Skip to main content

2019 | OriginalPaper | Buchkapitel

13. Time-to-Failure Models for Selected Failure Mechanisms in Mechanical Engineering

verfasst von : J. W. McPherson

Erschienen in: Reliability Physics and Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The mechanical properties of materials are related to the fundamental bonding strengths of the constituent atoms in the solid and any bonding defects which might form. A molecular model is presented so that primary bond formation mechanisms (ionic, covalent, and metallic) can be better understood. How these bonds form and respond to mechanical stress/loading is very important for engineering applications. A discussion of elasticity, plasticity and bond breakage is presented. The theoretical strengths of most molecular bonds in a crystal are seldom realized because of crystalline defects limiting the ultimate strength of the materials. Important crystalline defects such as vacancies, dislocations, and grain boundaries are discussed. These crystalline defects can play critically important roles as time-to-failure models are developed for: creep, fatigue, crack propagation, thermal expansion mismatch, corrosion and stress-corrosion cracking.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Classical description is—two bodies cannot occupy the same space.
 
2
In order that ionic contributions are comprehended from both near and far, the potential for anion-pair is often written as: φ(r) = −αe2/r, where α is the Madelung constant. In cubic crystalline structures, α = 1 to 2.
 
3
The classical oscillator will oscillate until all its energy is finally dissipated. The quantum oscillator, however, will dissipate its energy in quantum amounts (n + 1/2) ℏω until it finally reaches its ground state. In the ground state (n=0), the quantum oscillator will still have zero-point energy oscillation: (1/2)ℏω.
 
4
The stress gradient is given by: \( \overrightarrow{\nabla}\sigma =\left[\widehat{x}\frac{\partial }{\partial x}+\widehat{y}\frac{\partial }{\partial y}+\widehat{z}\frac{\partial }{\partial z}\right]\sigma \left(x,y,z\right). \)
 
5
Atom movement is opposite to vacancy movement. Atoms tend to move from relative compressive regions to relative tensile regions. Such atom movement tends to reduce both the relative compressive stress and the relative tensile stress. Atom (or vacancy) movement due to stress gradients is a stress-relief mechanism.
 
6
Specific density represents the number of atoms per unit area.
 
7
Other dislocation types can exist, such as screws dislocations (not discussed here). These can also be important in the mass-flow/creep process.
 
8
The ramp-to-failure/rupture test is described in detail in Chap. 11.
 
9
The usefulness of ramp-voltage-to-breakdown test for capacitor dielectrics is highlighted in Chap. 12.
 
10
Recall from Chap. 9, one expects the relaxation-rate constant to be thermally activated: k = k0 exp [−Q/(KBT)].
 
11
The load/force is constant. The average stress is only approximately constant during testing due to some expected cross-sectional area changes.
 
12
Recall, from Chap. 11, that the stress-migration/creep bakes for aluminum were generally done at temperatures above 100 °C.
 
13
Historically, these localized stresses at crack tips have been referred to as either stress raisers or stress risers. The terms will be used interchangeably.
 
14
The elastic energy Uelastic of the material reduces with crack propagation, thus we have defined ΔUreleased such that it is always positive, i.e., ΔUreleased = −ΔUelastic.
 
15
Note that when the crack size a goes to zero, the apparent rupture stress goes to infinity. However, in these situations, where the right-hand side of the equation becomes extremely large, the rupture stress will be limited by the normal crack-free rupture mechanisms and σrupture will assume the crack-free rupture strength.
 
16
Recall that specific energy density is the energy per unit area.
 
17
Historically, this has been referred to as Griffith’s equation which was developed for brittle materials. More recently, Irwin is usually credited for developing the failure in terms of a strain energy release rate G [(Eq. (13.56)], which incorporates both elastic and plastic deformations when new surfaces or interfaces are formed.
 
18
Linear coefficients of thermal expansion are listed for several material types (in units of 10−6/°C): αpolymers ≅ 50, αmetals ≅ 10, aceramics ≅ 2, αglass ≅ 0.5.
 
