Skip to main content

2018 | OriginalPaper | Buchkapitel

17. Time-Based Biomedical Readout in Ultra-Low-Voltage, Small-Scale CMOS Technology

verfasst von : Rachit Mohan, Samira Zaliasl, Chris Van Hoof, Nick Van Helleputte

Erschienen in: Hybrid ADCs, Smart Sensors for the IoT, and Sub-1V & Advanced Node Analog Circuit Design

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Personalized healthcare solutions are pushing the boundaries for low-power and low-cost sensor readout devices. However, achieving this requirement requires a trade-off between cost, power consumption and accuracy or the dynamic range capability of these devices. In this paper, we outline the main reasons for this trade-off and present existing solutions in literature. In specific, we identify time-domain operation as one of the promising techniques to overcome this trade-off. We present the state-of-art architectures based on time-based operation and discuss their challenges in designing for low-power, low-cost biomedical sensor readout. Furthermore, we propose and discuss a time-based readout design that can overcome these challenges.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
To be exact, the model and the following analysis hold true for sampled systems such as sample-and-hold circuits, ADCs. It does not hold true for some blocks such as instrumentation amplifiers (IA) and low-noise amplifiers (LNA). However, since almost any analog signal chain will contain ADCs, the overall conclusion of the analysis will still be applicable and relevant to our discussion in this paper.
 
2
K f has been extracted from the BSIM4 spice model parameters.
 
Literatur
1.
Zurück zum Zitat Patel, S., Hyung, P., Bonato, P., Chan, L., Rodgers, M.: A review of wearable sensors and systems with application in rehabilitation. J. NeuroEng. Rehabil. 9(1), 1 (2012)CrossRef Patel, S., Hyung, P., Bonato, P., Chan, L., Rodgers, M.: A review of wearable sensors and systems with application in rehabilitation. J. NeuroEng. Rehabil. 9(1), 1 (2012)CrossRef
2.
Zurück zum Zitat Blaauw, D. et al.: Iot Design Space Challenges: Circuits and Systems. VLSI-Technology, Honolulu (2014) Blaauw, D. et al.: Iot Design Space Challenges: Circuits and Systems. VLSI-Technology, Honolulu (2014)
3.
Zurück zum Zitat Penders, J., van Hoof, C., Gyselinckx, B.: Bio-Medical Application of WBAN: Trends and Examples. pp. 279–302. Bio-Medical CMOS ICs, Boston (2011) Penders, J., van Hoof, C., Gyselinckx, B.: Bio-Medical Application of WBAN: Trends and Examples. pp. 279–302. Bio-Medical CMOS ICs, Boston (2011)
4.
Zurück zum Zitat Islam, A.B., Islam, S.K., Rahman, T.: A vertically aligned carbon nanofiber (VACNF) based amperometric glucose sensor. 2009 International Semiconductor Device Research Symposium, College Park (2009) Islam, A.B., Islam, S.K., Rahman, T.: A vertically aligned carbon nanofiber (VACNF) based amperometric glucose sensor. 2009 International Semiconductor Device Research Symposium, College Park (2009)
5.
Zurück zum Zitat Islam, M.Z., Haider, M.R., Huque, M.A., Adeeb, M.A., Rahman, S., Islam, S.K.: A low power sensor signal processing circuit for implantable biosensor applications. Smart Mater. Struct. 16(2), 525 (2007)CrossRef Islam, M.Z., Haider, M.R., Huque, M.A., Adeeb, M.A., Rahman, S., Islam, S.K.: A low power sensor signal processing circuit for implantable biosensor applications. Smart Mater. Struct. 16(2), 525 (2007)CrossRef
6.
Zurück zum Zitat Baker, D.A., Gough, D.A.: A continuous, implantable lactate sensor. Anal. Chem. 67(9), 1536–1540 (1995)CrossRef Baker, D.A., Gough, D.A.: A continuous, implantable lactate sensor. Anal. Chem. 67(9), 1536–1540 (1995)CrossRef
7.
