Skip to main content
Erschienen in: Wireless Personal Communications 2/2018

20.04.2018

Time-Reversal Based Secure Transmission Scheme for 5G Networks over Correlated Wireless Multi-Path Channels

verfasst von: Jiang Zhu, Yan Wang, Tian Yang, Fangwei Li

Erschienen in: Wireless Personal Communications | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Broadband wireless communication users for 5G networks are primarily implemented in a complicated environment; the complex environment of time-varying multi-path propagation characteristics will seriously affect the performance of communication. One of the core technologies to overcome this problem is to introduce the environment adaptive technique—time reversal in the wireless link. Further, the problem of a Wiretap Channel in physical layer security research has become a popular research topic in recent years. To resolve the physical layer wiretap channel and multi-path fading problems in wireless channels, a novel concept of combining time reversal technology with physical layer security technology is proposed. In this paper, a physical layer secure transmission scheme based on the joint time reversal technique and artificial noise at the sending end is proposed for the wireless multi-path channel. First, in a typical wiretap channel model, the time reversal technique is used to improve the security of the information transmission process by using the properties of spatial and temporal focusing. Second, as the information is easily eavesdropped near the focus point, artificial noise is added to the sending end to disrupt the eavesdropping capability of the eavesdropper. Finally, due to the complexity of the multi-path channels, the influence of the antenna correlation on the system security performance is considered. Compared with the existing physical layer security schemes, theoretical analysis and simulation results show that the proposed scheme has a higher secrecy signal-to-noise ratio, a higher rate of secrecy, and a lower bit error rate of legitimate user.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yang, H., Bai, W., Yu, A., Zhang, J., & Wang, Z. (2017). Cross-stratum resources integration in fog-Computing-based radio over fiber networks for 5G services. In Opto-electronics and communications conference (OECC) and photonics global conference (PGC), Singapore, Singapore (pp. 1–2). Yang, H., Bai, W., Yu, A., Zhang, J., & Wang, Z. (2017). Cross-stratum resources integration in fog-Computing-based radio over fiber networks for 5G services. In Opto-electronics and communications conference (OECC) and photonics global conference (PGC), Singapore, Singapore (pp. 1–2).
2.
Zurück zum Zitat Ejaz, W., & Ibnkahla, M. (2018). Multi-band spectrum sensing and resource allocation for IoT in cognitive 5G networks. In IEEE Internet of Things Journal, 99, 1. Ejaz, W., & Ibnkahla, M. (2018). Multi-band spectrum sensing and resource allocation for IoT in cognitive 5G networks. In IEEE Internet of Things Journal, 99, 1.
3.
Zurück zum Zitat Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., & Hanzo, L. (2017). Nonorthogonal multiple access for 5G and Beyond. Proceedings of the IEEE, 105(12), 2347–2381.CrossRef Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., & Hanzo, L. (2017). Nonorthogonal multiple access for 5G and Beyond. Proceedings of the IEEE, 105(12), 2347–2381.CrossRef
4.
Zurück zum Zitat Schinianakis, D. (2017). Alternative security options in the 5G and IoT era. IEEE Circuits and Systems Magazine, 17(4), 6–28.CrossRef Schinianakis, D. (2017). Alternative security options in the 5G and IoT era. IEEE Circuits and Systems Magazine, 17(4), 6–28.CrossRef
5.
Zurück zum Zitat Zhang, J., Podkurkov, I., Haardt, M., & Nadeev, A. (2017). Efficient multidimensional parameter estimation for joint wideband radar and communication systems based on OFDM. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, 2017 (pp. 3096–3100). Zhang, J., Podkurkov, I., Haardt, M., & Nadeev, A. (2017). Efficient multidimensional parameter estimation for joint wideband radar and communication systems based on OFDM. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, 2017 (pp. 3096–3100).
6.
Zurück zum Zitat Proakis, J. G. (2001). Digital communications (4th ed.). New York: McGraw-Hill.MATH Proakis, J. G. (2001). Digital communications (4th ed.). New York: McGraw-Hill.MATH
7.
