Skip to main content

2015 | OriginalPaper | Buchkapitel

Time-Domain Techniques for mm-Wave Frequency Generation

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The demand for higher integration level and lower production cost has driven mm-wave electronics, which have traditionally been implemented in III-V technologies for better RF performance, to be also implemented in CMOS. This motivates the digitization of the mm-wave systems for improved RF performance. This paper focuses on a digitally intensive architecture and time-domain circuit and calibration techniques for mm-wave frequency synthesizer. A 60-GHz all-digital phase-locked loop (ADPLL) transmitter prototype, implemented in 65-nm CMOS, achieves excellent phase noise (−75 dBc/Hz at 10 kHz offset), fast locking (3 μs), low reference spurs (−74 dBc), and linear frequency modulation up to 1 GHz in range.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Z. Luo, A. Steegen, M. Eller, R. Mann, et al., “High performance and low power transistors integrated in 65 nm bulk CMOS technology,” IEEE Int. Electron Devices Meeting Dig. Tech. Papers, pp. 661–664, 2004. Z. Luo, A. Steegen, M. Eller, R. Mann, et al., “High performance and low power transistors integrated in 65 nm bulk CMOS technology,” IEEE Int. Electron Devices Meeting Dig. Tech. Papers, pp. 661–664, 2004.
2.
Zurück zum Zitat A. Tomkins, R.A. Aroca, T. Yamamoto, S.T. Nicolson, Y. Doi, and S.P. Voinigescu, “A zero-IF 60 GHz 65 nm CMOS transceiver with direct BPSK modulation demonstrating up to 6 Gb/s data rates over a 2 m wireless link,” IEEE J. Solid-State Circuits, vol. 44, no. 8, pp. 2085–2099, Aug. 2009. A. Tomkins, R.A. Aroca, T. Yamamoto, S.T. Nicolson, Y. Doi, and S.P. Voinigescu, “A zero-IF 60 GHz 65 nm CMOS transceiver with direct BPSK modulation demonstrating up to 6 Gb/s data rates over a 2 m wireless link,” IEEE J. Solid-State Circuits, vol. 44, no. 8, pp. 2085–2099, Aug. 2009.
3.
Zurück zum Zitat K. Okada, N. Li, K. Matsushita, K. Bunsen, R. Murakami, A. Musa, T. Sato, H. Asada, N. Takayama, S. Ito, W. Chaivipas, R. Minami, T. Yamaguchi, Y. Takeuchi, H. Yamagishi, M. Noda, and A. Matsuzawa, “A 60-GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE802.15.3c,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2988–3004, Dec. 2011. K. Okada, N. Li, K. Matsushita, K. Bunsen, R. Murakami, A. Musa, T. Sato, H. Asada, N. Takayama, S. Ito, W. Chaivipas, R. Minami, T. Yamaguchi, Y. Takeuchi, H. Yamagishi, M. Noda, and A. Matsuzawa, “A 60-GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE802.15.3c,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2988–3004, Dec. 2011.
4.
Zurück zum Zitat S. Emami, R.F. Wiser, E. Ali, M.G. Forbes, M.Q. Gordon, X. Guan, S. Lo, P.T. McElwee, J. Parker, J.R. Tani, J.M. Gilbert, and C.H. Doan, “A 60 GHz CMOS phased-array transceiver pair for multi-Gb/s wireless communications,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 164–165, Feb. 2011. S. Emami, R.F. Wiser, E. Ali, M.G. Forbes, M.Q. Gordon, X. Guan, S. Lo, P.T. McElwee, J. Parker, J.R. Tani, J.M. Gilbert, and C.H. Doan, “A 60 GHz CMOS phased-array transceiver pair for multi-Gb/s wireless communications,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 164–165, Feb. 2011.
5.
Zurück zum Zitat R.B. Staszewski, and P.T. Balsara, All-Digital Frequency Synthesizer in Deep-Submicron CMOS. WILEY-Interscience, 2006. R.B. Staszewski, and P.T. Balsara, All-Digital Frequency Synthesizer in Deep-Submicron CMOS. WILEY-Interscience, 2006.