Zurück zum Zitat Jeevarajan, A.S., Vani, S., Taylor, T.D., Anderson, M.M.: Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor. Biotechnol. Bioeng. 78(4), 467–472 (2002)CrossRef Jeevarajan, A.S., Vani, S., Taylor, T.D., Anderson, M.M.: Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor. Biotechnol. Bioeng. 78(4), 467–472 (2002)CrossRef
8.
Zurück zum Zitat Helleputte, N.V., Konijnenburg, M., Hyejung, K., Pettine, J., Jee, D.-W., Breeschoten, A., Morgado, A., Torfs, T., Groot, H.D., Hoof, C.V., Yazicioglu, R.F.: A multi-parameter signal-acquisition SoC for. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Fransisco (2014) Helleputte, N.V., Konijnenburg, M., Hyejung, K., Pettine, J., Jee, D.-W., Breeschoten, A., Morgado, A., Torfs, T., Groot, H.D., Hoof, C.V., Yazicioglu, R.F.: A multi-parameter signal-acquisition SoC for. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Fransisco (2014)
9.
Zurück zum Zitat Bult, K.: The effect of technology scaling on power dissipation in analog circuits. Analog Circuit Design: RF Circuits: Wide band, Front-Ends, DAC’s, Design Methodology and Verification for RF and Mixed-Signal Systems, Low Power and Low Voltage, pp. 51–294. Springer, Dordrecht (2006) Bult, K.: The effect of technology scaling on power dissipation in analog circuits. Analog Circuit Design: RF Circuits: Wide band, Front-Ends, DAC’s, Design Methodology and Verification for RF and Mixed-Signal Systems, Low Power and Low Voltage, pp. 51–294. Springer, Dordrecht (2006)
10.
Zurück zum Zitat Annema, A.J., Nauta, B., Langevelde, R.V., Tuinhout, H.: Analog circuits in ultra-deep-submicron CMOS. IEEE J. Solid State Circuits. 40(1), 132–143 (2005)CrossRef Annema, A.J., Nauta, B., Langevelde, R.V., Tuinhout, H.: Analog circuits in ultra-deep-submicron CMOS. IEEE J. Solid State Circuits. 40(1), 132–143 (2005)CrossRef
11.
Zurück zum Zitat Annema, A.J.: Analog circuit performance and process scaling. IEEE Trans. Circuits Syst. II, Analog. Digit. Signal Process. 46(6), 711–725 (1999)CrossRef Annema, A.J.: Analog circuit performance and process scaling. IEEE Trans. Circuits Syst. II, Analog. Digit. Signal Process. 46(6), 711–725 (1999)CrossRef
12.
Zurück zum Zitat Lee, K., et al.: The impact of semiconductor technology scaling on CMOS RF and digital circuits for wireless application. IEEE Trans. Electron Devices. 52(7), 1415–1422 (2005)CrossRef Lee, K., et al.: The impact of semiconductor technology scaling on CMOS RF and digital circuits for wireless application. IEEE Trans. Electron Devices. 52(7), 1415–1422 (2005)CrossRef
13.
Zurück zum Zitat Baschirotto, A., Chironi, V., Cocciolo, G., D’Amico, S., De Matteis, M., Delizia, P.: Low power analog design in scaled technologies. Proc. Topical Workshop Electron. Particle Phys.,pp. 103–110, (2009) Baschirotto, A., Chironi, V., Cocciolo, G., D’Amico, S., De Matteis, M., Delizia, P.: Low power analog design in scaled technologies. Proc. Topical Workshop Electron. Particle Phys.,pp. 103–110, (2009)
14.
Zurück zum Zitat Murmann, B.: A/D converter trends: power dissipation, scaling and digitally assisted architectures. 2008 IEEE Custom Integrated Circuits Conference, San Jose (2008) Murmann, B.: A/D converter trends: power dissipation, scaling and digitally assisted architectures. 2008 IEEE Custom Integrated Circuits Conference, San Jose (2008)
15.
