Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 13/2020

14.05.2020 | Review

TiO2 nanocrystalline for enhanced hydrogen and oxygen generation of thin film photocatalyst: from catalytic mechanism and microstructural analysis

verfasst von: Chang Bian, Wenshu Yang, Guijie Zhu, Shuang Feng, Jiejing Zhang, Ri Xu, Xinxin Zhang, Wuyou Fu, Haibin Yang

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 13/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Anatase TiO2 nanocrystalline film prepared by using sol–gel method was assembled on TiO2 nanotubes to produce composite thin film photocatalyst and investigated as interfacial layer for the catalytic performance of Ti/TNT/N–P/NaTaO3:La (the nanostructures is Ti/TiO2 nanotubes/TiO2 nanocrystalline film/NiO film/NaTaO3:La) photocatalyst to generate hydrogen and oxygen under UV irradiation. The as-synthesized samples were characterized by FESEM, XRD, Element Mapping, UV–Vis, PL, IV, and EIS. Characteristic analyses show that the interface between the TNT layer (TiO2 nanotubes) and P layer (NiO film) can be optimized by adjusting the number of N layers (TiO2 nanocrystalline film), thus affecting the efficiency of the photocatalyst. Compared with unformed TiO2 film, the Ti/TNT/N–P/NaTaO3:La photocatalyst with four TiO2 layers enhanced the H2 and O2 generation rate from 43.7 to 87.1 μmol/h which realized almost 2.0 times. The enhanced photocatalytic performance can be attributed to the low defect density and the effective separation of photo-generated electron–hole pairs. Furthermore, the performance stability of thin film photocatalyst was favorably showcased through multiple water splitting reactions, and the rational mechanism of improved photocatalytic property was interpreted systematically. In summary, such results have certain guiding effect on solving the weakness of composite film catalyst of interface defects and carrier recombination.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Metadaten
Titel
TiO2 nanocrystalline for enhanced hydrogen and oxygen generation of thin film photocatalyst: from catalytic mechanism and microstructural analysis
verfasst von
Chang Bian
Wenshu Yang
Guijie Zhu
Shuang Feng
Jiejing Zhang
Ri Xu
Xinxin Zhang
Wuyou Fu
Haibin Yang
Publikationsdatum
14.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 13/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03576-4

Weitere Artikel der Ausgabe 13/2020

Journal of Materials Science: Materials in Electronics 13/2020 Zur Ausgabe

Neuer Inhalt