Skip to main content

2020 | OriginalPaper | Buchkapitel

14. Tissue Engineering in Periodontal Regeneration

verfasst von : Aysel Iranparvar, Amin Nozariasbmarz, Sara DeGrave, Lobat Tayebi

Erschienen in: Applications of Biomedical Engineering in Dentistry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Periodontal diseases have become exceedingly widespread, and management of the defects due to periodontitis has been a great challenge in periodontal therapies. In the last two decades, concerted efforts have aimed to improve periodontal tissue regeneration by bone grafting and guided tissue regeneration. Recent studies have focused on tissue engineering (TE) techniques for periodontal regeneration using stem cells, growth factors, and scaffolds to grow new functional tissues, rather than building replacements for lost periodontal tissues. The future of periodontal regeneration research requires an understanding of current findings, which in turn highlights the need for future research. In this chapter, we review recent progress in periodontal tissue regeneration and current tissue engineering approaches. The advantages and disadvantages of this method in clinical practice will be also discussed based on recent studies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen, F.-M., & Jin, Y. (2010). Periodontal tissue engineering and regeneration: Current approaches and expanding opportunities. Tissue Engineering: Part B, 16, 219–225.CrossRef Chen, F.-M., & Jin, Y. (2010). Periodontal tissue engineering and regeneration: Current approaches and expanding opportunities. Tissue Engineering: Part B, 16, 219–225.CrossRef
2.
Zurück zum Zitat Dabra, S., Chhina, K., Soni, N., & Bhatnagar, R. (2012). Tissue engineering in periodontal regeneration: A brief review. Dental Research Journal, 9, 671–680.CrossRef Dabra, S., Chhina, K., Soni, N., & Bhatnagar, R. (2012). Tissue engineering in periodontal regeneration: A brief review. Dental Research Journal, 9, 671–680.CrossRef
3.
Zurück zum Zitat Ivanovski, S., Bartold, P. M., Gronthos, S., & Hutmacher, D. W. (2017). Periodontal tissue engineering. In R. J. Waddington & A. J. Sloan (Eds.), Tissue engineering and regeneration in dentistry: Current strategies. West Sussex, UK, Wiley. Ivanovski, S., Bartold, P. M., Gronthos, S., & Hutmacher, D. W. (2017). Periodontal tissue engineering. In R. J. Waddington & A. J. Sloan (Eds.), Tissue engineering and regeneration in dentistry: Current strategies. West Sussex, UK, Wiley.
4.
Zurück zum Zitat Babo, P. S., Reis, R. L., & Gomes, M. E. (2017). Periodontal tissue engineering: Current strategies and the role of platelet rich hemoderivatives. Journal of Materials Chemistry B, 5, 3617.CrossRef Babo, P. S., Reis, R. L., & Gomes, M. E. (2017). Periodontal tissue engineering: Current strategies and the role of platelet rich hemoderivatives. Journal of Materials Chemistry B, 5, 3617.CrossRef
5.
Zurück zum Zitat Maeda, H., Wada, N., Fujii, S., Tomokiyo, A., & Akamine, A. (2011). Periodontal ligament stem cells. In A. Gholamrezanezhad (Ed.), Stem cells in clinic and research. London, InTech. Maeda, H., Wada, N., Fujii, S., Tomokiyo, A., & Akamine, A. (2011). Periodontal ligament stem cells. In A. Gholamrezanezhad (Ed.), Stem cells in clinic and research. London, InTech.
6.
Zurück zum Zitat Pihlstrom, B. L., Michalowicz, B. S., & Johnson, N. W. (2005). Periodontal diseases. Lancet, 366, 1809.CrossRef Pihlstrom, B. L., Michalowicz, B. S., & Johnson, N. W. (2005). Periodontal diseases. Lancet, 366, 1809.CrossRef
7.