Zurück zum Zitat Enz, C.C., Vittoz, E.A.: Chapter 1.2 Cmos Low-Power Analog Circuit Design. (2001) Enz, C.C., Vittoz, E.A.: Chapter 1.2 Cmos Low-Power Analog Circuit Design. (2001)
16.
Zurück zum Zitat Murmann, B., Nikaeen, P., Connelly, D., Dutton, R.: Impact of scaling on analog performance and associated modeling needs. IEEE Trans. Electron Devices. 53(9), 160–2167 (2006)CrossRef Murmann, B., Nikaeen, P., Connelly, D., Dutton, R.: Impact of scaling on analog performance and associated modeling needs. IEEE Trans. Electron Devices. 53(9), 160–2167 (2006)CrossRef
17.
Zurück zum Zitat Razavi, B.: Design of Analog CMOS Integrated Circuits. McGraw-Hill, New York (2001) Razavi, B.: Design of Analog CMOS Integrated Circuits. McGraw-Hill, New York (2001)
18.
Zurück zum Zitat Bult, K., Geelen, G.J.: The CMOS gain-boosting technique. Analog Integr. Circ. Sig. Process. 1(2), 118–135 (1991)CrossRef Bult, K., Geelen, G.J.: The CMOS gain-boosting technique. Analog Integr. Circ. Sig. Process. 1(2), 118–135 (1991)CrossRef
19.
Zurück zum Zitat Chatterjee, S., Tsividis, Y., Kinget, P.: 0.5-V analog circuit techniques and their application in OTA and filter design. IEEE J. Solid State Circuits. 40(12), 2373–2387 (2005)CrossRef Chatterjee, S., Tsividis, Y., Kinget, P.: 0.5-V analog circuit techniques and their application in OTA and filter design. IEEE J. Solid State Circuits. 40(12), 2373–2387 (2005)CrossRef
20.
Zurück zum Zitat Lehmann, T., Cassia, M.: 1-V power supply CMOS cascode amplifier. IEEE J. Solid State Circuits. 36(7), 1082–1086 (2001)CrossRef Lehmann, T., Cassia, M.: 1-V power supply CMOS cascode amplifier. IEEE J. Solid State Circuits. 36(7), 1082–1086 (2001)CrossRef
21.
Zurück zum Zitat Stockstad, T., Yoshizawa, H.: A 0.9 V, 0.51 μA rail-to-rail CMOS operational amplifier. IEEE J. Solid State Circuits. 37(3), 286–292 (2002)CrossRef Stockstad, T., Yoshizawa, H.: A 0.9 V, 0.51 μA rail-to-rail CMOS operational amplifier. IEEE J. Solid State Circuits. 37(3), 286–292 (2002)CrossRef
22.
Zurück zum Zitat Wang, R., Harjani, R.: Partial positive feedback for gain enhancement of low-power CMOS OTAs. Low-Voltage Low-Power Analog Integrated Circuits: A Special Issue of Analog Integrated Circuits and Signal Processing An International Journal 8(1) (1995), Boston, Springer US, pp. 21–35 (1995) Wang, R., Harjani, R.: Partial positive feedback for gain enhancement of low-power CMOS OTAs. Low-Voltage Low-Power Analog Integrated Circuits: A Special Issue of Analog Integrated Circuits and Signal Processing An International Journal 8(1) (1995), Boston, Springer US, pp. 21–35 (1995)
23.
Zurück zum Zitat Drost, B., Talegaonkar, M., Hanumolu, P.K.: Analog filter design using ring oscillator integrators. IEEE J. Solid State Circuits. 47(12), 3120–3129 (2012)CrossRef Drost, B., Talegaonkar, M., Hanumolu, P.K.: Analog filter design using ring oscillator integrators. IEEE J. Solid State Circuits. 47(12), 3120–3129 (2012)CrossRef
24.
Zurück zum Zitat Park, M., Perott, M.H.: IEEE J. Solid State Circuits. 44(12), 3344–3358 (2009)CrossRef Park, M., Perott, M.H.: IEEE J. Solid State Circuits. 44(12), 3344–3358 (2009)CrossRef
25.