6.
Zurück zum Zitat F.M. Gardner, “Charge-pump phase-locked loops,” IEEE Trans. on Communications, vol. COMM-28, pp. 1849–1858, Nov. 1980. F.M. Gardner, “Charge-pump phase-locked loops,” IEEE Trans. on Communications, vol. COMM-28, pp. 1849–1858, Nov. 1980.
7.
Zurück zum Zitat R.B. Staszewski, K. Muhammad, D. Leipold, C.-M. Hung, Y.-C. Ho, J.L. Wallberg, C. Fernando, K. Maggio, R. Staszewski, T. Jung, J. Koh, S. John, I.Y. Deng, V. Sarda, O. Moreira-Tamayo, V. Mayega, R. Katz, O. Friedman, O.E. Eliezer, E. de-Obaldia, and P.T. Balsara, “All-digital TX frequency synthesizer and discrete-time receiver for Bluetooth radio in 130-nm CMOS,” IEEE J. Solid-State Circuits, vol. 39, iss. 12, pp. 2278–2291, Dec. 2004. R.B. Staszewski, K. Muhammad, D. Leipold, C.-M. Hung, Y.-C. Ho, J.L. Wallberg, C. Fernando, K. Maggio, R. Staszewski, T. Jung, J. Koh, S. John, I.Y. Deng, V. Sarda, O. Moreira-Tamayo, V. Mayega, R. Katz, O. Friedman, O.E. Eliezer, E. de-Obaldia, and P.T. Balsara, “All-digital TX frequency synthesizer and discrete-time receiver for Bluetooth radio in 130-nm CMOS,” IEEE J. Solid-State Circuits, vol. 39, iss. 12, pp. 2278–2291, Dec. 2004.
8.
Zurück zum Zitat R.B. Staszewski, J. Wallberg, S. Rezeq, C.-M. Hung, O. Eliezer, S. Vemulapalli, C. Fernando, K. Maggio, R. Staszewski, N. Barton, M.-C. Lee, P. Cruise, M. Entezari, K. Muhammad, and D. Leipold, “All-digital PLL and transmitter for mobile phones,” IEEE J. Solid-State Circuits, vol. 40, iss. 12, pp. 2469–2482, Dec. 2005. R.B. Staszewski, J. Wallberg, S. Rezeq, C.-M. Hung, O. Eliezer, S. Vemulapalli, C. Fernando, K. Maggio, R. Staszewski, N. Barton, M.-C. Lee, P. Cruise, M. Entezari, K. Muhammad, and D. Leipold, “All-digital PLL and transmitter for mobile phones,” IEEE J. Solid-State Circuits, vol. 40, iss. 12, pp. 2469–2482, Dec. 2005.
9.
Zurück zum Zitat L. Vercesi, L. Fanori, F. De Bernardinis, A. Liscidini, and R. Castello, “A dither-less all digital PLL for cellular transmitters,” IEEE J. Solid-State Circuits, vol. 47, no. 8, pp. 1908–1920, Aug. 2012. L. Vercesi, L. Fanori, F. De Bernardinis, A. Liscidini, and R. Castello, “A dither-less all digital PLL for cellular transmitters,” IEEE J. Solid-State Circuits, vol. 47, no. 8, pp. 1908–1920, Aug. 2012.
10.
Zurück zum Zitat R.B. Staszewski, and P.T. Balsara, “Phase-domain all-digital phase-locked loop,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 52, no. 3, pp. 159–163, Mar. 2005. R.B. Staszewski, and P.T. Balsara, “Phase-domain all-digital phase-locked loop,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 52, no. 3, pp. 159–163, Mar. 2005.
11.
Zurück zum Zitat K. Pourvoyeur, R. Feger, S. Schuster, A. Stelzer, and L. Maurer, “Ramp sequence analysis to resolve multi target scenarios for a 77-GHz FMCW radar sensor,” Proc. Int. Conf. on Information Fusion, pp. 1–7, June 2008. K. Pourvoyeur, R. Feger, S. Schuster, A. Stelzer, and L. Maurer, “Ramp sequence analysis to resolve multi target scenarios for a 77-GHz FMCW radar sensor,” Proc. Int. Conf. on Information Fusion, pp. 1–7, June 2008.