Zurück zum Zitat Al-Shammari, K. F., Al-Khabbaz, A. K., Al-Ansari, J. M., Neiva, R., & Wang, H. L. (2005). Risk indicators for tooth loss due to periodontal disease. Journal of Periodontology, 76, 1910.CrossRef Al-Shammari, K. F., Al-Khabbaz, A. K., Al-Ansari, J. M., Neiva, R., & Wang, H. L. (2005). Risk indicators for tooth loss due to periodontal disease. Journal of Periodontology, 76, 1910.CrossRef
8.
Zurück zum Zitat Chen, F.-M., & Shi, S. (2014). Periodontal tissue engineering, in Principles of Tissue Engineering (pp. 1507–1540). 4th edn, ed. by R. Vacanti, R. Lanza and J. Langer. Boston, MA, Academic Press. Chen, F.-M., & Shi, S. (2014). Periodontal tissue engineering, in Principles of Tissue Engineering (pp. 1507–1540)4th edn, ed. by R. Vacanti, R. Lanza and J. Langer. Boston, MA, Academic Press.
9.
Zurück zum Zitat Grover, V., Malhorta, R., Kapoor, A., Verma, N., & Sahota, J. K. (2010). Future of periodontal regeneration. Journal of Oral Health Community Dentistry, 4, 38–47. Grover, V., Malhorta, R., Kapoor, A., Verma, N., & Sahota, J. K. (2010). Future of periodontal regeneration. Journal of Oral Health Community Dentistry, 4, 38–47.
10.
Zurück zum Zitat Hood, L., Heath, J. R., Phelps, M. E., & Lin, B. (2004). Systems biology and new technologies enable predictive and preventive medicine. Science, 306, 640–643.CrossRef Hood, L., Heath, J. R., Phelps, M. E., & Lin, B. (2004). Systems biology and new technologies enable predictive and preventive medicine. Science, 306, 640–643.CrossRef
11.
Zurück zum Zitat Galler, K. M., & D’Souza, R. N. (2011). Tissue engineering approaches for regenerative dentistry. Regenerative Medicine, 6, 111–124.CrossRef Galler, K. M., & D’Souza, R. N. (2011). Tissue engineering approaches for regenerative dentistry. Regenerative Medicine, 6, 111–124.CrossRef
12.
Zurück zum Zitat Abou Neel, E. A., Chrzanowski, W., Salih, V. M., Kim, H. W., & Knowles, J. C. (2014). Tissue engineering in dentistry. Journal of Dentistry, 42, 915–928.CrossRef Abou Neel, E. A., Chrzanowski, W., Salih, V. M., Kim, H. W., & Knowles, J. C. (2014). Tissue engineering in dentistry. Journal of Dentistry, 42, 915–928.CrossRef
13.
Zurück zum Zitat Silva, C. R., Gomez-Florit, M., Babo, P. S., Reis, R. L., & Gomes, M. E. (2017). 3D functional scaffolds for dental tissue engineering. In Y. Deng & J. Kuiper (Eds.), Functional 3D tissue engineering scaffolds. Silva, C. R., Gomez-Florit, M., Babo, P. S., Reis, R. L., & Gomes, M. E. (2017). 3D functional scaffolds for dental tissue engineering. In Y. Deng & J. Kuiper (Eds.), Functional 3D tissue engineering scaffolds.
14.
Zurück zum Zitat Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260, 920–926.CrossRef Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260, 920–926.CrossRef
15.
Zurück zum Zitat Chen, F. M., Zhang, J., Zhang, M., An, Y., Chen, F., & Wu, Z. F. (2010). A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials, 31, 7892–7927.CrossRef Chen, F. M., Zhang, J., Zhang, M., An, Y., Chen, F., & Wu, Z. F. (2010). A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials, 31, 7892–7927.CrossRef
16.
Zurück zum Zitat Yang, J., Yamato, M., Kohno, C., Nishimoto, A., Sekine, H., Fukai, F., & Okano, T. (2005). Cell sheet engineering: Recreating tissues without biodegradable scaffolds. Biomaterials, 26, 6415–6422.CrossRef Yang, J., Yamato, M., Kohno, C., Nishimoto, A., Sekine, H., Fukai, F., & Okano, T. (2005). Cell sheet engineering: Recreating tissues without biodegradable scaffolds. Biomaterials, 26, 6415–6422.CrossRef
17.