Zurück zum Zitat Mohan, R., Yan, L.L., Gielen, G., Hoof, C., Yazicioglu, R.: 0.35 V time-domain-based instrumentation amplifier. Electron. Lett. 50(21), 1513–1514 (2014)CrossRef Mohan, R., Yan, L.L., Gielen, G., Hoof, C., Yazicioglu, R.: 0.35 V time-domain-based instrumentation amplifier. Electron. Lett. 50(21), 1513–1514 (2014)CrossRef
26.
Zurück zum Zitat Enz, C., Temes, G.: Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE. 84(11), 1584–1614 (1996)CrossRef Enz, C., Temes, G.: Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE. 84(11), 1584–1614 (1996)CrossRef
27.
Zurück zum Zitat Wu, R., Makinwa, K.K.A.A., Huijsing, J.: A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple reduction loop. IEEE J. Solid State Circuits. 44(12), 3232–3243 (2009)CrossRef Wu, R., Makinwa, K.K.A.A., Huijsing, J.: A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple reduction loop. IEEE J. Solid State Circuits. 44(12), 3232–3243 (2009)CrossRef
28.
Zurück zum Zitat Akita, I., Ishida, M.: A chopper-stabilized instrumentation amplifier using area-efficient self-trimming technique. Analog Integr. Circ. Sig. Process. 81(3), 571–582 (2014)CrossRef Akita, I., Ishida, M.: A chopper-stabilized instrumentation amplifier using area-efficient self-trimming technique. Analog Integr. Circ. Sig. Process. 81(3), 571–582 (2014)CrossRef
29.
Zurück zum Zitat Tang, A.: A 3 /spl mu/V-offset operational amplifier with 20 nV//spl radic/Hz input noise PSD at DC employing both chopping and autozeroing. 2002 IEEE International Solid-State Circuits Conference, San Fransisco (2002) Tang, A.: A 3 /spl mu/V-offset operational amplifier with 20 nV//spl radic/Hz input noise PSD at DC employing both chopping and autozeroing. 2002 IEEE International Solid-State Circuits Conference, San Fransisco (2002)
30.
Zurück zum Zitat Pertijs, M., Kindt, W.: A 140 dB-CMRR current-feedback instrumentation amplifier employing ping-pong auto-zeroing and chopping. IEEE J. Solid State Circuits. 45(10), 2044–2056 (2010)CrossRef Pertijs, M., Kindt, W.: A 140 dB-CMRR current-feedback instrumentation amplifier employing ping-pong auto-zeroing and chopping. IEEE J. Solid State Circuits. 45(10), 2044–2056 (2010)CrossRef
31.
Zurück zum Zitat Mohan, R., Zaliasl, S.G.G.G., Hoof, C., Yazicioglu, R., Helleputte, N.: A 0.6-V, 0.015-mm2, time-based ECG readout for ambulatory applications in 40-nm CMOS. IEEE J. Solid State Circuits. 52(1), 298–308 (2017)CrossRef Mohan, R., Zaliasl, S.G.G.G., Hoof, C., Yazicioglu, R., Helleputte, N.: A 0.6-V, 0.015-mm2, time-based ECG readout for ambulatory applications in 40-nm CMOS. IEEE J. Solid State Circuits. 52(1), 298–308 (2017)CrossRef
32.
Zurück zum Zitat Mesgarani, A., Alam, M., Nelson, F., Ay, S.: Supply boosting technique for designing very low-voltage mixed-signal circuits in standard CMOS. 2010 53rd IEEE International Midwest Symposium on Circuits and Systems, Seattle (2010) Mesgarani, A., Alam, M., Nelson, F., Ay, S.: Supply boosting technique for designing very low-voltage mixed-signal circuits in standard CMOS. 2010 53rd IEEE International Midwest Symposium on Circuits and Systems, Seattle (2010)
33.
Zurück zum Zitat Abo, A., Gray, P.P.R.: A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE J. Solid State Circuits. 34(5), 599–606 (1999)CrossRef Abo, A., Gray, P.P.R.: A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE J. Solid State Circuits. 34(5), 599–606 (1999)CrossRef
34.
