. Phys Chem Chem Phys 15:2003CrossRef Peng Q, Liang C, Ji W, De S (2013) A theoretical analysis of the effect of the hydrogenation of graphene to graphane on its mechanical properties. Phys Chem Chem Phys 15:2003CrossRef
Zurück zum Zitat Politano A, Marino AR, Campi D, Farías D, Miranda R (2012) Elastic properties of a macroscopic graphene sample from phonon dispersion measurements. Carbon 50:4903CrossRef Politano A, Marino AR, Campi D, Farías D, Miranda R (2012) Elastic properties of a macroscopic graphene sample from phonon dispersion measurements. Carbon 50:4903CrossRef
Zurück zum Zitat Saito R, Dresselhaus G, Dresselhaus MS, Physical properties of carbon nanotubes (Imperial College Press, London, 1998) Saito R, Dresselhaus G, Dresselhaus MS, Physical properties of carbon nanotubes (Imperial College Press, London, 1998)
Zurück zum Zitat Sergej K, Gmitra M, Fabian J (2010) Tight-binding theory of the spin-orbit coupling in graphene. Phys Rev B 82:245412CrossRef Sergej K, Gmitra M, Fabian J (2010) Tight-binding theory of the spin-orbit coupling in graphene. Phys Rev B 82:245412CrossRef
Zurück zum Zitat Shenderova OA, Zhirnov VV, Brenner DW (2002) Carbon nanostructures. CRC Crit Rev Solid State Mater Sci 27:227–356CrossRef Shenderova OA, Zhirnov VV, Brenner DW (2002) Carbon nanostructures. CRC Crit Rev Solid State Mater Sci 27:227–356CrossRef
Zurück zum Zitat Tapasztó L et al (2012) Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene. Nat Phys 8:739CrossRef Tapasztó L et al (2012) Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene. Nat Phys 8:739CrossRef
Zurück zum Zitat Tu Z, Ou-Yang Z (2002) Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number. Phys Rev B 65:233407CrossRef Tu Z, Ou-Yang Z (2002) Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number. Phys Rev B 65:233407CrossRef
Zurück zum Zitat Tu ZC, Ou-Yang ZC (2008) Elastic theory of low-dimensional continua and its applications in bio-and nano-structures. J Comput Theoretical Nanosci 5:422CrossRef Tu ZC, Ou-Yang ZC (2008) Elastic theory of low-dimensional continua and its applications in bio-and nano-structures. J Comput Theoretical Nanosci 5:422CrossRef
Zurück zum Zitat Wallace DC, Thermodynamics of crystals (Courier Corporation, 1998) Wallace DC, Thermodynamics of crystals (Courier Corporation, 1998)
Zurück zum Zitat Wang L, Zheng Q, Liu JZ, Jiang Q (2005) Size dependence of the thin-shell model for carbon nanotubes[J]. Phys Rev Lett 95:105501CrossRef Wang L, Zheng Q, Liu JZ, Jiang Q (2005) Size dependence of the thin-shell model for carbon nanotubes[J]. Phys Rev Lett 95:105501CrossRef
Zurück zum Zitat Wei Y, Wang B, Wu J, Yang R, Dunn ML (2013) Bending rigidity and gaussian bending stiffness of single-layered graphene. Nano Lett 13:26CrossRef Wei Y, Wang B, Wu J, Yang R, Dunn ML (2013) Bending rigidity and gaussian bending stiffness of single-layered graphene. Nano Lett 13:26CrossRef
Zurück zum Zitat Wu J, Hwang KC, Huang Y (2008) An atomistic-based finite-deformation shell theory for single-wall carbon nanotubes. J Mech Phys Solids 56:279MathSciNetMATHCrossRef Wu J, Hwang KC, Huang Y (2008) An atomistic-based finite-deformation shell theory for single-wall carbon nanotubes. J Mech Phys Solids 56:279MathSciNetMATHCrossRef
Zurück zum Zitat Wu J, Yin Y, Wang X, Fan Q (2012a) Interaction potential between micro/nano curved surface and a particle located inside the surface (I): driving forces induced by curvatures. Sci China Phys Mech Astron 55(6):1066–1076CrossRef Wu J, Yin Y, Wang X, Fan Q (2012a) Interaction potential between micro/nano curved surface and a particle located inside the surface (I): driving forces induced by curvatures. Sci China Phys Mech Astron 55(6):1066–1076CrossRef
Zurück zum Zitat Wu J, Yin Y, Wang X, Huang K, Fan Q (2012b) Interaction potential between micro/nano curved surface and a particle located inside the surface (II): numerical experiment and equipotential surfaces. Sci China Phys Mech Astron 55(6):1077–1082CrossRef Wu J, Yin Y, Wang X, Huang K, Fan Q (2012b) Interaction potential between micro/nano curved surface and a particle located inside the surface (II): numerical experiment and equipotential surfaces. Sci China Phys Mech Astron 55(6):1077–1082CrossRef
Zurück zum Zitat Xu CH, Wang CZ, Chan CT, Ho KM (1992) A transferable tight-binding potential for carbon. J Phys: Condens Matter 4:6047 Xu CH, Wang CZ, Chan CT, Ho KM (1992) A transferable tight-binding potential for carbon. J Phys: Condens Matter 4:6047
Zurück zum Zitat Yakobson BI, Brabec CJ, Bernholc J (1996a) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511CrossRef Yakobson BI, Brabec CJ, Bernholc J (1996a) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511CrossRef
Zurück zum Zitat Yakobson BI, Brabec CJ, Bernholc J (1996b) Structural mechanics of carbon nanotubes: from continuum elasticity to atomistic fracture. J Comput Aided Mater Des 3(1):173–182CrossRef Yakobson BI, Brabec CJ, Bernholc J (1996b) Structural mechanics of carbon nanotubes: from continuum elasticity to atomistic fracture. J Comput Aided Mater Des 3(1):173–182CrossRef
Zurück zum Zitat Zelisko M, Ahmadpoor F, Gao H, Sharma P (2017) Determining the Gaussian modulus and edge properties of 2D materials: from Graphene to lipid bilayers. Phys Rev Lett 119:068002CrossRef Zelisko M, Ahmadpoor F, Gao H, Sharma P (2017) Determining the Gaussian modulus and edge properties of 2D materials: from Graphene to lipid bilayers. Phys Rev Lett 119:068002CrossRef
Zurück zum Zitat Zhang DB, Akatyeva E, Dumitrică T (2011) Bending ultrathin graphene at the margins of continuum mechanics. Phys Rev Lett 106:255503CrossRef Zhang DB, Akatyeva E, Dumitrică T (2011) Bending ultrathin graphene at the margins of continuum mechanics. Phys Rev Lett 106:255503CrossRef
Zurück zum Zitat Zhou G, Duan W, Gu B (2001) First-principles study on morphology and mechanical properties of single-walled carbon nanotube. Chem Phys Lett 333:344CrossRef Zhou G, Duan W, Gu B (2001) First-principles study on morphology and mechanical properties of single-walled carbon nanotube. Chem Phys Lett 333:344CrossRef
Metadaten
Titel
Tight-binding theory of graphene mechanical properties
verfasst von
Kun Huang
Yajun Yin
Benning Qu
Publikationsdatum
20.05.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 10/2021
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-020-05180-2

Weitere Artikel der Ausgabe 10/2021

Microsystem Technologies 10/2021 Zur Ausgabe

Neuer Inhalt