Zurück zum Zitat Iwata, T., Yamato, M., Ishikawa, I., Ando, T., & Okano, T. (2014). Tissue engineering in periodontal tissue. The Anatomical Record, 297, 16–25.CrossRef Iwata, T., Yamato, M., Ishikawa, I., Ando, T., & Okano, T. (2014). Tissue engineering in periodontal tissue. The Anatomical Record, 297, 16–25.CrossRef
18.
Zurück zum Zitat Esposito, M., Grusovin, M. G., Papanikolaou, N., Coulthard, P., & Worthington, H. V. (2009). Enamel matrix derivative (Emdogain(R)) for periodontal tissue regeneration in intrabony defects. Cochrane Database Syst Rev, CD003875. Esposito, M., Grusovin, M. G., Papanikolaou, N., Coulthard, P., & Worthington, H. V. (2009). Enamel matrix derivative (Emdogain(R)) for periodontal tissue regeneration in intrabony defects. Cochrane Database Syst Rev, CD003875.
19.
Zurück zum Zitat Mellonig, J. T. (1992). Autogenous and allogeneic bone grafts in periodontal therapy. Critical Reviews in Oral Biology and Medicine, 3, 333–352.CrossRef Mellonig, J. T. (1992). Autogenous and allogeneic bone grafts in periodontal therapy. Critical Reviews in Oral Biology and Medicine, 3, 333–352.CrossRef
20.
Zurück zum Zitat King, J. A., & Miller, W. M. (2007). Bioreactor development for stem cells expansion and controlled differentiation. Current Opinion in Chemical Biology, 11, 394–398.CrossRef King, J. A., & Miller, W. M. (2007). Bioreactor development for stem cells expansion and controlled differentiation. Current Opinion in Chemical Biology, 11, 394–398.CrossRef
21.
Zurück zum Zitat Hosokawa, K., Arai, F., Yoshihara, H., Nakamura, Y., Gomei, Y., Iwasaki, H., Ito, K., & Suda, T. (2007). Function of oxidative stress in the regulation of hematopoietic stem cell-niche interaction. Biochemical and Biophysical Research Communications, 363, 578–583.CrossRef Hosokawa, K., Arai, F., Yoshihara, H., Nakamura, Y., Gomei, Y., Iwasaki, H., Ito, K., & Suda, T. (2007). Function of oxidative stress in the regulation of hematopoietic stem cell-niche interaction. Biochemical and Biophysical Research Communications, 363, 578–583.CrossRef
22.
Zurück zum Zitat Shimauchi, H., Nemoto, E., Ishihata, H., & Shimomura, M. (2013). Possible functional scaffolds for periodontal regeneration. Japanese Dental Science Review, 49, 118–130.CrossRef Shimauchi, H., Nemoto, E., Ishihata, H., & Shimomura, M. (2013). Possible functional scaffolds for periodontal regeneration. Japanese Dental Science Review, 49, 118–130.CrossRef
23.
Zurück zum Zitat Wang, W., & Yeung, K. W. K. (2017). Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Materials, 2, 224–247.CrossRef Wang, W., & Yeung, K. W. K. (2017). Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Materials, 2, 224–247.CrossRef
24.
Zurück zum Zitat Roberts, T. T., & Rosenbaum, A. J. (2012). Bone grafts, bone substitutes and orthobiologics: The bridge between basic science and clinical advancements in fracture healing. Organogenesis, 8, 114–124.CrossRef Roberts, T. T., & Rosenbaum, A. J. (2012). Bone grafts, bone substitutes and orthobiologics: The bridge between basic science and clinical advancements in fracture healing. Organogenesis, 8, 114–124.CrossRef
25.