Zurück zum Zitat Stuber, G. L. (2001). Principles of mobile communications (2nd ed.). Dordrecht: Kluwer.MATH Stuber, G. L. (2001). Principles of mobile communications (2nd ed.). Dordrecht: Kluwer.MATH
8.
Zurück zum Zitat Goldsmith, J. (2005). Wireless communication. Cambridge: Cambridge University Press.CrossRef Goldsmith, J. (2005). Wireless communication. Cambridge: Cambridge University Press.CrossRef
9.
Zurück zum Zitat Tse, D., & Viswanath, P. (2005). Fundamental of wireless communication. Cambridge: Cambridge University Press.CrossRefMATH Tse, D., & Viswanath, P. (2005). Fundamental of wireless communication. Cambridge: Cambridge University Press.CrossRefMATH
11.
Zurück zum Zitat Chen, Y., Wang, B., Han, Y., Lai, H. Q., Safar, Z., & Liu, K. J. R. (2016). Why time reversal for future 5G wireless? [perspectives]. IEEE Signal Processing Magazine, 33(2), 17–26.CrossRef Chen, Y., Wang, B., Han, Y., Lai, H. Q., Safar, Z., & Liu, K. J. R. (2016). Why time reversal for future 5G wireless? [perspectives]. IEEE Signal Processing Magazine, 33(2), 17–26.CrossRef
12.
Zurück zum Zitat Han, Y., Chen, Y., Wang, B., & Liu, K. J. R. (2016). Time-reversal massive multi-path effect: A single-antenna, “Massive MIMO” solution. IEEE Transactions on Communications, 64(8), 3382–3394.CrossRef Han, Y., Chen, Y., Wang, B., & Liu, K. J. R. (2016). Time-reversal massive multi-path effect: A single-antenna, “Massive MIMO” solution. IEEE Transactions on Communications, 64(8), 3382–3394.CrossRef
13.
Zurück zum Zitat Bouzigues, M. A., Siaud, I., Ulmer-Moll, A. M., & Helard, M. (2014). Time reversal and equal gain transmission for 60 GHz millimeter waves orthogonal frequency-division multiplexing systems. In IEEE online conference on green communications (OnlineGreenComm), Tucson, AZ, 2014 (pp. 1–6). Bouzigues, M. A., Siaud, I., Ulmer-Moll, A. M., & Helard, M. (2014). Time reversal and equal gain transmission for 60 GHz millimeter waves orthogonal frequency-division multiplexing systems. In IEEE online conference on green communications (OnlineGreenComm), Tucson, AZ, 2014 (pp. 1–6).
14.
Zurück zum Zitat Zhai, H., et al. (2010). An electronic circuit system for time-reversal of ultra-wideband short impulses based on frequency-domain approach. IEEE Transactions on Microwave Theory and Techniques, 58(1), 74–86.CrossRef Zhai, H., et al. (2010). An electronic circuit system for time-reversal of ultra-wideband short impulses based on frequency-domain approach. IEEE Transactions on Microwave Theory and Techniques, 58(1), 74–86.CrossRef
15.
Zurück zum Zitat Alves, H., Souza, R. D., Debbah, M., & Bennis, M. (2012). Performance of transmit antenna selection physical layer security schemes. IEEE Signal Processing Letters, 19(6), 372–375.CrossRef Alves, H., Souza, R. D., Debbah, M., & Bennis, M. (2012). Performance of transmit antenna selection physical layer security schemes. IEEE Signal Processing Letters, 19(6), 372–375.CrossRef
16.
Zurück zum Zitat Yang, N., Suraweera, H. A., Collings, I. B., & Yuen, C. (2013). Physical layer security of TAS/MRC with antenna correlation. IEEE Transactions on Information Forensics and Security, 8(1), 254–259.CrossRef Yang, N., Suraweera, H. A., Collings, I. B., & Yuen, C. (2013). Physical layer security of TAS/MRC with antenna correlation. IEEE Transactions on Information Forensics and Security, 8(1), 254–259.CrossRef
17.