12.
Zurück zum Zitat W. Wu, J.R. Long, and R.B. Staszewski, “A digital ultra-fast acquisition linear frequency modulated PLL for mm-wave FMCW radars,” Proc. IEEE Radio Frequency Integration Technolgy Symp., pp. 32–35, Dec. 2009. W. Wu, J.R. Long, and R.B. Staszewski, “A digital ultra-fast acquisition linear frequency modulated PLL for mm-wave FMCW radars,” Proc. IEEE Radio Frequency Integration Technolgy Symp., pp. 32–35, Dec. 2009.
13.
Zurück zum Zitat G.M. Brooker, “Understanding millimeter wave FMCW radars,” Proc. Int. Conf. on Sensing Tech., pp. 152–157, Nov. 2005. G.M. Brooker, “Understanding millimeter wave FMCW radars,” Proc. Int. Conf. on Sensing Tech., pp. 152–157, Nov. 2005.
14.
Zurück zum Zitat W. Wu, X. Bai, R.B. Staszewski, and J.R. Long, “A 56.4-63.4 GHz spurious free all-digital fractional-N PLL in 65 nm CMOS,” IEEE Int. Solid-State Circuits Conf. Dig. Tech Papers, pp. 352–353, Feb. 2013. W. Wu, X. Bai, R.B. Staszewski, and J.R. Long, “A 56.4-63.4 GHz spurious free all-digital fractional-N PLL in 65 nm CMOS,” IEEE Int. Solid-State Circuits Conf. Dig. Tech Papers, pp. 352–353, Feb. 2013.
15.
Zurück zum Zitat W. Wu, X. Bai, R.B. Staszewski, and J.R. Long, “A mm-wave FMCW radar transmitter based on a multirate ADPLL,” Proc. IEEE Radio Frequency Integrated Circuits Symp., pp. 107–110, June 2013. W. Wu, X. Bai, R.B. Staszewski, and J.R. Long, “A mm-wave FMCW radar transmitter based on a multirate ADPLL,” Proc. IEEE Radio Frequency Integrated Circuits Symp., pp. 107–110, June 2013.
16.
Zurück zum Zitat M.E. Heidari, M. Lee, and A.A. Abidi, “All-digital outphasing modulator for a software-defined transmitter,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1260–1271, Apr. 2009. M.E. Heidari, M. Lee, and A.A. Abidi, “All-digital outphasing modulator for a software-defined transmitter,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1260–1271, Apr. 2009.
17.
Zurück zum Zitat R.B. Staszewski, D. Leipold, and P.T. Balsara, “A first multigigahertz digitally controlled oscillator for wireless applications,” Proc. IEEE Radio Frequency Integration Circuit Symp., vol. 51, no. 11, pp. 2154–2164, Nov. 2003. R.B. Staszewski, D. Leipold, and P.T. Balsara, “A first multigigahertz digitally controlled oscillator for wireless applications,” Proc. IEEE Radio Frequency Integration Circuit Symp., vol. 51, no. 11, pp. 2154–2164, Nov. 2003.
18.
Zurück zum Zitat J.R. Long, Y. Zhao, W. Wu, M. Spirito, L. Vera, and E. Gordon, “Passive circuit technologies for mm-wave wireless systems on silicon,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 59, no. 8, pp. 1680–1693, Aug. 2012. J.R. Long, Y. Zhao, W. Wu, M. Spirito, L. Vera, and E. Gordon, “Passive circuit technologies for mm-wave wireless systems on silicon,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 59, no. 8, pp. 1680–1693, Aug. 2012.
19.
Zurück zum Zitat W. Wu, J.R. Long, and R.B. Staszewski, “High-resolution millimeter-wave digitally-controlled oscillators with reconfigurable passive resonators,” IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2785–2794, Nov. 2013. W. Wu, J.R. Long, and R.B. Staszewski, “High-resolution millimeter-wave digitally-controlled oscillators with reconfigurable passive resonators,” IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2785–2794, Nov. 2013.