Zurück zum Zitat Goldberg, V. M., & Akhavan, S. (2005). Biology of bone grafts. In J. R. Lieberman & G. E. Friedlaender (Eds.), Bone regeneration and repair (pp. 57–65). Totowa, NJ. Springer. Goldberg, V. M., & Akhavan, S. (2005). Biology of bone grafts. In J. R. Lieberman & G. E. Friedlaender (Eds.), Bone regeneration and repair (pp. 57–65). Totowa, NJ. Springer.
26.
Zurück zum Zitat Stevenson, S., & Horowitz, M. (1992). The response to bone allografts. The Journal of Bone and Joint Surgery, 74, 939–950.CrossRef Stevenson, S., & Horowitz, M. (1992). The response to bone allografts. The Journal of Bone and Joint Surgery, 74, 939–950.CrossRef
27.
Zurück zum Zitat Kumar, P., Vinitha, B., & Fathima, G. (2013). Bone grafts in dentistry. Journal of Pharmacy & Bioallied Sciences, 5(Suppl 1), S125–S127.CrossRef Kumar, P., Vinitha, B., & Fathima, G. (2013). Bone grafts in dentistry. Journal of Pharmacy & Bioallied Sciences, 5(Suppl 1), S125–S127.CrossRef
28.
Zurück zum Zitat Hjørting-Hansen, E. (2002). Bone grafting to the jaws with special reference to reconstructive preprosthetic surgery: A historical review. Mund-, Kiefer- und Gesichtschirurgie, 6(1), 6–14.CrossRef Hjørting-Hansen, E. (2002). Bone grafting to the jaws with special reference to reconstructive preprosthetic surgery: A historical review. Mund-, Kiefer- und Gesichtschirurgie, 6(1), 6–14.CrossRef
29.
Zurück zum Zitat Burchardt, H. (1983). The biology of bone graft repair. Clinical Orthopaedics and Related Research, 174, 28–42. Burchardt, H. (1983). The biology of bone graft repair. Clinical Orthopaedics and Related Research, 174, 28–42.
30.
Zurück zum Zitat Cordaro, L., Amade, D. S., & Cordaro, M. (2002). Clinical results of alveolar ridge augmentation with mandibular block bone grafts in partially edentulous patients prior to implant placement. Clinical Oral Implants Research, 13(1), 103–111.CrossRef Cordaro, L., Amade, D. S., & Cordaro, M. (2002). Clinical results of alveolar ridge augmentation with mandibular block bone grafts in partially edentulous patients prior to implant placement. Clinical Oral Implants Research, 13(1), 103–111.CrossRef
31.
Zurück zum Zitat Garraway, R., Young, W. G., Daley, T., Harbow, D., & Bartold, P. M. (1998). An assessment of the osteoinductive potential of commercial demineralized freeze dried bone in the murine thing muscle implantation model. Journal of Periodontal, 69(12), 1325–1336.CrossRef Garraway, R., Young, W. G., Daley, T., Harbow, D., & Bartold, P. M. (1998). An assessment of the osteoinductive potential of commercial demineralized freeze dried bone in the murine thing muscle implantation model. Journal of Periodontal, 69(12), 1325–1336.CrossRef
32.
Zurück zum Zitat Thomas, G. V., Thomas, N. G., John, S., & Ittycheria, P. G. (2015). The scope of stem cells in periodontal regeneration. Journal of Dental Oral Disorders and Therapy, 3(2), 1–9. Thomas, G. V., Thomas, N. G., John, S., & Ittycheria, P. G. (2015). The scope of stem cells in periodontal regeneration. Journal of Dental Oral Disorders and Therapy, 3(2), 1–9.
33.
Zurück zum Zitat Kinaia, B. M., Chogle, S. M. A., Kinaia, A. M., & Goodis, H. E. (2012). Regenerative therapy: A periodontal-endodontic perspective. Dental Clinics of North America, 56(3), 537–547.CrossRef Kinaia, B. M., Chogle, S. M. A., Kinaia, A. M., & Goodis, H. E. (2012). Regenerative therapy: A periodontal-endodontic perspective. Dental Clinics of North America, 56(3), 537–547.CrossRef
34.