Zurück zum Zitat Tran, D. D., Ha, D. B., Tranha, V., et al. (2015). Secrecy analysis with MRC/SC-based eavesdropper over heterogeneous channels. Iete Journal of Research, 61(4), 363–371.CrossRef Tran, D. D., Ha, D. B., Tranha, V., et al. (2015). Secrecy analysis with MRC/SC-based eavesdropper over heterogeneous channels. Iete Journal of Research, 61(4), 363–371.CrossRef
18.
Zurück zum Zitat Al-Moliki, Y., Alresheedi, M., & Al-Harthi, Y. (2017). Physical-layer security against known/chosen plaintext attacks for OFDM-based VLC system. IEEE Communications Letters, 99, 1. Al-Moliki, Y., Alresheedi, M., & Al-Harthi, Y. (2017). Physical-layer security against known/chosen plaintext attacks for OFDM-based VLC system. IEEE Communications Letters, 99, 1.
19.
Zurück zum Zitat Sun, G., Han, Z., Jiao, J., & Wang, D. (2017). Physical layer security in MIMO wiretap channels with antenna correlation. China Communications, 14(8), 149–156.CrossRef Sun, G., Han, Z., Jiao, J., & Wang, D. (2017). Physical layer security in MIMO wiretap channels with antenna correlation. China Communications, 14(8), 149–156.CrossRef
20.
Zurück zum Zitat Feng, Y., Yang, Z., Yan, S., Yang, N. & Lv, B. (2017). Physical layer security enhancement in multi-user multi-full-duplex-relay networks. In IEEE international conference on communications (ICC), Paris (pp. 1–7). Feng, Y., Yang, Z., Yan, S., Yang, N. & Lv, B. (2017). Physical layer security enhancement in multi-user multi-full-duplex-relay networks. In IEEE international conference on communications (ICC), Paris (pp. 1–7).
21.
Zurück zum Zitat Singh, A., Bhatnagar, M. R., & Mallik, R. K. (2017). Physical layer security of a multi-antenna based CR network with single and multiple primary users. IEEE Transactions on Vehicular Technology, 99, 1. Singh, A., Bhatnagar, M. R., & Mallik, R. K. (2017). Physical layer security of a multi-antenna based CR network with single and multiple primary users. IEEE Transactions on Vehicular Technology, 99, 1.
22.
Zurück zum Zitat Rahmanpour, A., Vakili, V. T., & Razavizadeh, S. M. (2017). Enhancement of physical layer security using destination artificial noise based on outage probability. Wireless Personal Communications, 95, 1–13.CrossRef Rahmanpour, A., Vakili, V. T., & Razavizadeh, S. M. (2017). Enhancement of physical layer security using destination artificial noise based on outage probability. Wireless Personal Communications, 95, 1–13.CrossRef
24.
Zurück zum Zitat Tesanovic, M., Bucknell, P., & Chebbo, H. (2013). Co-operative use of licensed spectrum by unlicensed devices: The concept of bandwidth scavenging. In IEEE 78th vehicular technology conference (VTC Fall), Las Vegas, NV, (pp. 1–5). Tesanovic, M., Bucknell, P., & Chebbo, H. (2013). Co-operative use of licensed spectrum by unlicensed devices: The concept of bandwidth scavenging. In IEEE 78th vehicular technology conference (VTC Fall), Las Vegas, NV, (pp. 1–5).
25.
Zurück zum Zitat Singh, S. K., Bziuk, W., & Jukan, A. (2017). A combined optical spectrum scrambling and defragmentation in multi-core fiber networks. In IEEE international conference on communications (ICC), Paris, (pp. 1–6). Singh, S. K., Bziuk, W., & Jukan, A. (2017). A combined optical spectrum scrambling and defragmentation in multi-core fiber networks. In IEEE international conference on communications (ICC), Paris, (pp. 1–6).
26.