Zurück zum Zitat Ranuarez, J., Deen, M., Chen, C.-H.: A review of gate tunneling current in MOS devices. Microelectron. Reliab. 46(12), 1939–1956 (2006)CrossRef Ranuarez, J., Deen, M., Chen, C.-H.: A review of gate tunneling current in MOS devices. Microelectron. Reliab. 46(12), 1939–1956 (2006)CrossRef
35.
Zurück zum Zitat Helleputte, N.V., Kim, S., Kim, H., Kim, J.P., Hoof, C.V., Yazicioglu, R.F.: A 160uA biopotential acquisition IC with fully Integrated IA and motion artifact suppression. IEEE Trans. Biomed. Circuits Syst. 6(6), 552–561 (2012)CrossRef Helleputte, N.V., Kim, S., Kim, H., Kim, J.P., Hoof, C.V., Yazicioglu, R.F.: A 160uA biopotential acquisition IC with fully Integrated IA and motion artifact suppression. IEEE Trans. Biomed. Circuits Syst. 6(6), 552–561 (2012)CrossRef
36.
Zurück zum Zitat Muller, R., Gambini, S.S., Rabaey, J.: A 0.013 mm2, 5uW , DC-coupled neural signal acquisition IC With 0.5 V supply. IEEE J. Solid State Circuits. 47(1), 232–243 (2012)CrossRef Muller, R., Gambini, S.S., Rabaey, J.: A 0.013 mm2, 5uW , DC-coupled neural signal acquisition IC With 0.5 V supply. IEEE J. Solid State Circuits. 47(1), 232–243 (2012)CrossRef
37.
Zurück zum Zitat Tsividis, Y., Banu, M., Khoury, J.: Continuous-time MOSFET-C filters in VLSI. IEEE J. Solid State Circuits. SC-1(1), 15–30 (1986)CrossRef Tsividis, Y., Banu, M., Khoury, J.: Continuous-time MOSFET-C filters in VLSI. IEEE J. Solid State Circuits. SC-1(1), 15–30 (1986)CrossRef
38.
Zurück zum Zitat Helleputte, N.V., et al.: A 345 μW multi-sensor biomedical SoC with bio-impedance, 3-channel ECG, motion artifact reduction, and Integrated DSP. IEEE J. Solid State Circuits. 50(1), 230–244 (2015)CrossRef Helleputte, N.V., et al.: A 345 μW multi-sensor biomedical SoC with bio-impedance, 3-channel ECG, motion artifact reduction, and Integrated DSP. IEEE J. Solid State Circuits. 50(1), 230–244 (2015)CrossRef
39.
Zurück zum Zitat Fan, Q., Sebastiano, F., Huijsing, J.H., Makinwa, K.A.: A 1.8 W 60 nV Hz capacitively-coupled chopper instrumentation amplifier in 65nm CMOS for wireless sensor nodes. IEEE J. Solid State Circuits. 46(7), 1534–1543 (2011)CrossRef Fan, Q., Sebastiano, F., Huijsing, J.H., Makinwa, K.A.: A 1.8 W 60 nV Hz capacitively-coupled chopper instrumentation amplifier in 65nm CMOS for wireless sensor nodes. IEEE J. Solid State Circuits. 46(7), 1534–1543 (2011)CrossRef
40.
Zurück zum Zitat Ng, K., Xu, Y.: A compact, low input capacitance neural recording amplifier with Cin/Gain of 20fF.V/V. 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS), Hsinchu (2012) Ng, K., Xu, Y.: A compact, low input capacitance neural recording amplifier with Cin/Gain of 20fF.V/V. 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS), Hsinchu (2012)
41.
Zurück zum Zitat Bohorquez, J.L., Yip, M., Chandrakasan, A.P., Dawson, J.L.: A biomedical sensor interface with a sinc filter and interference cancellation. IEEE J. Solid State Circuits. 46(4), 746–756 (2011)CrossRef Bohorquez, J.L., Yip, M., Chandrakasan, A.P., Dawson, J.L.: A biomedical sensor interface with a sinc filter and interference cancellation. IEEE J. Solid State Circuits. 46(4), 746–756 (2011)CrossRef
42.
