Skip to main content

2024 | OriginalPaper | Buchkapitel

TimeGAN for Data-Driven AI in High-Dimensional Industrial Data

verfasst von : Felix Neubürger, Yasser Saeid, Thomas Kopinski

Erschienen in: Advances in Data-Driven Computing and Intelligent Systems

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The availability of historical process data in predictive maintenance is often insufficient to train complex machine learning models. To address this issue, techniques for data augmentation and synthesis have been developed, including the use of Generative Adversarial Networks (GANs). In this paper, the authors apply the GAN-based approach to synthesize simulated time-series data. Experiments are carried out to find a trade-off between the amount of labeled data needed and the accuracy of the synthetic data for downstream tasks. The authors find that using 40% of the original data for training the GAN results in synthetic data containing the same information for downstream tasks as the original data, leading to an estimated speedup of  60% in the initial computing time. The results of the evaluation for the authors’ own FEM simulation data, as well as for the Tennessee-Eastman benchmark dataset, are presented, demonstrating the potential of GANs in reducing time and energy in process development, while additionally interpolating a fixed parameter grid that is subsequently used for simulation purposes. This work demonstrates the feasibility of using GANs for the generation of high-dimensional time-series data in industrial applications as a supplementary method to classical FEM simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
6.
Zurück zum Zitat Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, vol 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, pp 4171–4186. https://aclanthology.org/N19-1423 Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, vol 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, pp 4171–4186. https://​aclanthology.​org/​N19-1423
7.
Zurück zum Zitat Diao S, Shen X, Shum K, Song Y, Zhang T (2021) TILGAN: transformer-based implicit latent GAN for diverse and coherent text generation. In: Findings of the association for computational Linguistics: ACL-IJCNLP 2021. Association for Computational Linguistics, pp 4844–4858 (Online). https://aclanthology.org/2021.findings-acl.428 Diao S, Shen X, Shum K, Song Y, Zhang T (2021) TILGAN: transformer-based implicit latent GAN for diverse and coherent text generation. In: Findings of the association for computational Linguistics: ACL-IJCNLP 2021. Association for Computational Linguistics, pp 4844–4858 (Online). https://​aclanthology.​org/​2021.​findings-acl.​428
8.
Zurück zum Zitat Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N (2020) An image is worth 16x16 words: transformers for image recognition at scale. CoRR abs/2010.11929 https://arxiv.org/abs/2010.11929 Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N (2020) An image is worth 16x16 words: transformers for image recognition at scale. CoRR abs/2010.11929 https://​arxiv.​org/​abs/​2010.​11929
10.
Zurück zum Zitat Lamb A, Goyal A, Zhang Y, Zhang S, Courville A, Bengio Y (2016) Professor forcing: a new algorithm for training recurrent networks Lamb A, Goyal A, Zhang Y, Zhang S, Courville A, Bengio Y (2016) Professor forcing: a new algorithm for training recurrent networks
13.
Zurück zum Zitat Motamedi M, Sakharnykh N, Kaldewey T (2021) A data-centric approach for training deep neural networks with less data. arXiv preprint arXiv:2110.03613 Motamedi M, Sakharnykh N, Kaldewey T (2021) A data-centric approach for training deep neural networks with less data. arXiv preprint arXiv:​2110.​03613
14.
Zurück zum Zitat Neubürger F, Arens J, Vollmer M, Kopinski T, Hermes M (2022) Coupled finite-element-method-simulations for real-time-process monitoring in metal forming digital-twins. In: 2022 10th International conference on control, mechatronics and automation (ICCMA), pp 260–265 Neubürger F, Arens J, Vollmer M, Kopinski T, Hermes M (2022) Coupled finite-element-method-simulations for real-time-process monitoring in metal forming digital-twins. In: 2022 10th International conference on control, mechatronics and automation (ICCMA), pp 260–265
16.
Zurück zum Zitat Smith M (2009) ABAQUS/standard user’s manual, version 6.9. Dassault Systèmes Simulia Corp, United States Smith M (2009) ABAQUS/standard user’s manual, version 6.9. Dassault Systèmes Simulia Corp, United States
Metadaten
Titel
TimeGAN for Data-Driven AI in High-Dimensional Industrial Data
verfasst von
Felix Neubürger
Yasser Saeid
Thomas Kopinski
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9521-9_36