Zurück zum Zitat Ismael, H. A., & Sadkhan, S. B. (2017). Security enhancement of speech scrambling using triple Chaotic Maps. In Annual conference on new trends in information & communications technology applications (NTICT), Baghdad, (pp. 132–137). Ismael, H. A., & Sadkhan, S. B. (2017). Security enhancement of speech scrambling using triple Chaotic Maps. In Annual conference on new trends in information & communications technology applications (NTICT), Baghdad, (pp. 132–137).
27.
Zurück zum Zitat Wang, B., & Mu, P. (2017). Artificial noise aided secure multicasting design under secrecy outage constraint. IEEE Transactions on Communications, 99, 1. Wang, B., & Mu, P. (2017). Artificial noise aided secure multicasting design under secrecy outage constraint. IEEE Transactions on Communications, 99, 1.
28.
Zurück zum Zitat Wang, B., Mu, P., & Li, Z. (2017). Artificial-noise-aided beamforming design in the MISOME wiretap channel under the secrecy outage probability constraint. IEEE Transactions on Wireless Communications, 99, 1. Wang, B., Mu, P., & Li, Z. (2017). Artificial-noise-aided beamforming design in the MISOME wiretap channel under the secrecy outage probability constraint. IEEE Transactions on Wireless Communications, 99, 1.
29.
Zurück zum Zitat Mei, W., Chen, Z., & Fang, J. (2017). Artificial noise aided energy efficiency optimization in MIMOME system with SWIPT. IEEE Communications Letters, 21(8), 1795–1798.CrossRef Mei, W., Chen, Z., & Fang, J. (2017). Artificial noise aided energy efficiency optimization in MIMOME system with SWIPT. IEEE Communications Letters, 21(8), 1795–1798.CrossRef
30.
Zurück zum Zitat Wang, B., Mu, P., Li, Z., Zhang, W., Wang, H. M. & Yin, Q. (2017). Artificial-noise-aided beamforming design against a multi-antenna eavesdropper under secrecy outage constraint. In IEEE international conference on communications (ICC), Paris (pp. 1–6). Wang, B., Mu, P., Li, Z., Zhang, W., Wang, H. M. & Yin, Q. (2017). Artificial-noise-aided beamforming design against a multi-antenna eavesdropper under secrecy outage constraint. In IEEE international conference on communications (ICC), Paris (pp. 1–6).
31.
Zurück zum Zitat Yang, M., Zhang, B., Huang, Y., Yang, N., da Costa, D. B., & Guo, D. (2017). Secrecy enhancement of multiuser MISO networks using OSTBC and artificial noise. IEEE Transactions on Vehicular Technology, 99, 1. Yang, M., Zhang, B., Huang, Y., Yang, N., da Costa, D. B., & Guo, D. (2017). Secrecy enhancement of multiuser MISO networks using OSTBC and artificial noise. IEEE Transactions on Vehicular Technology, 99, 1.
32.
Zurück zum Zitat He, B., She, Y., & Lau, V. K. N. (2017). Artificial noise injection for securing single-antenna systems. IEEE Transactions on Vehicular Technology, 99, 1. He, B., She, Y., & Lau, V. K. N. (2017). Artificial noise injection for securing single-antenna systems. IEEE Transactions on Vehicular Technology, 99, 1.
34.
Zurück zum Zitat Wang, W., Teh, K. C., & Li, K. H. (2017). Artificial noise aided physical layer security in multi-antenna small-cell networks. IEEE Transactions on Information Forensics and Security, 12(6), 1470–1482.CrossRef Wang, W., Teh, K. C., & Li, K. H. (2017). Artificial noise aided physical layer security in multi-antenna small-cell networks. IEEE Transactions on Information Forensics and Security, 12(6), 1470–1482.CrossRef
35.
Zurück zum Zitat Lei, W. et al. (2016). Physical layer security scheme exploiting artificial noise to improve the performance of legitimate user. Journal of Electronics & Information Technology, 38(11), 2887–2892. Lei, W. et al. (2016). Physical layer security scheme exploiting artificial noise to improve the performance of legitimate user. Journal of Electronics & Information Technology, 38(11), 2887–2892.
