Skip to main content

2011 | OriginalPaper | Buchkapitel

Tissue Engineered Myocardium

verfasst von : Wolfram-Hubertus Zimmermann

Erschienen in: Myocardial Tissue Engineering

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Myocardial tissue engineering is equally attractive for basic and translational cardiovascular research as it may ultimately provide “realistic” in vitro heart muscle models and therapeutic myocardial substitutes. A prerequisite for successful cardiac muscle engineering is simulation of natural cardiomyogenesis in vitro to yield true myocardial structures with appropriate macro- and micro-morphology as well as function. This requires an assembly of the various cellular and extracellular components of the living heart under so called biomimetic culture conditions. This chapter will give an introduction into different tissue engineering modalities and discuss essential cellular and extracellular components as well as other biomimetic factors, controlling myocardial assembly in vitro. Finally, potential in vitro and in vivo applications such as modeling of heart muscle development, applications in functional genomics and disease modeling, drug development and safety assessment as well as cardiac repair will be reviewed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cohen, S., Leor, J.: Rebuilding broken hearts. Biologists and engineers working together in the fledgling field of tissue engineering are within reach of one of their greatest goals: Constructing a living human heart patch. Sci. Am. 291(5), 44–51 (2004)CrossRef Cohen, S., Leor, J.: Rebuilding broken hearts. Biologists and engineers working together in the fledgling field of tissue engineering are within reach of one of their greatest goals: Constructing a living human heart patch. Sci. Am. 291(5), 44–51 (2004)CrossRef
2.
Zurück zum Zitat Khademhosseini, A., Vacanti, J.P., Langer, R.: Progress in tissue engineering. Sci. Am. 300(5), 64–71 (2009)CrossRef Khademhosseini, A., Vacanti, J.P., Langer, R.: Progress in tissue engineering. Sci. Am. 300(5), 64–71 (2009)CrossRef
3.
Zurück zum Zitat Zimmermann, W.H., Melnychenko, I., Eschenhagen, T.: Engineered heart tissue for regeneration of diseased hearts. Biomaterials 25(9), 1639–1647 (2004)CrossRef Zimmermann, W.H., Melnychenko, I., Eschenhagen, T.: Engineered heart tissue for regeneration of diseased hearts. Biomaterials 25(9), 1639–1647 (2004)CrossRef
4.
Zurück zum Zitat Eschenhagen, T., Zimmermann, W.H.: Engineering myocardial tissue. Circ. Res. 97(12), 1220–1231 (2005)CrossRef Eschenhagen, T., Zimmermann, W.H.: Engineering myocardial tissue. Circ. Res. 97(12), 1220–1231 (2005)CrossRef
5.
Zurück zum Zitat Jawad, H., Lyon, A.R., Harding, S.E., Ali, N.N., Boccaccini, A.R.: Myocardial tissue engineering. Br. Med. Bull. 87, 31–47 (2008)CrossRef Jawad, H., Lyon, A.R., Harding, S.E., Ali, N.N., Boccaccini, A.R.: Myocardial tissue engineering. Br. Med. Bull. 87, 31–47 (2008)CrossRef
6.
Zurück zum Zitat Zimmermann, W.H.: Remuscularizing failing hearts with tissue engineered myocardium. Antioxid. Redox Signal. 11(8), 2011–2023 (2009)CrossRef Zimmermann, W.H.: Remuscularizing failing hearts with tissue engineered myocardium. Antioxid. Redox Signal. 11(8), 2011–2023 (2009)CrossRef
7.
Zurück zum Zitat Burrows, M.T.: Rhythmical activity of isolated heart muscle cells in vitro. Science 36(916), 90–92 (1912)CrossRef Burrows, M.T.: Rhythmical activity of isolated heart muscle cells in vitro. Science 36(916), 90–92 (1912)CrossRef
8.
Zurück zum Zitat Moscona, A.: Rotation-mediated histogenetic aggregation of dissociated cells. A quantifiable approach to cell interactions in vitro. Exp. Cell Res. 22, 455–475 (1961)CrossRef Moscona, A.: Rotation-mediated histogenetic aggregation of dissociated cells. A quantifiable approach to cell interactions in vitro. Exp. Cell Res. 22, 455–475 (1961)CrossRef
9.
Zurück zum Zitat Sperelakis, N.: Cultured heart cell reaggregate model for studying cardiac toxicology. Environ. Health Perspect. 26, 243–267 (1978)CrossRef Sperelakis, N.: Cultured heart cell reaggregate model for studying cardiac toxicology. Environ. Health Perspect. 26, 243–267 (1978)CrossRef
10.
Zurück zum Zitat Kelm, J.M., Ehler, E., Nielsen, L.K., Schlatter, S., Perriard, J.C., Fussenegger, M.: Design of artificial myocardial microtissues. Tissue Eng. 10(1–2), 201–214 (2004)CrossRef Kelm, J.M., Ehler, E., Nielsen, L.K., Schlatter, S., Perriard, J.C., Fussenegger, M.: Design of artificial myocardial microtissues. Tissue Eng. 10(1–2), 201–214 (2004)CrossRef
11.
Zurück zum Zitat Zimmermann, W.H., Eschenhagen, T.: Cardiac tissue engineering for replacement therapy. Heart Fail Rev. 8(3), 259–269 (2003)CrossRef Zimmermann, W.H., Eschenhagen, T.: Cardiac tissue engineering for replacement therapy. Heart Fail Rev. 8(3), 259–269 (2003)CrossRef
12.
Zurück zum Zitat Shimizu, T., Yamato, M., Isoi, Y., Akutsu, T., Setomaru, T., Abe, K., Kikuchi, A., Umezu, M., Okano, T.: Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res. 90(3), e40 (2002)CrossRef Shimizu, T., Yamato, M., Isoi, Y., Akutsu, T., Setomaru, T., Abe, K., Kikuchi, A., Umezu, M., Okano, T.: Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res. 90(3), e40 (2002)CrossRef
13.
Zurück zum Zitat Ott, H.C., Matthiesen, T.S., Goh, S.K., Black, L.D., Kren, S.M., Netoff, T.I., Taylor, D.A.: Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nat. Med. 14(2), 213–221 (2008)CrossRef Ott, H.C., Matthiesen, T.S., Goh, S.K., Black, L.D., Kren, S.M., Netoff, T.I., Taylor, D.A.: Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nat. Med. 14(2), 213–221 (2008)CrossRef
14.
Zurück zum Zitat Shimizu, T., Sekine, H., Yang, J., Isoi, Y., Yamato, M., Kikuchi, A., Kobayashi, E., Okano, T.: Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J. 20(6), 708–710 (2006) Shimizu, T., Sekine, H., Yang, J., Isoi, Y., Yamato, M., Kikuchi, A., Kobayashi, E., Okano, T.: Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J. 20(6), 708–710 (2006)
15.
Zurück zum Zitat Morritt, A.N., Bortolotto, S.K., Dilley, R.J., Han, X., Kompa, A.R., McCombe, D., Wright, C.E., Itescu, S., Angus, J.A., Morrison, W.A.: Cardiac tissue engineering in an in vivo vascularized chamber. Circulation 115(3), 353–360 (2007)CrossRef Morritt, A.N., Bortolotto, S.K., Dilley, R.J., Han, X., Kompa, A.R., McCombe, D., Wright, C.E., Itescu, S., Angus, J.A., Morrison, W.A.: Cardiac tissue engineering in an in vivo vascularized chamber. Circulation 115(3), 353–360 (2007)CrossRef
16.
Zurück zum Zitat Langer, R., Vacanti, J.P.: Tissue engineering. Science 260(5110), 920–926 (1993)CrossRef Langer, R., Vacanti, J.P.: Tissue engineering. Science 260(5110), 920–926 (1993)CrossRef
17.