Zurück zum Zitat Ledesma-Martínez, E., Mendoza-Núñez, V. M., & Santiago-Osorio, E. (2016). Mesenchymal stem cells derived from dental pulp: A review. Stem Cells International, 2016, 4709572. Ledesma-Martínez, E., Mendoza-Núñez, V. M., & Santiago-Osorio, E. (2016). Mesenchymal stem cells derived from dental pulp: A review. Stem Cells International, 2016, 4709572.
35.
Zurück zum Zitat Melcher, A. H., McCulloch, C. A., Cheong, T., Nemeth, E., & Shiga, A. (1987). Cells from bone synthesize cementum-like and bone-like tissue in vitro and may migrate into periodontal ligament in vivo. Journal of Periodontal Research, 22, 246–247.CrossRef Melcher, A. H., McCulloch, C. A., Cheong, T., Nemeth, E., & Shiga, A. (1987). Cells from bone synthesize cementum-like and bone-like tissue in vitro and may migrate into periodontal ligament in vivo. Journal of Periodontal Research, 22, 246–247.CrossRef
36.
Zurück zum Zitat Karring, T., Nyman, S., Gottlow, J., & Laurell, L. (1993). Development of the biological concept of guided tissue regeneration-animal and human studies. Periodontology, 2000(1), 26–35.CrossRef Karring, T., Nyman, S., Gottlow, J., & Laurell, L. (1993). Development of the biological concept of guided tissue regeneration-animal and human studies. Periodontology, 2000(1), 26–35.CrossRef
37.
Zurück zum Zitat Buser, D., Warrer, K., & Karring, T. (1990). Formation of a periodontal ligament around titanium implants. Journal of Periodontology, 61, 597–601.CrossRef Buser, D., Warrer, K., & Karring, T. (1990). Formation of a periodontal ligament around titanium implants. Journal of Periodontology, 61, 597–601.CrossRef
38.
Zurück zum Zitat Clem, D. S., & Bishop, J. P. (1991). Guided tissue regeneration in periodontal therapy. Journal of the California Dental Association, 19, 67. Clem, D. S., & Bishop, J. P. (1991). Guided tissue regeneration in periodontal therapy. Journal of the California Dental Association, 19, 67.
39.
Zurück zum Zitat Caffesse, R. G., & Becker, W. (1991). Principles and techniques of guided tissue regeneration. Dental Clinics of North America, 35, 479. Caffesse, R. G., & Becker, W. (1991). Principles and techniques of guided tissue regeneration. Dental Clinics of North America, 35, 479.
40.
Zurück zum Zitat Needleman, I., Tucker, R., Giedrys-Leeper, E., & Worthington, H. (2005). Guided tissue regeneration for periodontal intrabony defects-a Cochrane systematic review. Periodontology 2000, 2000(37), 106.CrossRef Needleman, I., Tucker, R., Giedrys-Leeper, E., & Worthington, H. (2005). Guided tissue regeneration for periodontal intrabony defects-a Cochrane systematic review. Periodontology 2000, 2000(37), 106.CrossRef
41.
Zurück zum Zitat Phillips, J. D., & Palou, M. E. (1992). A review of the guided tissue regeneration concept. General Dentistry, 40, 118. Phillips, J. D., & Palou, M. E. (1992). A review of the guided tissue regeneration concept. General Dentistry, 40, 118.
42.
Zurück zum Zitat Murphy, K. G., & Gunsolley, J. C. (2003). Guided tissue regeneration for the treatment of periodontal intrabony and furcation defects. A systematic review. Annals of Periodontology, 8, 266.CrossRef Murphy, K. G., & Gunsolley, J. C. (2003). Guided tissue regeneration for the treatment of periodontal intrabony and furcation defects. A systematic review. Annals of Periodontology, 8, 266.CrossRef
43.