36.
Zurück zum Zitat Bogdani, E., Vouyioukas, D., Nomikos, N., Skoutas, D. N., & Skianis, C. (2017). Single-point model of MIMO-UWB indoor systems using time-reversal transmission. In IEEE international conference on communications (ICC), Paris (pp. 1–6). Bogdani, E., Vouyioukas, D., Nomikos, N., Skoutas, D. N., & Skianis, C. (2017). Single-point model of MIMO-UWB indoor systems using time-reversal transmission. In IEEE international conference on communications (ICC), Paris (pp. 1–6).
37.
Zurück zum Zitat Viteri-Mera, C. A., & Teixeira, F. L. (2017). Equalized time reversal beamforming for frequency-selective indoor MISO channels. IEEE Access, 5, 3944–3957.CrossRef Viteri-Mera, C. A., & Teixeira, F. L. (2017). Equalized time reversal beamforming for frequency-selective indoor MISO channels. IEEE Access, 5, 3944–3957.CrossRef
38.
Zurück zum Zitat Ebrahimi-Zadeh, J., Dehmollaian, M. & Mohammadpour-Aghdam, K. (2016). Ultra-wideband electromagnetic DORT time-reversal localization of single-defect in pipe. In 8th International symposium on telecommunications (IST), Tehran, (pp. 409–414). Ebrahimi-Zadeh, J., Dehmollaian, M. & Mohammadpour-Aghdam, K. (2016). Ultra-wideband electromagnetic DORT time-reversal localization of single-defect in pipe. In 8th International symposium on telecommunications (IST), Tehran, (pp. 409–414).
39.
Zurück zum Zitat Tran, V., Kaddoum, G., Tran, H., Tran, D. D. & Ha, D. B. (2016). Time reversal SWIPT networks with an active eavesdropper: SER-energy region analysis. In IEEE 84th vehicular technology conference (VTC-Fall), Montreal, QC (pp. 1–5). Tran, V., Kaddoum, G., Tran, H., Tran, D. D. & Ha, D. B. (2016). Time reversal SWIPT networks with an active eavesdropper: SER-energy region analysis. In IEEE 84th vehicular technology conference (VTC-Fall), Montreal, QC (pp. 1–5).
40.
Zurück zum Zitat Han, Y., Chen, Y., Wang, B., & Liu, K. J. R. (2016). Realizing massive MIMO effect using a single antenna: A time-reversal approach. In IEEE global communications conference (GLOBECOM), Washington, DC (pp. 1–6). Han, Y., Chen, Y., Wang, B., & Liu, K. J. R. (2016). Realizing massive MIMO effect using a single antenna: A time-reversal approach. In IEEE global communications conference (GLOBECOM), Washington, DC (pp. 1–6).
41.
Zurück zum Zitat Mbeutcha, M., Fan, W., Hcjsclbæck, J. & Pedersen, G. F. (2016). Evaluation of massive MIMO systems using time-reversal beamforming technique. In IEEE 27th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), Valencia (pp. 1–6). Mbeutcha, M., Fan, W., Hcjsclbæck, J. & Pedersen, G. F. (2016). Evaluation of massive MIMO systems using time-reversal beamforming technique. In IEEE 27th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), Valencia (pp. 1–6).
42.
Zurück zum Zitat Zhang, G., & Song, Y. (2016) Time reversal imaging method for damage detection in concrete. In IEEE international conference on signal and image processing (ICSIP), Beijing (pp. 262–266). Zhang, G., & Song, Y. (2016) Time reversal imaging method for damage detection in concrete. In IEEE international conference on signal and image processing (ICSIP), Beijing (pp. 262–266).
43.