Zurück zum Zitat Zou, X., Liew, S., Yao, L., Lian, Y.: A 1V 22μW 32-channel implantable EEG recording IC. 2010 IEEE International Solid-State Circuits Conference, San Fransisco (2010) Zou, X., Liew, S., Yao, L., Lian, Y.: A 1V 22μW 32-channel implantable EEG recording IC. 2010 IEEE International Solid-State Circuits Conference, San Fransisco (2010)
43.
Zurück zum Zitat Majidzadeh, V., Schmid, A., Leblebici, Y.: Energy efficient low-noise neural recording amplifier with enhanced noise efficiency factor. IEEE Trans. Biomed. Circuits Syst. 5(3), 262–271 (2011)CrossRef Majidzadeh, V., Schmid, A., Leblebici, Y.: Energy efficient low-noise neural recording amplifier with enhanced noise efficiency factor. IEEE Trans. Biomed. Circuits Syst. 5(3), 262–271 (2011)CrossRef
44.
Zurück zum Zitat Naraghi, S., Courcy, M., Flynn, M.P.: A 9-bit, 14 μW and 0.06 mm pulse position modulation ADC in 90nm digital CMOS. IEEE J. Solid-State Circuits. 45(9), 1870 (2010)CrossRef Naraghi, S., Courcy, M., Flynn, M.P.: A 9-bit, 14 μW and 0.06 mm pulse position modulation ADC in 90nm digital CMOS. IEEE J. Solid-State Circuits. 45(9), 1870 (2010)CrossRef
45.
Zurück zum Zitat Hernandez, L., Prefasi, E.: Analog-to-digital conversion using noise shaping and time encoding. IEEE Trans. Circuits Syst. I, Reg. Papers. 55(7), 2026–2037 (2008)MathSciNetCrossRef Hernandez, L., Prefasi, E.: Analog-to-digital conversion using noise shaping and time encoding. IEEE Trans. Circuits Syst. I, Reg. Papers. 55(7), 2026–2037 (2008)MathSciNetCrossRef
46.
Zurück zum Zitat Dhanasekaran, V., et al.: A 20MHz BW 68dB DR CT ΔΣ ADC based on a multi-bit time-domain quantizer and feedback element. 2009 IEEE International Solid-State Circuits Conference, San Fransisco (2009) Dhanasekaran, V., et al.: A 20MHz BW 68dB DR CT ΔΣ ADC based on a multi-bit time-domain quantizer and feedback element. 2009 IEEE International Solid-State Circuits Conference, San Fransisco (2009)
47.
Zurück zum Zitat Iwata, A., Sakimura, N., Nagata, M., Morie, T.: The architecture of delta sigma analog-to-digital converters using a voltage-controlled oscillator as a multibit quantizer. IEEE Trans. Circuits Syst. II, Analog Digit Signal Process. 46(7), 941–945 (1999)CrossRef Iwata, A., Sakimura, N., Nagata, M., Morie, T.: The architecture of delta sigma analog-to-digital converters using a voltage-controlled oscillator as a multibit quantizer. IEEE Trans. Circuits Syst. II, Analog Digit Signal Process. 46(7), 941–945 (1999)CrossRef
48.
Zurück zum Zitat Kuppambatti, J., Vigraham, B., Kinget, P.: 17.9 A 0.6V 70MHz 4th-order continuous-time butterworth filter with 55.8dB SNR, 60dB THD at +2.8dBm output signal power. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Fransisco (2014) Kuppambatti, J., Vigraham, B., Kinget, P.: 17.9 A 0.6V 70MHz 4th-order continuous-time butterworth filter with 55.8dB SNR, 60dB THD at +2.8dBm output signal power. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Fransisco (2014)
49.