Zurück zum Zitat Bursac, N., Papadaki, M., Cohen, R.J., Schoen, F.J., Eisenberg, S.R., Carrier, R., Vunjak-Novakovic, G., Freed, L.E.: Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am. J. Physiol. 277(2 Pt 2), H433–H444 (1999) Bursac, N., Papadaki, M., Cohen, R.J., Schoen, F.J., Eisenberg, S.R., Carrier, R., Vunjak-Novakovic, G., Freed, L.E.: Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am. J. Physiol. 277(2 Pt 2), H433–H444 (1999)
18.
Zurück zum Zitat Carrier, R.L., Papadaki, M., Rupnick, M., Schoen, F.J., Bursac, N., Langer, R., Freed, L.E., Vunjak-Novakovic, G.: Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol. Bioeng. 64(5), 580–589 (1999)CrossRef Carrier, R.L., Papadaki, M., Rupnick, M., Schoen, F.J., Bursac, N., Langer, R., Freed, L.E., Vunjak-Novakovic, G.: Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol. Bioeng. 64(5), 580–589 (1999)CrossRef
19.
Zurück zum Zitat Leor, J., Aboulafia-Etzion, S., Dar, A., Shapiro, L., Barbash, I.M., Battler, A., Granot, Y., Cohen, S.: Bioengineered cardiac grafts: A new approach to repair the infarcted myocardium? Circulation 102(19 Suppl 3), III56–III61 (2000) Leor, J., Aboulafia-Etzion, S., Dar, A., Shapiro, L., Barbash, I.M., Battler, A., Granot, Y., Cohen, S.: Bioengineered cardiac grafts: A new approach to repair the infarcted myocardium? Circulation 102(19 Suppl 3), III56–III61 (2000)
20.
Zurück zum Zitat Sakai, T., Li, R.K., Weisel, R.D., Mickle, D.A., Kim, E.T., Jia, Z.Q., Yau, T.M.: The fate of a tissue-engineered cardiac graft in the right ventricular outflow tract of the rat. J. Thorac. Cardiovasc. Surg. 121(5), 932–942 (2001)CrossRef Sakai, T., Li, R.K., Weisel, R.D., Mickle, D.A., Kim, E.T., Jia, Z.Q., Yau, T.M.: The fate of a tissue-engineered cardiac graft in the right ventricular outflow tract of the rat. J. Thorac. Cardiovasc. Surg. 121(5), 932–942 (2001)CrossRef
21.
Zurück zum Zitat Kofidis, T., Akhyari, P., Boublik, J., Theodorou, P., Martin, U., Ruhparwar, A., Fischer, S., Eschenhagen, T., Kubis, H.P., Kraft, T., Leyh, R., Haverich, A.: In vitro engineering of heart muscle: Artificial myocardial tissue. J. Thorac. Cardiovasc. Surg. 124(1), 63–69 (2002)CrossRef Kofidis, T., Akhyari, P., Boublik, J., Theodorou, P., Martin, U., Ruhparwar, A., Fischer, S., Eschenhagen, T., Kubis, H.P., Kraft, T., Leyh, R., Haverich, A.: In vitro engineering of heart muscle: Artificial myocardial tissue. J. Thorac. Cardiovasc. Surg. 124(1), 63–69 (2002)CrossRef
22.
Zurück zum Zitat van Luyn, M.J., Tio, R.A., Gallego y van Seijen, X.J., Plantinga, J.A., de Leij, L.F., DeJongste, M.J., van Wachem, P.B.: Cardiac tissue engineering: characteristics of in unison contracting two- and three-dimensional neonatal rat ventricle cell (co)-cultures. Biomaterials 23(24), 4793–4801 (2002) van Luyn, M.J., Tio, R.A., Gallego y van Seijen, X.J., Plantinga, J.A., de Leij, L.F., DeJongste, M.J., van Wachem, P.B.: Cardiac tissue engineering: characteristics of in unison contracting two- and three-dimensional neonatal rat ventricle cell (co)-cultures. Biomaterials 23(24), 4793–4801 (2002)
23.
Zurück zum Zitat Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F.J., Langer, R., Freed, L.E., Vunjak-Novakovic, G.: Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl. Acad. Sci. USA 101(52), 18129–18134 (2004)CrossRef Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F.J., Langer, R., Freed, L.E., Vunjak-Novakovic, G.: Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl. Acad. Sci. USA 101(52), 18129–18134 (2004)CrossRef
24.
Zurück zum Zitat Caspi, O., Lesman, A., Basevitch, Y., Gepstein, A., Arbel, G., Habib, I.H., Gepstein, L., Levenberg, S.: Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ. Res. 100(2), 263–272 (2007)CrossRef Caspi, O., Lesman, A., Basevitch, Y., Gepstein, A., Arbel, G., Habib, I.H., Gepstein, L., Levenberg, S.: Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ. Res. 100(2), 263–272 (2007)CrossRef
25.
Zurück zum Zitat Engelmayr Jr., G.C., Cheng, M., Bettinger, C.J., Borenstein, J.T., Langer, R., Freed, L.E.: Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat. Mater. 7(12), 1003–1010 (2008)CrossRef Engelmayr Jr., G.C., Cheng, M., Bettinger, C.J., Borenstein, J.T., Langer, R., Freed, L.E.: Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat. Mater. 7(12), 1003–1010 (2008)CrossRef
26.
Zurück zum Zitat Zimmermann, W.H., Schneiderbanger, K., Schubert, P., Didie, M., Munzel, F., Heubach, J.F., Kostin, S., Neuhuber, W.L., Eschenhagen, T.: Tissue engineering of a differentiated cardiac muscle construct. Circ. Res. 90(2), 223–230 (2002)CrossRef Zimmermann, W.H., Schneiderbanger, K., Schubert, P., Didie, M., Munzel, F., Heubach, J.F., Kostin, S., Neuhuber, W.L., Eschenhagen, T.: Tissue engineering of a differentiated cardiac muscle construct. Circ. Res. 90(2), 223–230 (2002)CrossRef
27.
Zurück zum Zitat Eschenhagen, T., Fink, C., Remmers, U., Scholz, H., Wattchow, J., Weil, J., Zimmermann, W., Dohmen, H.H., Schafer, H., Bishopric, N., Wakatsuki, T., Elson, E.L.: Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: A new heart muscle model system. FASEB J. 11(8), 683–694 (1997) Eschenhagen, T., Fink, C., Remmers, U., Scholz, H., Wattchow, J., Weil, J., Zimmermann, W., Dohmen, H.H., Schafer, H., Bishopric, N., Wakatsuki, T., Elson, E.L.: Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: A new heart muscle model system. FASEB J. 11(8), 683–694 (1997)
28.
Zurück zum Zitat Zimmermann, W.H., Fink, C., Kralisch, D., Remmers, U., Weil, J., Eschenhagen, T.: Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol. Bioeng. 68(1), 106–114 (2000)CrossRef Zimmermann, W.H., Fink, C., Kralisch, D., Remmers, U., Weil, J., Eschenhagen, T.: Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol. Bioeng. 68(1), 106–114 (2000)CrossRef
29.
Zurück zum Zitat Birla, R.K., Borschel, G.H., Dennis, R.G., Brown, D.L.: Myocardial engineering in vivo: Formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Eng. 11(5–6), 803–813 (2005)CrossRef Birla, R.K., Borschel, G.H., Dennis, R.G., Brown, D.L.: Myocardial engineering in vivo: Formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Eng. 11(5–6), 803–813 (2005)CrossRef
30.