Zurück zum Zitat Zhang, G., & Song, Y. (2016) Novel imaging method based on cross-correlation function for suppressing the interference of noise. In IEEE international conference on signal and image processing (ICSIP), Beijing (pp. 251–255). Zhang, G., & Song, Y. (2016) Novel imaging method based on cross-correlation function for suppressing the interference of noise. In IEEE international conference on signal and image processing (ICSIP), Beijing (pp. 251–255).
46.
Zurück zum Zitat Wang, B., Wu, Y., Han, F., Yang, Y. H., & Liu, K. J. R. (2011). Green wireless communications: A time-reversal paradigm. IEEE Journal on Selected Areas in Communications, 29(8), 1698–1710.CrossRef Wang, B., Wu, Y., Han, F., Yang, Y. H., & Liu, K. J. R. (2011). Green wireless communications: A time-reversal paradigm. IEEE Journal on Selected Areas in Communications, 29(8), 1698–1710.CrossRef
47.
Zurück zum Zitat Simon, M., & Alouini, M. (2000). Digital Communication over Fading Channels. In Digital communication over fading channels. Wiley (pp. 4–5). Simon, M., & Alouini, M. (2000). Digital Communication over Fading Channels. In Digital communication over fading channels. Wiley (pp. 4–5).
48.
Zurück zum Zitat Hou, J., Zeng, W., Wan, G., Zhou, J., & Sun, M. (2016). The analysis and research on the accuracy of WSN node location under the influence of multi-path reflection. In 35th Chinese control conference (CCC), Chengdu (pp. 8352–8355). Hou, J., Zeng, W., Wan, G., Zhou, J., & Sun, M. (2016). The analysis and research on the accuracy of WSN node location under the influence of multi-path reflection. In 35th Chinese control conference (CCC), Chengdu (pp. 8352–8355).
49.
Zurück zum Zitat Cheng, C. H., Luo, W. J., Lin, Y. W., & Sun, C. C. (2013). Position location techniques in wireless sensor networks using reference node algorithm. In IEEE International Symposium on Consumer Electronics (ISCE), Hsinchu (pp. 73–74). Cheng, C. H., Luo, W. J., Lin, Y. W., & Sun, C. C. (2013). Position location techniques in wireless sensor networks using reference node algorithm. In IEEE International Symposium on Consumer Electronics (ISCE), Hsinchu (pp. 73–74).
50.
Zurück zum Zitat Han, F., Yang, Y. H., Wang, B., Wu, Y., & Liu, K. J. R. (2012). Time-reversal division multiple access over multi-path channels. IEEE Transactions on Communications, 60(7), 1953–1965.CrossRef Han, F., Yang, Y. H., Wang, B., Wu, Y., & Liu, K. J. R. (2012). Time-reversal division multiple access over multi-path channels. IEEE Transactions on Communications, 60(7), 1953–1965.CrossRef
52.
Zurück zum Zitat Moose, P. H. (1994). A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Transactions on Communications, 42(10), 2908–2914.CrossRef Moose, P. H. (1994). A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Transactions on Communications, 42(10), 2908–2914.CrossRef
53.
Zurück zum Zitat Lee, J., Lou, H. L., Toumpakaris, D., & Cioffi, J. M. (2006). SNR analysis of OFDM systems in the presence of carrier frequency offset for fading channels. IEEE Transactions on Wireless Communications, 5(12), 3360–3364.CrossRef Lee, J., Lou, H. L., Toumpakaris, D., & Cioffi, J. M. (2006). SNR analysis of OFDM systems in the presence of carrier frequency offset for fading channels. IEEE Transactions on Wireless Communications, 5(12), 3360–3364.CrossRef
Metadaten
Titel
Time-Reversal Based Secure Transmission Scheme for 5G Networks over Correlated Wireless Multi-Path Channels
verfasst von
Jiang Zhu
Yan Wang
Tian Yang
Fangwei Li
Publikationsdatum
20.04.2018
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2018
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-5737-y

Weitere Artikel der Ausgabe 2/2018

Wireless Personal Communications 2/2018 Zur Ausgabe

Neuer Inhalt