20.
Zurück zum Zitat T.S.D. Cheung, J.R. Long, K. Vaed, R. Volant, A. Chinthakindi, C.M. Schnabel, J. Florkey, Z.X. He, and K. Stein, “Differentially-shielded monolithic inductors,” Proc. IEEE Custom Integrated Circuits Conf., pp. 95–98, Sept. 2003. T.S.D. Cheung, J.R. Long, K. Vaed, R. Volant, A. Chinthakindi, C.M. Schnabel, J. Florkey, Z.X. He, and K. Stein, “Differentially-shielded monolithic inductors,” Proc. IEEE Custom Integrated Circuits Conf., pp. 95–98, Sept. 2003.
21.
Zurück zum Zitat T. LaRocca, S.-W. Tam, D. Huang, Q. Gu, E. Socher, W. Hant, and F. Chang, “Millimeter-wave CMOS digital controlled artificial dielectric differential mode transmission lines for reconfigurable ICs,” IEEE Int. Microwave Symp. Dig., pp. 181–184, June 2008. T. LaRocca, S.-W. Tam, D. Huang, Q. Gu, E. Socher, W. Hant, and F. Chang, “Millimeter-wave CMOS digital controlled artificial dielectric differential mode transmission lines for reconfigurable ICs,” IEEE Int. Microwave Symp. Dig., pp. 181–184, June 2008.
22.
Zurück zum Zitat H. Sjöland, “Improved switched tuning of differential CMOS VCOs,” IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing, vol. 49, no. 5, pp. 352–355, May 2002. H. Sjöland, “Improved switched tuning of differential CMOS VCOs,” IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing, vol. 49, no. 5, pp. 352–355, May 2002.
23.
Zurück zum Zitat M. Lee, M.E. Heidari, and A.A. Abidi, “A low-noise wideband digital phase-locked loop based on a coarse–fine time-to-digital converter with subpicosecond resolution,” IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2808–2816, Oct. 2009. M. Lee, M.E. Heidari, and A.A. Abidi, “A low-noise wideband digital phase-locked loop based on a coarse–fine time-to-digital converter with subpicosecond resolution,” IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2808–2816, Oct. 2009.
24.
Zurück zum Zitat R.B. Staszewski, G. Shriki, and P.T. Balsara, “All-digital PLL with ultra fast acquisition,” Proc. of IEEE Asian Solid-State Circuits Conf., sec. 11-7, pp. 289–292, Nov. 2005, Taipei, Taiwan. R.B. Staszewski, G. Shriki, and P.T. Balsara, “All-digital PLL with ultra fast acquisition,” Proc. of IEEE Asian Solid-State Circuits Conf., sec. 11-7, pp. 289–292, Nov. 2005, Taipei, Taiwan.
25.
Zurück zum Zitat R.B. Staszewski, J. Wallberg, G. Feygin, M. Entezari, and D. Leipold, “LMS-based calibration of an RF digitally controlled oscillator for mobile phones,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 53, no. 3, pp. 225–229, Mar. 2006. R.B. Staszewski, J. Wallberg, G. Feygin, M. Entezari, and D. Leipold, “LMS-based calibration of an RF digitally controlled oscillator for mobile phones,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 53, no. 3, pp. 225–229, Mar. 2006.
26.
Zurück zum Zitat G. Marzin, S. Levantino, C. Samori, and A.L. Lacaita, “A 20 Mb/s phase modulator based on a 3.6 GHz digital PLL with −36 dB EVM at 5 mW power,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2974–2988, Dec. 2012. G. Marzin, S. Levantino, C. Samori, and A.L. Lacaita, “A 20 Mb/s phase modulator based on a 3.6 GHz digital PLL with −36 dB EVM at 5 mW power,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2974–2988, Dec. 2012.
27.