Zurück zum Zitat Bakunts, K., Gillum, N., Karabekian, Z., Sarvazyan, N.: Formation of cardiac fibers in matrigel matrix. Biotechniques 44(3), 341–348 (2008)CrossRef Bakunts, K., Gillum, N., Karabekian, Z., Sarvazyan, N.: Formation of cardiac fibers in matrigel matrix. Biotechniques 44(3), 341–348 (2008)CrossRef
31.
Zurück zum Zitat Baar, K., Birla, R., Boluyt, M.O., Borschel, G.H., Arruda, E.M., Dennis, R.G.: Self-organization of rat cardiac cells into contractile 3-d cardiac tissue. FASEB J. 19(2), 275–277 (2005) Baar, K., Birla, R., Boluyt, M.O., Borschel, G.H., Arruda, E.M., Dennis, R.G.: Self-organization of rat cardiac cells into contractile 3-d cardiac tissue. FASEB J. 19(2), 275–277 (2005)
32.
Zurück zum Zitat Huang, Y.C., Khait, L., Birla, R.K.: Contractile three-dimensional bioengineered heart muscle for myocardial regeneration. J. Biomed. Mater. Res. A 80(3), 719–731 (2007) Huang, Y.C., Khait, L., Birla, R.K.: Contractile three-dimensional bioengineered heart muscle for myocardial regeneration. J. Biomed. Mater. Res. A 80(3), 719–731 (2007)
33.
Zurück zum Zitat Haraguchi, Y., Shimizu, T., Yamato, M., Kikuchi, A., Okano, T.: Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation. Biomaterials 27(27), 4765–4774 (2006)CrossRef Haraguchi, Y., Shimizu, T., Yamato, M., Kikuchi, A., Okano, T.: Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation. Biomaterials 27(27), 4765–4774 (2006)CrossRef
34.
Zurück zum Zitat Schmidt, C.E., Baier, J.M.: Acellular vascular tissues: Natural biomaterials for tissue repair and tissue engineering. Biomaterials 21(22), 2215–2231 (2000)CrossRef Schmidt, C.E., Baier, J.M.: Acellular vascular tissues: Natural biomaterials for tissue repair and tissue engineering. Biomaterials 21(22), 2215–2231 (2000)CrossRef
35.
Zurück zum Zitat Korecky, B., Hai, C.M., Rakusan, K.: Functional capillary density in normal and transplanted rat hearts. Can. J. Physiol. Pharmacol. 60(1), 23–32 (1982)CrossRef Korecky, B., Hai, C.M., Rakusan, K.: Functional capillary density in normal and transplanted rat hearts. Can. J. Physiol. Pharmacol. 60(1), 23–32 (1982)CrossRef
36.
Zurück zum Zitat Kofidis, T., Lebl, D.R., Martinez, E.C., Hoyt, G., Tanaka, M., Robbins, R.C.: Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation 112(9 Suppl), I173–I177 (2005) Kofidis, T., Lebl, D.R., Martinez, E.C., Hoyt, G., Tanaka, M., Robbins, R.C.: Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation 112(9 Suppl), I173–I177 (2005)
37.
Zurück zum Zitat Landa, N., Miller, L., Feinberg, M.S., Holbova, R., Shachar, M., Freeman, I., Cohen, S., Leor, J.: Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 117(11), 1388–1396 (2008)CrossRef Landa, N., Miller, L., Feinberg, M.S., Holbova, R., Shachar, M., Freeman, I., Cohen, S., Leor, J.: Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 117(11), 1388–1396 (2008)CrossRef
38.
Zurück zum Zitat Leor, J., Tuvia, S., Guetta, V., Manczur, F., Castel, D., Willenz, U., Petnehazy, O., Landa, N., Feinberg, M.S., Konen, E., Goitein, O., Tsur-Gang, O., Shaul, M., Klapper, L., Cohen, S.: Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine. J. Am. Coll. Cardiol. 54(11), 1014–1023 (2009)CrossRef Leor, J., Tuvia, S., Guetta, V., Manczur, F., Castel, D., Willenz, U., Petnehazy, O., Landa, N., Feinberg, M.S., Konen, E., Goitein, O., Tsur-Gang, O., Shaul, M., Klapper, L., Cohen, S.: Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine. J. Am. Coll. Cardiol. 54(11), 1014–1023 (2009)CrossRef
39.
Zurück zum Zitat Radisic, M., Park, H., Gerecht, S., Cannizzaro, C., Langer, R., Vunjak-Novakovic, G.: Biomimetic approach to cardiac tissue engineering. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362(1484), 1357–1368 (2007)CrossRef Radisic, M., Park, H., Gerecht, S., Cannizzaro, C., Langer, R., Vunjak-Novakovic, G.: Biomimetic approach to cardiac tissue engineering. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362(1484), 1357–1368 (2007)CrossRef
40.
Zurück zum Zitat Zak, R.: Development and proliferative capacity of cardiac muscle cells. Circ. Res. 35((2) suppl II), 17–26 (1974)MathSciNet Zak, R.: Development and proliferative capacity of cardiac muscle cells. Circ. Res. 35((2) suppl II), 17–26 (1974)MathSciNet
41.
Zurück zum Zitat Nag, A.C., Zak, R.: Dissociation of adult mammalian heart into single cell suspension: An ultrastructural study. J. Anat. 129(Pt 3), 541–559 (1979) Nag, A.C., Zak, R.: Dissociation of adult mammalian heart into single cell suspension: An ultrastructural study. J. Anat. 129(Pt 3), 541–559 (1979)
42.
Zurück zum Zitat Naito, H., Melnychenko, I., Didie, M., Schneiderbanger, K., Schubert, P., Rosenkranz, S., Eschenhagen, T., Zimmermann, W.H.: Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation 114(1 Suppl), I72–I78 (2006) Naito, H., Melnychenko, I., Didie, M., Schneiderbanger, K., Schubert, P., Rosenkranz, S., Eschenhagen, T., Zimmermann, W.H.: Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation 114(1 Suppl), I72–I78 (2006)
43.
Zurück zum Zitat Banerjee, I., Fuseler, J.W., Price, R.L., Borg, T.K., Baudino, T.A.: Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am. J. Physiol. Heart Circ. Physiol. 293(3), H1883–H1891 (2007)CrossRef Banerjee, I., Fuseler, J.W., Price, R.L., Borg, T.K., Baudino, T.A.: Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am. J. Physiol. Heart Circ. Physiol. 293(3), H1883–H1891 (2007)CrossRef
44.
Zurück zum Zitat Radisic, M., Park, H., Martens, T.P., Salazar-Lazaro, J.E., Geng, W., Wang, Y., Langer, R., Freed, L.E., Vunjak-Novakovic, G.: Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. J. Biomed. Mater. Res. A 86(3), 713–724 (2008) Radisic, M., Park, H., Martens, T.P., Salazar-Lazaro, J.E., Geng, W., Wang, Y., Langer, R., Freed, L.E., Vunjak-Novakovic, G.: Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. J. Biomed. Mater. Res. A 86(3), 713–724 (2008)
45.
Zurück zum Zitat Kakkar, R., Lee, R.T.: Intramyocardial fibroblast myocyte communication. Circ. Res. 106(1), 47–57 Kakkar, R., Lee, R.T.: Intramyocardial fibroblast myocyte communication. Circ. Res. 106(1), 47–57
46.
Zurück zum Zitat Ieda, M., Tsuchihashi, T., Ivey, K.N., Ross, R.S., Hong, T.T., Shaw, R.M., Srivastava, D.: Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev. Cell. 16(2), 233–244 (2009)CrossRef Ieda, M., Tsuchihashi, T., Ivey, K.N., Ross, R.S., Hong, T.T., Shaw, R.M., Srivastava, D.: Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev. Cell. 16(2), 233–244 (2009)CrossRef
47.