Literatur
Zurück zum Zitat Ashby, M. and D. Jones: Engineering Materials, 2nd Edition, Butterworth/Heinemann Publishers, (1980). Ashby, M. and D. Jones: Engineering Materials, 2nd Edition, Butterworth/Heinemann Publishers, (1980).
Zurück zum Zitat Ashby, M. and D. Jones: Engineering Materials 1, Elsevier Publishing, (2005). Ashby, M. and D. Jones: Engineering Materials 1, Elsevier Publishing, (2005).
Zurück zum Zitat Askeland, D.: The Science and Engineering of Materials, 3rd Edition, PWS Publishing Company, (1994). Askeland, D.: The Science and Engineering of Materials, 3rd Edition, PWS Publishing Company, (1994).
Zurück zum Zitat Barrett, C., W. Nix and A. Tetelman: The Principles of Engineering Materials, Prentice Hall, (1973). Barrett, C., W. Nix and A. Tetelman: The Principles of Engineering Materials, Prentice Hall, (1973).
Zurück zum Zitat Callister, W.: Materials Science and Engineering an Introduction, John Wiley and Sons, (2003). Jastrzebski Z.: The Nature and Properties of Engineering Materials, 2nd Edition, John Wiley and Sons, (1976). Callister, W.: Materials Science and Engineering an Introduction, John Wiley and Sons, (2003). Jastrzebski Z.: The Nature and Properties of Engineering Materials, 2nd Edition, John Wiley and Sons, (1976).
Zurück zum Zitat Keyser, C.: Materials Science in Engineering, 3rd Edition, Charles E. Merril Publishing, (1980). Ralls, K., T. Courtney, and J. Wulff: Introduction to Materials Science and Engineering, John Wiley and Sons, (1976). Keyser, C.: Materials Science in Engineering, 3rd Edition, Charles E. Merril Publishing, (1980). Ralls, K., T. Courtney, and J. Wulff: Introduction to Materials Science and Engineering, John Wiley and Sons, (1976).
Zurück zum Zitat Ruoff, A.: Introduction to Materials Science, Prentice-Hall, (1972). Ruoff, A.: Introduction to Materials Science, Prentice-Hall, (1972).
Zurück zum Zitat Tu, K., J. Mayer, and L. Feldman: Electronic Thin Film Science For Electrical Engineers and Materials Science, Macmillan Publishing Company, (1992). Tu, K., J. Mayer, and L. Feldman: Electronic Thin Film Science For Electrical Engineers and Materials Science, Macmillan Publishing Company, (1992).
Zurück zum Zitat Bedford, A. and K. Liechti: Mechanics of Materials, Prentice Hall, (2000). Bedford, A. and K. Liechti: Mechanics of Materials, Prentice Hall, (2000).
Zurück zum Zitat Eisenberg, M.: Introduction to the Mechanics of Solids, Addison-Wesley Publishing, (1980). Eisenberg, M.: Introduction to the Mechanics of Solids, Addison-Wesley Publishing, (1980).
Zurück zum Zitat Gere, J.: Mechanics of Materials, 5th Edition, Brooks/Cole Publishing, (2001). Gere, J.: Mechanics of Materials, 5th Edition, Brooks/Cole Publishing, (2001).
Zurück zum Zitat Anderson, T.: Fracture Mechanics, 2nd Edition, CRC Press, (1995). Anderson, T.: Fracture Mechanics, 2nd Edition, CRC Press, (1995).
Zurück zum Zitat Dunn, C. and J. McPherson: Temperature Cycling Acceleration Factors for Aluminum Metallization Failure in VLSI Applications, IEEE International Reliability Physics Symposium, 252 (1990). Dunn, C. and J. McPherson: Temperature Cycling Acceleration Factors for Aluminum Metallization Failure in VLSI Applications, IEEE International Reliability Physics Symposium, 252 (1990).