Zurück zum Zitat Cuk, S.M.: Modeling, Analysis and Design. Thesis – California Institute of Technology, Pasadena (1977) Cuk, S.M.: Modeling, Analysis and Design. Thesis – California Institute of Technology, Pasadena (1977)
50.
Zurück zum Zitat Hanson, S., Foo, Z., Blaauw, D., Sylvester, D.: 0.5 V sub-microwatt CMOS image sensor with pulse-width modulation read-out. IEEE J. Solid State Circuits. 45(4), 759–767 (2010)CrossRef Hanson, S., Foo, Z., Blaauw, D., Sylvester, D.: 0.5 V sub-microwatt CMOS image sensor with pulse-width modulation read-out. IEEE J. Solid State Circuits. 45(4), 759–767 (2010)CrossRef
51.
Zurück zum Zitat Jung, W., Jeong, S., Oh, S., Sylvester, D., Blaauw, D.: 27.6 A 0.7pF-to-10nF fully digital capacitance-to-digital converter using iterative delay-chain discharge. 2015 IEEE International Solid-State Circuits Conference, San Fransisco (2015) Jung, W., Jeong, S., Oh, S., Sylvester, D., Blaauw, D.: 27.6 A 0.7pF-to-10nF fully digital capacitance-to-digital converter using iterative delay-chain discharge. 2015 IEEE International Solid-State Circuits Conference, San Fransisco (2015)
52.
Zurück zum Zitat Rethy, J., Smedt, V., Dehaene, W., Gielen, G.: Supply-noise-resilient design of a BBPLL-based force-balanced Wheatstone bridge Interface in 130-nm CMOS. IEEE J. Solid State Circuits. 48(11), 618–627 (2013) Rethy, J., Smedt, V., Dehaene, W., Gielen, G.: Supply-noise-resilient design of a BBPLL-based force-balanced Wheatstone bridge Interface in 130-nm CMOS. IEEE J. Solid State Circuits. 48(11), 618–627 (2013)
53.
Zurück zum Zitat Yurish, S.: Sensors and transducers: frequency output vs voltage output. Sens. Transducers Mag. 49(11), 302–305 (2004) Yurish, S.: Sensors and transducers: frequency output vs voltage output. Sens. Transducers Mag. 49(11), 302–305 (2004)
54.
Zurück zum Zitat Middlehoek, S., French, P., Huijsing, J., Lian, W.: Sensors with digital or frequency output. Sensors Actuators. 15(2), 119–133 (1988)CrossRef Middlehoek, S., French, P., Huijsing, J., Lian, W.: Sensors with digital or frequency output. Sensors Actuators. 15(2), 119–133 (1988)CrossRef
55.
Zurück zum Zitat Kindlund, A., Sundgren, H., Lundstrom, I.: Quartz crystal gas monitor with a gas concentrating stage. Sensors Actuators. 6(1), 1–17 (1984)CrossRef Kindlund, A., Sundgren, H., Lundstrom, I.: Quartz crystal gas monitor with a gas concentrating stage. Sensors Actuators. 6(1), 1–17 (1984)CrossRef
56.
Zurück zum Zitat Danneels, H., Coddens, K., Gielen, G.: A fully-digital, 0.3V, 270 nW capacitive sensor interface without external references. 2011 Proceedings of the ESSCIRC (ESSCIRC), Helsinki (2011) Danneels, H., Coddens, K., Gielen, G.: A fully-digital, 0.3V, 270 nW capacitive sensor interface without external references. 2011 Proceedings of the ESSCIRC (ESSCIRC), Helsinki (2011)
57.
Zurück zum Zitat Grassi, M., Malcovati, P., Baschirotto, A.: A 141-dB dynamic range CMOS gas-sensor interface circuit without calibration with 16-bit digital output word. IEEE J. Solid State Circuits. 42(7), 1543–1554 (2007)CrossRef Grassi, M., Malcovati, P., Baschirotto, A.: A 141-dB dynamic range CMOS gas-sensor interface circuit without calibration with 16-bit digital output word. IEEE J. Solid State Circuits. 42(7), 1543–1554 (2007)CrossRef
58.