Zurück zum Zitat Souders, C.A., Bowers, S.L., Baudino, T.A.: Cardiac fibroblast: the renaissance cell. Circ. Res. 105(12), 1164–1176 (2009)CrossRef Souders, C.A., Bowers, S.L., Baudino, T.A.: Cardiac fibroblast: the renaissance cell. Circ. Res. 105(12), 1164–1176 (2009)CrossRef
48.
Zurück zum Zitat Sekine, H., Shimizu, T., Hobo, K., Sekiya, S., Yang, J., Yamato, M., Kurosawa, H., Kobayashi, E., Okano, T.: Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 118(14 Suppl), S145–S152 (2008)CrossRef Sekine, H., Shimizu, T., Hobo, K., Sekiya, S., Yang, J., Yamato, M., Kurosawa, H., Kobayashi, E., Okano, T.: Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 118(14 Suppl), S145–S152 (2008)CrossRef
49.
Zurück zum Zitat Moldovan, N.I., Goldschmidt-Clermont, P.J., Parker-Thornburg, J., Shapiro, S.D., Kolattukudy, P.E.: Contribution of monocytes/macrophages to compensatory neovascularization: The drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ. Res. 87(5), 378–384 (2000) Moldovan, N.I., Goldschmidt-Clermont, P.J., Parker-Thornburg, J., Shapiro, S.D., Kolattukudy, P.E.: Contribution of monocytes/macrophages to compensatory neovascularization: The drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ. Res. 87(5), 378–384 (2000)
50.
Zurück zum Zitat Leor, J., Rozen, L., Zuloff-Shani, A., Feinberg, M.S., Amsalem, Y., Barbash, I.M., Kachel, E., Holbova, R., Mardor, Y., Daniels, D., Ocherashvilli, A., Orenstein, A., Danon, D.: Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart. Circulation 114(1 Suppl), I94–I100 (2006) Leor, J., Rozen, L., Zuloff-Shani, A., Feinberg, M.S., Amsalem, Y., Barbash, I.M., Kachel, E., Holbova, R., Mardor, Y., Daniels, D., Ocherashvilli, A., Orenstein, A., Danon, D.: Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart. Circulation 114(1 Suppl), I94–I100 (2006)
51.
Zurück zum Zitat Ieda, M., Kanazawa, H., Kimura, K., Hattori, F., Ieda, Y., Taniguchi, M., Lee, J.K., Matsumura, K., Tomita, Y., Miyoshi, S., Shimoda, K., Makino, S., Sano, M., Kodama, I., Ogawa, S., Fukuda, K.: Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nat. Med. 13(5), 604–612 (2007)CrossRef Ieda, M., Kanazawa, H., Kimura, K., Hattori, F., Ieda, Y., Taniguchi, M., Lee, J.K., Matsumura, K., Tomita, Y., Miyoshi, S., Shimoda, K., Makino, S., Sano, M., Kodama, I., Ogawa, S., Fukuda, K.: Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nat. Med. 13(5), 604–612 (2007)CrossRef
52.
Zurück zum Zitat Ieda, M., Fukuda, K.: New aspects for the treatment of cardiac diseases based on the diversity of functional controls on cardiac muscles: The regulatory mechanisms of cardiac innervation and their critical roles in cardiac performance. J. Pharmacol. Sci. 109(3), 348–353 (2009)CrossRef Ieda, M., Fukuda, K.: New aspects for the treatment of cardiac diseases based on the diversity of functional controls on cardiac muscles: The regulatory mechanisms of cardiac innervation and their critical roles in cardiac performance. J. Pharmacol. Sci. 109(3), 348–353 (2009)CrossRef
53.
Zurück zum Zitat Bowers, S.L., Banerjee, I., Baudino, T.A.: The extracellular matrix: at the center of it all. J. Mol. Cell. Cardiol. 48(3), 474–482 Bowers, S.L., Banerjee, I., Baudino, T.A.: The extracellular matrix: at the center of it all. J. Mol. Cell. Cardiol. 48(3), 474–482
54.
Zurück zum Zitat Michel, J.B.: Anoikis in the cardiovascular system: Known and unknown extracellular mediators. Arterioscler Thromb. Vasc. Biol. 23(12), 2146–2154 (2003)CrossRef Michel, J.B.: Anoikis in the cardiovascular system: Known and unknown extracellular mediators. Arterioscler Thromb. Vasc. Biol. 23(12), 2146–2154 (2003)CrossRef
55.
Zurück zum Zitat Corda, S., Samuel, J.L., Rappaport, L.: Extracellular matrix and growth factors during heart growth. Heart Fail Rev. 5(2), 119–130 (2000)CrossRef Corda, S., Samuel, J.L., Rappaport, L.: Extracellular matrix and growth factors during heart growth. Heart Fail Rev. 5(2), 119–130 (2000)CrossRef
56.
Zurück zum Zitat Barczyk, M., Carracedo, S., Gullberg, D.: Integrins. Cell Tissue Res. 339(1), 269–280 Barczyk, M., Carracedo, S., Gullberg, D.: Integrins. Cell Tissue Res. 339(1), 269–280
57.
Zurück zum Zitat Ross, R.S., Borg, T.K.: Integrins and the myocardium. Circ. Res. 88(11), 1112–1119 (2001)CrossRef Ross, R.S., Borg, T.K.: Integrins and the myocardium. Circ. Res. 88(11), 1112–1119 (2001)CrossRef
58.
Zurück zum Zitat von der Mark, K., Park, J., Bauer, S., Schmuki, P.: Nanoscale engineering of biomimetic surfaces: Cues from the extracellular matrix. Cell Tissue Res. 339(1), 131–153 von der Mark, K., Park, J., Bauer, S., Schmuki, P.: Nanoscale engineering of biomimetic surfaces: Cues from the extracellular matrix. Cell Tissue Res. 339(1), 131–153
59.
Zurück zum Zitat Fassler, R., Rohwedel, J., Maltsev, V., Bloch, W., Lentini, S., Guan, K., Gullberg, D., Hescheler, J., Addicks, K., Wobus, A.M.: Differentiation and integrity of cardiac muscle cells are impaired in the absence of beta 1 integrin. J. Cell Sci. 109(Pt 13), 2989–2999 (1996) Fassler, R., Rohwedel, J., Maltsev, V., Bloch, W., Lentini, S., Guan, K., Gullberg, D., Hescheler, J., Addicks, K., Wobus, A.M.: Differentiation and integrity of cardiac muscle cells are impaired in the absence of beta 1 integrin. J. Cell Sci. 109(Pt 13), 2989–2999 (1996)
60.
Zurück zum Zitat Manner, J., Wessel, A., Yelbuz, T.M.: How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube. Dev. Dyn. 239(4), 1035–1046 Manner, J., Wessel, A., Yelbuz, T.M.: How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube. Dev. Dyn. 239(4), 1035–1046
61.
Zurück zum Zitat Opie, L.H., Commerford, P.J., Gersh, B.J., Pfeffer, M.A.: Controversies in ventricular remodelling. Lancet 367(9507), 356–367 (2006)CrossRef Opie, L.H., Commerford, P.J., Gersh, B.J., Pfeffer, M.A.: Controversies in ventricular remodelling. Lancet 367(9507), 356–367 (2006)CrossRef
62.
Zurück zum Zitat Keller, B.B., Liu, L.J., Tinney, J.P., Tobita, K.: Cardiovascular developmental insights from embryos. Ann. N. Y. Acad. Sci. 1101, 377–388 (2007)CrossRef Keller, B.B., Liu, L.J., Tinney, J.P., Tobita, K.: Cardiovascular developmental insights from embryos. Ann. N. Y. Acad. Sci. 1101, 377–388 (2007)CrossRef
63.