Zurück zum Zitat Gottlow, J., Nyman, S., Karring, T., & Lindhe, J. (1984). New attachment formation as the result of controlled tissue regeneration. Journal of Clinical Periodontology, 11, 494–503.CrossRef Gottlow, J., Nyman, S., Karring, T., & Lindhe, J. (1984). New attachment formation as the result of controlled tissue regeneration. Journal of Clinical Periodontology, 11, 494–503.CrossRef
44.
Zurück zum Zitat Siaili, M., Chatzopoulou, D., & Gillam, D. G. (2018). An overview of periodontal regenerative procedures for the general dental practitioner. Saudi Dental Journal, 30, 26–37.CrossRef Siaili, M., Chatzopoulou, D., & Gillam, D. G. (2018). An overview of periodontal regenerative procedures for the general dental practitioner. Saudi Dental Journal, 30, 26–37.CrossRef
45.
Zurück zum Zitat Aichelmann-Reidy, M. E., & Reynolds, M. A. (2008). Predictability of clinical outcomes following regenerative therapy in intrabony defects. Journal of Periodontology, 79, 387.CrossRef Aichelmann-Reidy, M. E., & Reynolds, M. A. (2008). Predictability of clinical outcomes following regenerative therapy in intrabony defects. Journal of Periodontology, 79, 387.CrossRef
46.
Zurück zum Zitat Zeichner-David, M. (2006). Regeneration of periodontal tissues: Cementogenesis revisited. Periodontology 2000, 2000(41), 196.CrossRef Zeichner-David, M. (2006). Regeneration of periodontal tissues: Cementogenesis revisited. Periodontology 2000, 2000(41), 196.CrossRef
47.
Zurück zum Zitat Grzesik, W. J., & Narayanan, A. S. (2002). Cementum and periodontal wound healing and regeneration. Critical Reviews in Oral Biology and Medicine, 13, 474.CrossRef Grzesik, W. J., & Narayanan, A. S. (2002). Cementum and periodontal wound healing and regeneration. Critical Reviews in Oral Biology and Medicine, 13, 474.CrossRef
48.
Zurück zum Zitat Lin, N. H., Menicacin, D., Mrozik, K., Gronthos, S., & Bartold, P. M. (2008). Putative stem cells in regenerating human periodontium. Journal of Periodontal Research, 53, 514–523. Lin, N. H., Menicacin, D., Mrozik, K., Gronthos, S., & Bartold, P. M. (2008). Putative stem cells in regenerating human periodontium. Journal of Periodontal Research, 53, 514–523.
49.
Zurück zum Zitat Hynes, K., Menicanin, D., Gronthos, S., & Bartold, P. M. (2012). Clinical utility of stem cells for periodontal regeneration. Periodontology 2000, 59(1), 203–227.CrossRef Hynes, K., Menicanin, D., Gronthos, S., & Bartold, P. M. (2012). Clinical utility of stem cells for periodontal regeneration. Periodontology 2000, 59(1), 203–227.CrossRef
50.
Zurück zum Zitat Zhu, W., & Liang, M. (2015). Periodontal ligament stem cells: Current status, concerns, and future prospects. Stem Cells International, 972313, 1–11. Zhu, W., & Liang, M. (2015). Periodontal ligament stem cells: Current status, concerns, and future prospects. Stem Cells International, 972313, 1–11.
51.
Zurück zum Zitat Yamada, Y., Ueda, M., Hibi, H., & Baba, S. (2006). A novel approach to periodontal tissue regeneration with mesenchymal stem cells and platelet-rich plasma using tissue engineering technology: A clinical case report. International Journal of Periodontics and Restorative Dentistry, 26(4), 363–369. Yamada, Y., Ueda, M., Hibi, H., & Baba, S. (2006). A novel approach to periodontal tissue regeneration with mesenchymal stem cells and platelet-rich plasma using tissue engineering technology: A clinical case report. International Journal of Periodontics and Restorative Dentistry, 26(4), 363–369.
52.