Zurück zum Zitat O. Eliezer, R.B. Staszewski, J. Mehta, F. Jabbar, and I. Bashir, “Accurate self-characterization of mismatches in a capacitor array of a digitally-controlled oscillator,” Proc. IEEE Dallas Circuits and Systems Workshop, pp. 1–4, Oct. 2010. O. Eliezer, R.B. Staszewski, J. Mehta, F. Jabbar, and I. Bashir, “Accurate self-characterization of mismatches in a capacitor array of a digitally-controlled oscillator,” Proc. IEEE Dallas Circuits and Systems Workshop, pp. 1–4, Oct. 2010.
28.
Zurück zum Zitat R.B. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, and P.T. Balsara, “1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 53, no. 3, pp. 220–224, Mar. 2006. R.B. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, and P.T. Balsara, “1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 53, no. 3, pp. 220–224, Mar. 2006.
29.
Zurück zum Zitat K. Scheir, G. Vandersteen, Y. Rolain, and P. Wambacq, “A 57-to-66 GHz quadrature PLL in 45 nm digital CMOS,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 494–495, Feb. 2009. K. Scheir, G. Vandersteen, Y. Rolain, and P. Wambacq, “A 57-to-66 GHz quadrature PLL in 45 nm digital CMOS,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 494–495, Feb. 2009.
30.
Zurück zum Zitat A. Musa, R. Murakami, T. Sato, W. Chaivipas, K. Okada, and A. Matsuzawa, “A low phase noise quadrature injection locked frequency synthesizer for mm-wave applications,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2635–2649, Nov. 2011. A. Musa, R. Murakami, T. Sato, W. Chaivipas, K. Okada, and A. Matsuzawa, “A low phase noise quadrature injection locked frequency synthesizer for mm-wave applications,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2635–2649, Nov. 2011.
31.
Zurück zum Zitat X. Yi, C.C. Boon, H. Liu, J.F. Lin, J.C. Ong, and W.M. Lim, “A 57.9-to-68.3 GHz 24.6 mW frequency synthesizer with in-phase injection-coupled QVCO in 65 nm CMOS,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 354–355, Feb. 2013. X. Yi, C.C. Boon, H. Liu, J.F. Lin, J.C. Ong, and W.M. Lim, “A 57.9-to-68.3 GHz 24.6 mW frequency synthesizer with in-phase injection-coupled QVCO in 65 nm CMOS,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 354–355, Feb. 2013.
32.
Zurück zum Zitat T. Mitomo, N. Ono, H. Hoshino, Y. Yoshihara, O. Watanabe, and I. Seto, “A 77 GHz 90 nm CMOS transceiver for FMCW radar applications,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 928–937, Apr. 2010. T. Mitomo, N. Ono, H. Hoshino, Y. Yoshihara, O. Watanabe, and I. Seto, “A 77 GHz 90 nm CMOS transceiver for FMCW radar applications,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 928–937, Apr. 2010.
33.
Zurück zum Zitat Y.-A. Li, M.-H. Hung, S.-J. Huang, and J. Lee, “A fully integrated 77 GHz FMCW radar system in 65 nm CMOS,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 216–217, Feb. 2010. Y.-A. Li, M.-H. Hung, S.-J. Huang, and J. Lee, “A fully integrated 77 GHz FMCW radar system in 65 nm CMOS,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 216–217, Feb. 2010.
34.
Zurück zum Zitat H. Sakurai, Y. Kobayashi, T. Mitomo, O. Watanabe, and S. Otaka, “A 1.5 GHz-modulation-range 10 ms-modulation-period 180 kHzrms-frequency-error 26 MHz-reference mixed-mode FMCW synthesizer for mm-wave radar application,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 292–293, Feb. 2011. H. Sakurai, Y. Kobayashi, T. Mitomo, O. Watanabe, and S. Otaka, “A 1.5 GHz-modulation-range 10 ms-modulation-period 180 kHzrms-frequency-error 26 MHz-reference mixed-mode FMCW synthesizer for mm-wave radar application,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 292–293, Feb. 2011.
Metadaten
Titel
Time-Domain Techniques for mm-Wave Frequency Generation
verfasst von
Wanghua Wu
Robert Bogdan Staszewski
John R. Long
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-07938-7_15

Neuer Inhalt