Zurück zum Zitat Depre, C., Shipley, G.L., Chen, W., Han, Q., Doenst, T., Moore, M.L., Stepkowski, S., Davies, P.J., Taegtmeyer, H.: Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat. Med. 4(11), 1269–1275 (1998)CrossRef Depre, C., Shipley, G.L., Chen, W., Han, Q., Doenst, T., Moore, M.L., Stepkowski, S., Davies, P.J., Taegtmeyer, H.: Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat. Med. 4(11), 1269–1275 (1998)CrossRef
64.
Zurück zum Zitat Korte, F.S., Herron, T.J., Rovetto, M.J., McDonald, K.S.: Power output is linearly related to myhc content in rat skinned myocytes and isolated working hearts. Am. J. Physiol. Heart Circ. Physiol. 289(2), H801–H812 (2005)CrossRef Korte, F.S., Herron, T.J., Rovetto, M.J., McDonald, K.S.: Power output is linearly related to myhc content in rat skinned myocytes and isolated working hearts. Am. J. Physiol. Heart Circ. Physiol. 289(2), H801–H812 (2005)CrossRef
65.
Zurück zum Zitat Fink, C., Ergun, S., Kralisch, D., Remmers, U., Weil, J., Eschenhagen, T.: Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J. 14(5), 669–679 (2000) Fink, C., Ergun, S., Kralisch, D., Remmers, U., Weil, J., Eschenhagen, T.: Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J. 14(5), 669–679 (2000)
66.
Zurück zum Zitat Zimmermann, W.H., Melnychenko, I., Wasmeier, G., Didie, M., Naito, H., Nixdorff, U., Hess, A., Budinsky, L., Brune, K., Michaelis, B., Dhein, S., Schwoerer, A., Ehmke, H., Eschenhagen, T.: Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 12(4), 452–458 (2006)CrossRef Zimmermann, W.H., Melnychenko, I., Wasmeier, G., Didie, M., Naito, H., Nixdorff, U., Hess, A., Budinsky, L., Brune, K., Michaelis, B., Dhein, S., Schwoerer, A., Ehmke, H., Eschenhagen, T.: Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 12(4), 452–458 (2006)CrossRef
67.
Zurück zum Zitat Radisic, M., Park, H., Chen, F., Salazar-Lazzaro, J.E., Wang, Y., Dennis, R., Langer, R., Freed, L.E., Vunjak-Novakovic, G.: Biomimetic approach to cardiac tissue engineering: Oxygen carriers and channeled scaffolds. Tissue Eng. 12(8), 2077–2091 (2006)CrossRef Radisic, M., Park, H., Chen, F., Salazar-Lazzaro, J.E., Wang, Y., Dennis, R., Langer, R., Freed, L.E., Vunjak-Novakovic, G.: Biomimetic approach to cardiac tissue engineering: Oxygen carriers and channeled scaffolds. Tissue Eng. 12(8), 2077–2091 (2006)CrossRef
68.
Zurück zum Zitat Radisic, M., Marsano, A., Maidhof, R., Wang, Y., Vunjak-Novakovic, G.: Cardiac tissue engineering using perfusion bioreactor systems. Nat. Protoc. 3(4), 719–738 (2008)CrossRef Radisic, M., Marsano, A., Maidhof, R., Wang, Y., Vunjak-Novakovic, G.: Cardiac tissue engineering using perfusion bioreactor systems. Nat. Protoc. 3(4), 719–738 (2008)CrossRef
69.
Zurück zum Zitat Katschinski, D.M.: In vivo functions of the prolyl-4-hydroxylase domain oxygen sensors: Direct route to the treatment of anaemia and the protection of ischaemic tissues. Acta Physiol. (Oxf) 195(4), 407–414 (2009)CrossRef Katschinski, D.M.: In vivo functions of the prolyl-4-hydroxylase domain oxygen sensors: Direct route to the treatment of anaemia and the protection of ischaemic tissues. Acta Physiol. (Oxf) 195(4), 407–414 (2009)CrossRef
70.
Zurück zum Zitat Radisic, M., Deen, W., Langer, R., Vunjak-Novakovic, G.: Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am. J. Physiol. Heart Circ. Physiol. 288(3), H1278–H1289 (2005)CrossRef Radisic, M., Deen, W., Langer, R., Vunjak-Novakovic, G.: Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am. J. Physiol. Heart Circ. Physiol. 288(3), H1278–H1289 (2005)CrossRef
71.
Zurück zum Zitat Radisic, M., Malda, J., Epping, E., Geng, W., Langer, R., Vunjak-Novakovic, G.: Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol. Bioeng. 93(2), 332–343 (2006)CrossRef Radisic, M., Malda, J., Epping, E., Geng, W., Langer, R., Vunjak-Novakovic, G.: Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol. Bioeng. 93(2), 332–343 (2006)CrossRef
72.
Zurück zum Zitat Zimmermann, W.H., Didie, M., Wasmeier, G.H., Nixdorff, U., Hess, A., Melnychenko, I., Boy, O., Neuhuber, W.L., Weyand, M., Eschenhagen, T.: Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 106(12 Suppl 1), I151–I157 (2002) Zimmermann, W.H., Didie, M., Wasmeier, G.H., Nixdorff, U., Hess, A., Melnychenko, I., Boy, O., Neuhuber, W.L., Weyand, M., Eschenhagen, T.: Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 106(12 Suppl 1), I151–I157 (2002)
73.
Zurück zum Zitat Kattman, S.J., Adler, E.D., Keller, G.M.: Specification of multipotential cardiovascular progenitor cells during embryonic stem cell differentiation and embryonic development. Trends Cardiovasc. Med. 17(7), 240–246 (2007)CrossRef Kattman, S.J., Adler, E.D., Keller, G.M.: Specification of multipotential cardiovascular progenitor cells during embryonic stem cell differentiation and embryonic development. Trends Cardiovasc. Med. 17(7), 240–246 (2007)CrossRef
74.
Zurück zum Zitat Guo, X.M., Zhao, Y.S., Chang, H.X., Wang CY, E.L.L., Zhang, X.A., Duan, C.M., Dong, L.Z., Jiang, H., Li, J., Song, Y., Yang, X.J.: Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circulation 113(18), 2229–2237 (2006)CrossRef Guo, X.M., Zhao, Y.S., Chang, H.X., Wang CY, E.L.L., Zhang, X.A., Duan, C.M., Dong, L.Z., Jiang, H., Li, J., Song, Y., Yang, X.J.: Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circulation 113(18), 2229–2237 (2006)CrossRef
75.
Zurück zum Zitat Peerani, R., Zandstra, P.W.: Enabling stem cell therapies through synthetic stem cell-niche engineering. J. Clin. Invest. 120(1), 60–70 Peerani, R., Zandstra, P.W.: Enabling stem cell therapies through synthetic stem cell-niche engineering. J. Clin. Invest. 120(1), 60–70
76.
Zurück zum Zitat Mummery, C., Ward-van Oostwaard, D., Doevendans, P., Spijker, R., van den Brink, S., Hassink, R., van der Heyden, M., Opthof, T., Pera, M., de la Riviere, A.B., Passier, R., Tertoolen, L.: Differentiation of human embryonic stem cells to cardiomyocytes: Role of coculture with visceral endoderm-like cells. Circulation 107(21), 2733–2740 (2003)CrossRef Mummery, C., Ward-van Oostwaard, D., Doevendans, P., Spijker, R., van den Brink, S., Hassink, R., van der Heyden, M., Opthof, T., Pera, M., de la Riviere, A.B., Passier, R., Tertoolen, L.: Differentiation of human embryonic stem cells to cardiomyocytes: Role of coculture with visceral endoderm-like cells. Circulation 107(21), 2733–2740 (2003)CrossRef
77.