Zurück zum Zitat Griffith, A.: The Phenomena of Rupture and Flow in Solids, Philosophical Transactions, Series A, Vol. 221, pp. 163–198, (1920).CrossRef Griffith, A.: The Phenomena of Rupture and Flow in Solids, Philosophical Transactions, Series A, Vol. 221, pp. 163–198, (1920).CrossRef
Zurück zum Zitat Hertzberg, R.: Fracture Mechanics and Engineering Materials, John Wiley and Sons, (1996). Hertzberg, R.: Fracture Mechanics and Engineering Materials, John Wiley and Sons, (1996).
Zurück zum Zitat Irwin, G.: Fracture Dynamics, Fracturing of Metals, American Society for Metals, Cleveland, pp. 147–166, (1948). Irwin, G.: Fracture Dynamics, Fracturing of Metals, American Society for Metals, Cleveland, pp. 147–166, (1948).
Zurück zum Zitat Stokes, R. and D. Evans: Fundamentals of Interfacial Engineering, Wiley-VCH, (1997). Stokes, R. and D. Evans: Fundamentals of Interfacial Engineering, Wiley-VCH, (1997).
Zurück zum Zitat Atkins, P.: Physical Chemistry, 5th Edition, W.H Freeman and Company, New York, (1994). Atkins, P.: Physical Chemistry, 5th Edition, W.H Freeman and Company, New York, (1994).
Zurück zum Zitat Engel, T. and P. Reid: Physical Chemistry, Pearson & Benjamin Cummings, (2006). Engel, T. and P. Reid: Physical Chemistry, Pearson & Benjamin Cummings, (2006).
Zurück zum Zitat McPherson, J.: Determination of the Nature of Molecular Bonding in Silica from Time-Dependent Dielectric Breakdown Data, J. Appl. Physics, 95, 8101 (2004).CrossRef McPherson, J.: Determination of the Nature of Molecular Bonding in Silica from Time-Dependent Dielectric Breakdown Data, J. Appl. Physics, 95, 8101 (2004).CrossRef
Zurück zum Zitat Pauling, L.: The Nature of the Chemical Bond, 3rd Edition, Cornel University Press, (1960). Pauling, L.: The Nature of the Chemical Bond, 3rd Edition, Cornel University Press, (1960).
Zurück zum Zitat Silbey, R. and R. Alberty: Physical Chemistry, 3rd Edition, John Wiley and Sons (2001). Silbey, R. and R. Alberty: Physical Chemistry, 3rd Edition, John Wiley and Sons (2001).
Zurück zum Zitat Ashcroft, N. and David Mermin: Solid State Physics, Harcourt Brace College Publishers, (1976). Ashcroft, N. and David Mermin: Solid State Physics, Harcourt Brace College Publishers, (1976).
Zurück zum Zitat Blakemore, J.: Solid State Physics, 2nd Edition, Cambridge University Press, (1985). Blakemore, J.: Solid State Physics, 2nd Edition, Cambridge University Press, (1985).
Zurück zum Zitat Kittel, C.: Introduction to Solid State Physics, 7th Edition, John Wiley and Sons, (1996). Kittel, C.: Introduction to Solid State Physics, 7th Edition, John Wiley and Sons, (1996).
Zurück zum Zitat McPherson, J.: Underlying Physics of the Thermochemical E-Model in Describing Low-Field Time-Dependent Dielectric Breakdown in SiO2 Thin Films, J. Appl. Physics, 84, 1513 (1998).CrossRef McPherson, J.: Underlying Physics of the Thermochemical E-Model in Describing Low-Field Time-Dependent Dielectric Breakdown in SiO2 Thin Films, J. Appl. Physics, 84, 1513 (1998).CrossRef
Zurück zum Zitat Turton, R.: The Physics of Solids, Oxford University Press, (2000). Turton, R.: The Physics of Solids, Oxford University Press, (2000).
Zurück zum Zitat Atkins, P. and R. Friedman: Molecular Quantum Mechanics, 3rd Edition, Oxford University Press, (1997). Atkins, P. and R. Friedman: Molecular Quantum Mechanics, 3rd Edition, Oxford University Press, (1997).