Zurück zum Zitat Lu, J.H.-L., Inerowicz, M., Joo, S., Kwon, J.-K., Jung, B.: A low-power, wide-dynamic-range semi-digital universal sensor readout circuit using pulsewidth modulation. IEEE Sensors J. 11(5), 1134–1144 (2011)CrossRef Lu, J.H.-L., Inerowicz, M., Joo, S., Kwon, J.-K., Jung, B.: A low-power, wide-dynamic-range semi-digital universal sensor readout circuit using pulsewidth modulation. IEEE Sensors J. 11(5), 1134–1144 (2011)CrossRef
59.
Zurück zum Zitat Rethy, J.V., Danneels, H., Smedt, V.D., Dehaene, W., Gielen, G.E.: Supply-noise-resilient design of a BBPLL-based force-balanced wheatstone bridge interface in 130nm CMOS. IEEE J. Solid Stage Circuits. 48(11), 2618–2627 (2013)CrossRef Rethy, J.V., Danneels, H., Smedt, V.D., Dehaene, W., Gielen, G.E.: Supply-noise-resilient design of a BBPLL-based force-balanced wheatstone bridge interface in 130nm CMOS. IEEE J. Solid Stage Circuits. 48(11), 2618–2627 (2013)CrossRef
60.
Zurück zum Zitat Park, M., Perrott, M.: A VCO-based analog-to-digital converter with second-order Sigma-Delta noise shaping. 2009 IEEE International Symposium on Circuits and Systems, Taipei (2009) Park, M., Perrott, M.: A VCO-based analog-to-digital converter with second-order Sigma-Delta noise shaping. 2009 IEEE International Symposium on Circuits and Systems, Taipei (2009)
61.
Zurück zum Zitat Jiang, W., Hokhikyan, V., Chandrakumar, H., Karkare, V., Markovic, D.: 28.6 A +−50mV linear input-range VCO-based neural-recording front-end with digital non-linearity correction. 2016 IEEE International Solid-State Circuits Conference, San Fransisco (2016) Jiang, W., Hokhikyan, V., Chandrakumar, H., Karkare, V., Markovic, D.: 28.6 A +−50mV linear input-range VCO-based neural-recording front-end with digital non-linearity correction. 2016 IEEE International Solid-State Circuits Conference, San Fransisco (2016)
62.
Zurück zum Zitat Booton, R.: Nonlinear control systems with random inputs. IRE Trans. Circ. Theory. 1(1), 9–18 (1954)CrossRef Booton, R.: Nonlinear control systems with random inputs. IRE Trans. Circ. Theory. 1(1), 9–18 (1954)CrossRef
63.
Zurück zum Zitat Ouzounov, S., Hegt, H., Roermund, A.V.: Sigma–delta modulators operating at a limit cycle. IEEE Trans. Circuits Syst. II. 53(5), 399–403 (2006)CrossRef Ouzounov, S., Hegt, H., Roermund, A.V.: Sigma–delta modulators operating at a limit cycle. IEEE Trans. Circuits Syst. II. 53(5), 399–403 (2006)CrossRef
64.
Zurück zum Zitat Perrott, M., Trott, M., Sodini, C.: A modeling approach for Σ-Δ fractional-N frequency synthesizers allowing straightforward noise analysis. IEEE J. Solid State Circuits. 37(8), 1028–1038 (2002)CrossRef Perrott, M., Trott, M., Sodini, C.: A modeling approach for Σ-Δ fractional-N frequency synthesizers allowing straightforward noise analysis. IEEE J. Solid State Circuits. 37(8), 1028–1038 (2002)CrossRef
65.
Zurück zum Zitat Goldberger, A., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 101, e215–e220 (2000)CrossRef Goldberger, A., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 101, e215–e220 (2000)CrossRef
Metadaten
Titel
Time-Based Biomedical Readout in Ultra-Low-Voltage, Small-Scale CMOS Technology
verfasst von
Rachit Mohan
Samira Zaliasl
Chris Van Hoof
Nick Van Helleputte
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-61285-0_17

Neuer Inhalt