Zurück zum Zitat Kattman, S.J., Huber, T.L., Keller, G.M.: Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev. Cell 11(5), 723–732 (2006)CrossRef Kattman, S.J., Huber, T.L., Keller, G.M.: Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev. Cell 11(5), 723–732 (2006)CrossRef
78.
Zurück zum Zitat Yang, L., Soonpaa, M.H., Adler, E.D., Roepke, T.K., Kattman, S.J., Kennedy, M., Henckaerts, E., Bonham, K., Abbott, G.W., Linden, R.M., Field, L.J., Keller, G.M.: Human cardiovascular progenitor cells develop from a kdr+ embryonic-stem-cell-derived population. Nature 453(7194), 524–528 (2008)CrossRef Yang, L., Soonpaa, M.H., Adler, E.D., Roepke, T.K., Kattman, S.J., Kennedy, M., Henckaerts, E., Bonham, K., Abbott, G.W., Linden, R.M., Field, L.J., Keller, G.M.: Human cardiovascular progenitor cells develop from a kdr+ embryonic-stem-cell-derived population. Nature 453(7194), 524–528 (2008)CrossRef
79.
Zurück zum Zitat Bhana, B., Iyer, R.K., Chen, W.L., Zhao, R., Sider, K.L., Likhitpanichkul, M., Simmons, C.A., Radisic, M.: Influence of substrate stiffness on the phenotype of heart cells. Biotechnol. Bioeng. 105(6), 1148–1160 Bhana, B., Iyer, R.K., Chen, W.L., Zhao, R., Sider, K.L., Likhitpanichkul, M., Simmons, C.A., Radisic, M.: Influence of substrate stiffness on the phenotype of heart cells. Biotechnol. Bioeng. 105(6), 1148–1160
80.
Zurück zum Zitat Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006)CrossRef Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006)CrossRef
81.
Zurück zum Zitat Song, H., Yoon, C., Kattman, S.J., Dengler, J., Masse, S., Thavaratnam, T., Gewarges, M., Nanthakumar, K., Rubart, M., Keller, G.M., Radisic, M., Zandstra, P.W.: Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue. Proc. Natl. Acad. Sci. USA 107(8), 3329–3334 Song, H., Yoon, C., Kattman, S.J., Dengler, J., Masse, S., Thavaratnam, T., Gewarges, M., Nanthakumar, K., Rubart, M., Keller, G.M., Radisic, M., Zandstra, P.W.: Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue. Proc. Natl. Acad. Sci. USA 107(8), 3329–3334
82.
Zurück zum Zitat Moretti, A., Caron, L., Nakano, A., Lam, J.T., Bernshausen, A., Chen, Y., Qyang, Y., Bu, L., Sasaki, M., Martin-Puig, S., Sun, Y., Evans, S.M., Laugwitz, K.L., Chien, K.R.: Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127(6), 1151–1165 (2006)CrossRef Moretti, A., Caron, L., Nakano, A., Lam, J.T., Bernshausen, A., Chen, Y., Qyang, Y., Bu, L., Sasaki, M., Martin-Puig, S., Sun, Y., Evans, S.M., Laugwitz, K.L., Chien, K.R.: Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127(6), 1151–1165 (2006)CrossRef
83.
Zurück zum Zitat Domian, I.J., Chiravuri, M., van der Meer, P., Feinberg, A.W., Shi, X., Shao, Y., Wu, S.M., Parker, K.K., Chien, K.R.: Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science 326(5951), 426–429 (2009)CrossRef Domian, I.J., Chiravuri, M., van der Meer, P., Feinberg, A.W., Shi, X., Shao, Y., Wu, S.M., Parker, K.K., Chien, K.R.: Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science 326(5951), 426–429 (2009)CrossRef
84.
Zurück zum Zitat Knoll, R., Kostin, S., Klede, S., Savvatis, K., Klinge, L., Stehle, I., Gunkel, S., Kotter, S., Babicz, K., Sohns, M., Miocic, S., Didie, M., Knoll, G., Zimmermann, W.H., Thelen, P., Bickeboller, H., Maier, L.S., Schaper, W., Schaper, J., Kraft, T., Tschope, C., Linke, W.A., Chien, K.R.: A common mlp (muscle lim protein) variant is associated with cardiomyopathy. Circ. Res. 106(4), 695–704 Knoll, R., Kostin, S., Klede, S., Savvatis, K., Klinge, L., Stehle, I., Gunkel, S., Kotter, S., Babicz, K., Sohns, M., Miocic, S., Didie, M., Knoll, G., Zimmermann, W.H., Thelen, P., Bickeboller, H., Maier, L.S., Schaper, W., Schaper, J., Kraft, T., Tschope, C., Linke, W.A., Chien, K.R.: A common mlp (muscle lim protein) variant is associated with cardiomyopathy. Circ. Res. 106(4), 695–704
85.
Zurück zum Zitat Wehrens, X.H., Lehnart, S.E., Huang, F., Vest, J.A., Reiken, S.R., Mohler, P.J., Sun, J., Guatimosim, S., Song, L.S., Rosemblit, N., D’Armiento, J.M., Napolitano, C., Memmi, M., Priori, S.G., Lederer, W.J., Marks, A.R.: Fkbp12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 113(7), 829–840 (2003)CrossRef Wehrens, X.H., Lehnart, S.E., Huang, F., Vest, J.A., Reiken, S.R., Mohler, P.J., Sun, J., Guatimosim, S., Song, L.S., Rosemblit, N., D’Armiento, J.M., Napolitano, C., Memmi, M., Priori, S.G., Lederer, W.J., Marks, A.R.: Fkbp12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 113(7), 829–840 (2003)CrossRef
86.
Zurück zum Zitat El-Armouche, A., Rau, T., Zolk, O., Ditz, D., Pamminger, T., Zimmermann, W.H., Jackel, E., Harding, S.E., Boknik, P., Neumann, J., Eschenhagen, T.: Evidence for protein phosphatase inhibitor-1 playing an amplifier role in beta-adrenergic signaling in cardiac myocytes. FASEB J. 17(3), 437–439 (2003) El-Armouche, A., Rau, T., Zolk, O., Ditz, D., Pamminger, T., Zimmermann, W.H., Jackel, E., Harding, S.E., Boknik, P., Neumann, J., Eschenhagen, T.: Evidence for protein phosphatase inhibitor-1 playing an amplifier role in beta-adrenergic signaling in cardiac myocytes. FASEB J. 17(3), 437–439 (2003)
87.
Zurück zum Zitat El-Armouche, A., Singh, J., Naito, H., Wittkopper, K., Didie, M., Laatsch, A., Zimmermann, W.H., Eschenhagen, T.: Adenovirus-delivered short hairpin rna targeting pkcalpha improves contractile function in reconstituted heart tissue. J. Mol. Cell. Cardiol. 43(3), 371–376 (2007)CrossRef El-Armouche, A., Singh, J., Naito, H., Wittkopper, K., Didie, M., Laatsch, A., Zimmermann, W.H., Eschenhagen, T.: Adenovirus-delivered short hairpin rna targeting pkcalpha improves contractile function in reconstituted heart tissue. J. Mol. Cell. Cardiol. 43(3), 371–376 (2007)CrossRef
88.