Zurück zum Zitat Dirac, P.: The Principles of Quantum Mechanics, 4th Edition, Oxford Science Publications, (1958). Dirac, P.: The Principles of Quantum Mechanics, 4th Edition, Oxford Science Publications, (1958).
Zurück zum Zitat Griffiths, D.: Introduction to Quantum Mechanics, Prentice Hall, (1995). Griffiths, D.: Introduction to Quantum Mechanics, Prentice Hall, (1995).
Zurück zum Zitat Harrison, W.: Applied Quantum Mechanics, World Scientific Publishing, (2000). Harrison, W.: Applied Quantum Mechanics, World Scientific Publishing, (2000).
Zurück zum Zitat McPherson, J.: Quantum Mechanical Treatment of Si-O Bond Breakage in Silica Under Time-Dependent Dielectric Breakdown, IEEE International Reliability Physics Symposium, 209 (2007). McPherson, J.: Quantum Mechanical Treatment of Si-O Bond Breakage in Silica Under Time-Dependent Dielectric Breakdown, IEEE International Reliability Physics Symposium, 209 (2007).
Zurück zum Zitat Robinett, R.: Quantum Mechanics, 2nd Edition, Oxford University Press, (2006). Robinett, R.: Quantum Mechanics, 2nd Edition, Oxford University Press, (2006).
Zurück zum Zitat Shift, L.: Quantum Mechanics, McGraw-Hill Book Company, (1949). Shift, L.: Quantum Mechanics, McGraw-Hill Book Company, (1949).
Zurück zum Zitat Dumin, D.: Oxide Reliability, A Summary of Silicon Oxide Wearout, Breakdown, and Reliability, World Scientific, (2002). Dumin, D.: Oxide Reliability, A Summary of Silicon Oxide Wearout, Breakdown, and Reliability, World Scientific, (2002).
Zurück zum Zitat Grove, A.: Physics and Technology of Semiconductor Devices, John Wiley and Sons, (1967). Grove, A.: Physics and Technology of Semiconductor Devices, John Wiley and Sons, (1967).
Zurück zum Zitat Matare, H.: Defect Electronics in Semiconductors, Wiley-Interscience, (1971). Matare, H.: Defect Electronics in Semiconductors, Wiley-Interscience, (1971).
Zurück zum Zitat Streetman, B. and S. Banerjee: Solid State Electronic Devices, 5th Edition, Prentice Hall, (2000). Streetman, B. and S. Banerjee: Solid State Electronic Devices, 5th Edition, Prentice Hall, (2000).
Zurück zum Zitat Sze, S.: Physics of Semiconductor Devices, 2nd Edition, John Wiley and Sons, (1981). Sze, S.: Physics of Semiconductor Devices, 2nd Edition, John Wiley and Sons, (1981).
Zurück zum Zitat Sze, S.: Semiconductor Devices: Physics and Technology, 2nd Edition, John Wiley and Sons, (2002). Sze, S.: Semiconductor Devices: Physics and Technology, 2nd Edition, John Wiley and Sons, (2002).
Zurück zum Zitat Desloge, E.: Statistical Physics, Holt, Riehart and Winston, (1966). Desloge, E.: Statistical Physics, Holt, Riehart and Winston, (1966).
Zurück zum Zitat Haase, R.: Thermodynamics of Irreversible Processes, Dover Publications, (1969). Haase, R.: Thermodynamics of Irreversible Processes, Dover Publications, (1969).
Zurück zum Zitat Kittel, C. and H. Kroemer: Thermal Physics, 2nd Edition, W.H. Freeman and Co., (1980). Kittel, C. and H. Kroemer: Thermal Physics, 2nd Edition, W.H. Freeman and Co., (1980).
Zurück zum Zitat Schrodinger, E.: Statistical Thermodynamics, Dover Publications, (1952). Schrodinger, E.: Statistical Thermodynamics, Dover Publications, (1952).
Metadaten
Titel
Time-to-Failure Models for Selected Failure Mechanisms in Mechanical Engineering
verfasst von
J. W. McPherson
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-93683-3_13

Neuer Inhalt