Zurück zum Zitat Carvajal-Vergara, X., Sevilla, A., D’Souza, S.L., Ang, Y.S., Schaniel, C., Lee, D.F., Yang, L., Kaplan, A.D., Adler, E.D., Rozov, R., Ge, Y., Cohen, N., Edelmann, L.J., Chang, B., Waghray, A., Su, J., Pardo, S., Lichtenbelt, K.D., Tartaglia, M., Gelb, B.D., Lemischka, I.R.: Patient-specific induced pluripotent stem-cell-derived models of leopard syndrome. Nature 465(7299), 808–812 Carvajal-Vergara, X., Sevilla, A., D’Souza, S.L., Ang, Y.S., Schaniel, C., Lee, D.F., Yang, L., Kaplan, A.D., Adler, E.D., Rozov, R., Ge, Y., Cohen, N., Edelmann, L.J., Chang, B., Waghray, A., Su, J., Pardo, S., Lichtenbelt, K.D., Tartaglia, M., Gelb, B.D., Lemischka, I.R.: Patient-specific induced pluripotent stem-cell-derived models of leopard syndrome. Nature 465(7299), 808–812
89.
Zurück zum Zitat Finlayson, K., Witchel, H.J., McCulloch, J., Sharkey, J.: Acquired qt interval prolongation and herg: Implications for drug discovery and development. Eur. J. Pharmacol. 500(1–3), 129–142 (2004)CrossRef Finlayson, K., Witchel, H.J., McCulloch, J., Sharkey, J.: Acquired qt interval prolongation and herg: Implications for drug discovery and development. Eur. J. Pharmacol. 500(1–3), 129–142 (2004)CrossRef
90.
Zurück zum Zitat Force, T., Krause, D.S., Van Etten, R.A.: Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat. Rev. Cancer 7(5), 332–344 (2007)CrossRef Force, T., Krause, D.S., Van Etten, R.A.: Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat. Rev. Cancer 7(5), 332–344 (2007)CrossRef
91.
Zurück zum Zitat Zimmermann, W.H., Kehat, I., Boy, O., Gepstein, A., Neuhuber, W.L., Gepstein, L.: Three-dimensional culture induces advanced differentiation of primary rat and human embryonic stem cell derived cardiomyocytes: Implications for cardiac tissue engineering. In: Scientific Sessions of the American Heart Association, 2003. Circulation, pp IV-243 Abtract Zimmermann, W.H., Kehat, I., Boy, O., Gepstein, A., Neuhuber, W.L., Gepstein, L.: Three-dimensional culture induces advanced differentiation of primary rat and human embryonic stem cell derived cardiomyocytes: Implications for cardiac tissue engineering. In: Scientific Sessions of the American Heart Association, 2003. Circulation, pp IV-243 Abtract
92.
Zurück zum Zitat Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., Jones, J.M.: Embryonic stem cell lines derived from human blastocysts. Science 282(5391), 1145–1147 (1998)CrossRef Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., Jones, J.M.: Embryonic stem cell lines derived from human blastocysts. Science 282(5391), 1145–1147 (1998)CrossRef
93.
Zurück zum Zitat Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5), 861–872 (2007)CrossRef Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5), 861–872 (2007)CrossRef
94.
Zurück zum Zitat Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., Livne, E., Binah, O., Itskovitz-Eldor, J., Gepstein, L.: Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108(3), 407–414 (2001) Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., Livne, E., Binah, O., Itskovitz-Eldor, J., Gepstein, L.: Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108(3), 407–414 (2001)
95.
Zurück zum Zitat Zwi, L., Caspi, O., Arbel, G., Huber, I., Gepstein, A., Park, I.H., Gepstein, L.: Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 120(15), 1513–1523 (2009)CrossRef Zwi, L., Caspi, O., Arbel, G., Huber, I., Gepstein, A., Park, I.H., Gepstein, L.: Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 120(15), 1513–1523 (2009)CrossRef
96.
Zurück zum Zitat Hansen, A., Eder, A., Bonstrup, M., Flato, M., Mewe, M., Schaaf, S., Aksehirlioglu, B., Schworer, A., Uebeler, J., Eschenhagen, T.: Development of a drug screening platform based on engineered heart tissue. Circ Res Hansen, A., Eder, A., Bonstrup, M., Flato, M., Mewe, M., Schaaf, S., Aksehirlioglu, B., Schworer, A., Uebeler, J., Eschenhagen, T.: Development of a drug screening platform based on engineered heart tissue. Circ Res
97.
Zurück zum Zitat Jonsson, M.K., Duker, G., Tropp, C., Andersson, B., Sartipy, P., Vos, M.A., van Veen, T.A.: Quantified proarrhythmic potential of selected human embryonic stem cell-derived cardiomyocytes. Stem Cell Res. 4(3), 189–200 Jonsson, M.K., Duker, G., Tropp, C., Andersson, B., Sartipy, P., Vos, M.A., van Veen, T.A.: Quantified proarrhythmic potential of selected human embryonic stem cell-derived cardiomyocytes. Stem Cell Res. 4(3), 189–200
98.
Zurück zum Zitat Caspi, O., Itzhaki, I., Kehat, I., Gepstein, A., Arbel, G., Huber, I., Satin, J., Gepstein, L.: In vitro electrophysiological drug testing using human embryonic stem cell derived cardiomyocytes. Stem Cells Dev. 18(1), 161–172 (2009)CrossRef Caspi, O., Itzhaki, I., Kehat, I., Gepstein, A., Arbel, G., Huber, I., Satin, J., Gepstein, L.: In vitro electrophysiological drug testing using human embryonic stem cell derived cardiomyocytes. Stem Cells Dev. 18(1), 161–172 (2009)CrossRef
99.
Zurück zum Zitat Bergmann, O., Bhardwaj, R.D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., Zupicich, J., Alkass, K., Buchholz, B.A., Druid, H., Jovinge, S., Frisen, J.: Evidence for cardiomyocyte renewal in humans. Science 324(5923), 98–102 (2009)CrossRef Bergmann, O., Bhardwaj, R.D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., Zupicich, J., Alkass, K., Buchholz, B.A., Druid, H., Jovinge, S., Frisen, J.: Evidence for cardiomyocyte renewal in humans. Science 324(5923), 98–102 (2009)CrossRef
100.
Zurück zum Zitat Sharples, L.D., Cafferty, F., Demitis, N., Freeman, C., Dyer, M., Banner, N., Birks, E.J., Khaghani, A., Large, S.R., Tsui, S., Caine, N., Buxton, M.: Evaluation of the clinical effectiveness of the ventricular assist device program in the United Kingdom (evad UK). J. Heart Lung Transplant. 26(1), 9–15 (2007)CrossRef Sharples, L.D., Cafferty, F., Demitis, N., Freeman, C., Dyer, M., Banner, N., Birks, E.J., Khaghani, A., Large, S.R., Tsui, S., Caine, N., Buxton, M.: Evaluation of the clinical effectiveness of the ventricular assist device program in the United Kingdom (evad UK). J. Heart Lung Transplant. 26(1), 9–15 (2007)CrossRef
101.
Zurück zum Zitat Rose, E.A., Gelijns, A.C., Moskowitz, A.J., Heitjan, D.F., Stevenson, L.W., Dembitsky, W., Long, J.W., Ascheim, D.D., Tierney, A.R., Levitan, R.G., Watson, J.T., Meier, P., Ronan, N.S., Shapiro, P.A., Lazar, R.M., Miller, L.W., Gupta, L., Frazier, O.H., Desvigne-Nickens, P., Oz, M.C., Poirier, V.L.: Long-term mechanical left ventricular assistance for end-stage heart failure. N. Engl. J. Med. 345(20), 1435–1443 (2001)CrossRef Rose, E.A., Gelijns, A.C., Moskowitz, A.J., Heitjan, D.F., Stevenson, L.W., Dembitsky, W., Long, J.W., Ascheim, D.D., Tierney, A.R., Levitan, R.G., Watson, J.T., Meier, P., Ronan, N.S., Shapiro, P.A., Lazar, R.M., Miller, L.W., Gupta, L., Frazier, O.H., Desvigne-Nickens, P., Oz, M.C., Poirier, V.L.: Long-term mechanical left ventricular assistance for end-stage heart failure. N. Engl. J. Med. 345(20), 1435–1443 (2001)CrossRef
102.
Zurück zum Zitat Zimmermann, W.H., Cesnjevar, R.: Cardiac tissue engineering: Implications for pediatric heart surgery. Pediatr. Cardiol. 30(5), 716–723 (2009)CrossRef Zimmermann, W.H., Cesnjevar, R.: Cardiac tissue engineering: Implications for pediatric heart surgery. Pediatr. Cardiol. 30(5), 716–723 (2009)CrossRef
103.
Zurück zum Zitat Oz, M.C., Gelijns, A.C., Miller, L., Wang, C., Nickens, P., Arons, R., Aaronson, K., Richenbacher, W., van Meter, C., Nelson, K., Weinberg, A., Watson, J., Rose, E.A., Moskowitz, A.J.: Left ventricular assist devices as permanent heart failure therapy: the price of progress. Ann. Surg. 238(4), 577–583 (2003). discussion 583–575 Oz, M.C., Gelijns, A.C., Miller, L., Wang, C., Nickens, P., Arons, R., Aaronson, K., Richenbacher, W., van Meter, C., Nelson, K., Weinberg, A., Watson, J., Rose, E.A., Moskowitz, A.J.: Left ventricular assist devices as permanent heart failure therapy: the price of progress. Ann. Surg. 238(4), 577–583 (2003). discussion 583–575
104.
Zurück zum Zitat Gepstein, L.: Derivation and potential applications of human embryonic stem cells. Circ. Res. 91(10), 866–876 (2002)CrossRef Gepstein, L.: Derivation and potential applications of human embryonic stem cells. Circ. Res. 91(10), 866–876 (2002)CrossRef
105.
Zurück zum Zitat Zandstra, P.W., Bauwens, C., Yin, T., Liu, Q., Schiller, H., Zweigerdt, R., Pasumarthi, K.B., Field, L.J.: Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng. 9(4), 767–778 (2003)CrossRef Zandstra, P.W., Bauwens, C., Yin, T., Liu, Q., Schiller, H., Zweigerdt, R., Pasumarthi, K.B., Field, L.J.: Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng. 9(4), 767–778 (2003)CrossRef
106.
Zurück zum Zitat Kim, K., Lerou, P., Yabuuchi, A., Lengerke, C., Ng, K., West, J., Kirby, A., Daly, M.J., Daley, G.Q.: Histocompatible embryonic stem cells by parthenogenesis. Science 315(5811), 482–486 (2007)CrossRef Kim, K., Lerou, P., Yabuuchi, A., Lengerke, C., Ng, K., West, J., Kirby, A., Daly, M.J., Daley, G.Q.: Histocompatible embryonic stem cells by parthenogenesis. Science 315(5811), 482–486 (2007)CrossRef
107.
Zurück zum Zitat Athanasuleas, C.L., Stanley Jr., A.W., Buckberg, G.D., Dor, V., DiDonato, M., Blackstone, E.H.: Surgical anterior ventricular endocardial restoration (saver) in the dilated remodeled ventricle after anterior myocardial infarction. Restore group. Reconstructive endoventricular surgery, returning torsion original radius elliptical shape to the lv. J. Am. Coll. Cardiol. 37(5), 1199–1209 (2001)CrossRef Athanasuleas, C.L., Stanley Jr., A.W., Buckberg, G.D., Dor, V., DiDonato, M., Blackstone, E.H.: Surgical anterior ventricular endocardial restoration (saver) in the dilated remodeled ventricle after anterior myocardial infarction. Restore group. Reconstructive endoventricular surgery, returning torsion original radius elliptical shape to the lv. J. Am. Coll. Cardiol. 37(5), 1199–1209 (2001)CrossRef
108.
Zurück zum Zitat Matsubayashi, K., Fedak, P.W., Mickle, D.A., Weisel, R.D., Ozawa, T., Li, R.K.: Improved left ventricular aneurysm repair with bioengineered vascular smooth muscle grafts. Circulation 108(Suppl 1), II219–II225 (2003) Matsubayashi, K., Fedak, P.W., Mickle, D.A., Weisel, R.D., Ozawa, T., Li, R.K.: Improved left ventricular aneurysm repair with bioengineered vascular smooth muscle grafts. Circulation 108(Suppl 1), II219–II225 (2003)
109.
Zurück zum Zitat Ozawa, T., Mickle, D.A., Weisel, R.D., Matsubayashi, K., Fujii, T., Fedak, P.W., Koyama, N., Ikada, Y., Li, R.K.: Tissue-engineered grafts matured in the right ventricular outflow tract. Cell Transplant. 13(2), 169–177 (2004) Ozawa, T., Mickle, D.A., Weisel, R.D., Matsubayashi, K., Fujii, T., Fedak, P.W., Koyama, N., Ikada, Y., Li, R.K.: Tissue-engineered grafts matured in the right ventricular outflow tract. Cell Transplant. 13(2), 169–177 (2004)
110.
Zurück zum Zitat Bredin, F., Franco-Cereceda, A., Midterm results of passive containment surgery using the acorn cor cap cardiac support device in dilated cardiomyopathy. J Card Surg 25(1):107-112 Bredin, F., Franco-Cereceda, A., Midterm results of passive containment surgery using the acorn cor cap cardiac support device in dilated cardiomyopathy. J Card Surg 25(1):107-112
111.
Zurück zum Zitat Walsh, R.G.: Design and features of the acorn corcap cardiac support device: The concept of passive mechanical diastolic support. Heart Fail Rev. 10(2), 101–107 (2005)CrossRef Walsh, R.G.: Design and features of the acorn corcap cardiac support device: The concept of passive mechanical diastolic support. Heart Fail Rev. 10(2), 101–107 (2005)CrossRef
112.
Zurück zum Zitat Yildirim, Y., Naito, H., Didie, M., Karikkineth, B.C., Biermann, D., Eschenhagen, T., Zimmermann, W.H.: Development of a biological ventricular assist device: Preliminary data from a small animal model. Circulation 116(11 Suppl), I16–I23 (2007) Yildirim, Y., Naito, H., Didie, M., Karikkineth, B.C., Biermann, D., Eschenhagen, T., Zimmermann, W.H.: Development of a biological ventricular assist device: Preliminary data from a small animal model. Circulation 116(11 Suppl), I16–I23 (2007)
113.
Zurück zum Zitat Chachques, J.C., Trainini, J.C., Lago, N., Masoli, O.H., Barisani, J.L., Cortes-Morichetti, M., Schussler, O., Carpentier, A.: Myocardial assistance by grafting a new bioartificial upgraded myocardium (magnum clinical trial): one year follow-up. Cell Transplant. 16(9), 927–934 (2007)CrossRef Chachques, J.C., Trainini, J.C., Lago, N., Masoli, O.H., Barisani, J.L., Cortes-Morichetti, M., Schussler, O., Carpentier, A.: Myocardial assistance by grafting a new bioartificial upgraded myocardium (magnum clinical trial): one year follow-up. Cell Transplant. 16(9), 927–934 (2007)CrossRef
114.
Zurück zum Zitat Archer, R., Williams, D.J.: Why tissue engineering needs process engineering. Nat. Biotechnol. 23(11), 1353–1355 (2005)CrossRef Archer, R., Williams, D.J.: Why tissue engineering needs process engineering. Nat. Biotechnol. 23(11), 1353–1355 (2005)CrossRef
Metadaten
Titel
Tissue Engineered Myocardium
verfasst von
Wolfram-Hubertus Zimmermann
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8415_2010_41

Neuer Inhalt