Zurück zum Zitat Huang, G. T. J., Gronthos, S., & Shi, S. (2009). Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. Journal of Dental Research, 88(9), 792–806.CrossRef Huang, G. T. J., Gronthos, S., & Shi, S. (2009). Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. Journal of Dental Research, 88(9), 792–806.CrossRef
53.
Zurück zum Zitat Seo, B. M., Miura, M., Gronthos, S., Bartold, P. M., Batouli, S., Brahim, J., Young, M., Robey, P. G., Wang, C. Y., & Shi, S. (2004). Investigation of multipotent stem cells from human periodontal ligament. The Lancet, 364(9429), 149–155.CrossRef Seo, B. M., Miura, M., Gronthos, S., Bartold, P. M., Batouli, S., Brahim, J., Young, M., Robey, P. G., Wang, C. Y., & Shi, S. (2004). Investigation of multipotent stem cells from human periodontal ligament. The Lancet, 364(9429), 149–155.CrossRef
54.
Zurück zum Zitat Sonoyama, W., Liu, Y., Yamaza, T., Tuan, R. S., Wang, S., Shi, S., & Huang, G. T.-J. (2008). Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: A pilot study. Journal of Endodontics, 34(2), 166–171.CrossRef Sonoyama, W., Liu, Y., Yamaza, T., Tuan, R. S., Wang, S., Shi, S., & Huang, G. T.-J. (2008). Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: A pilot study. Journal of Endodontics, 34(2), 166–171.CrossRef
55.
Zurück zum Zitat Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L. W., Robey, P. G., & Shi, S. (2003). SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 5807–5812.CrossRef Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L. W., Robey, P. G., & Shi, S. (2003). SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 5807–5812.CrossRef
56.
Zurück zum Zitat Zhang, Q., Shi, S., Liu, Y., Uyanne, J., Shi, Y., & Le, A. D. (2009). Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation related tissue destruction in experimental colitis. The Journal of Immunology, 183(12), 7787–7798.CrossRef Zhang, Q., Shi, S., Liu, Y., Uyanne, J., Shi, Y., & Le, A. D. (2009). Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation related tissue destruction in experimental colitis. The Journal of Immunology, 183(12), 7787–7798.CrossRef
57.
Zurück zum Zitat Hynes, K., Menicanin, D., Gronthos, S., & Bartold, P. M. (2012). Clinical utility of stem cells for periodontal regeneration. Periodontology 2000, 59, 203–227.CrossRef Hynes, K., Menicanin, D., Gronthos, S., & Bartold, P. M. (2012). Clinical utility of stem cells for periodontal regeneration. Periodontology 2000, 59, 203–227.CrossRef
58.
Zurück zum Zitat Chai, Y., Jiang, X., Ito, Y., Bringas, P. J., Han, J., Rowitch, D. H., Soriano, P., McMahon, A. P., & Sucov, H. M. (2000). Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development, 127, 1671–1679. Chai, Y., Jiang, X., Ito, Y., Bringas, P. J., Han, J., Rowitch, D. H., Soriano, P., McMahon, A. P., & Sucov, H. M. (2000). Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development, 127, 1671–1679.
59.
Zurück zum Zitat Bossù, M., Pacifici, A., Carbone, D., Tenore, G., Ierardo, G., Pacifici, L., & Polimeni, A. (2014). Today prospects for tissue engineering therapeutic approach in dentistry. The Scientific World Journal, 2014, 151252, 1–151252, 9.CrossRef Bossù, M., Pacifici, A., Carbone, D., Tenore, G., Ierardo, G., Pacifici, L., & Polimeni, A. (2014). Today prospects for tissue engineering therapeutic approach in dentistry. The Scientific World Journal, 2014, 151252, 1–151252, 9.CrossRef
60.
Zurück zum Zitat Nagatomo, K., Komaki, M., Sekiya, I., Sakaguchi, Y., Noguchi, K., Oda, S., Muneta, T., & Ishikawa, I. (2006). Stem cell properties of human periodontal ligament cells. Journal of Periodontal Research, 41(4), 303–310.CrossRef Nagatomo, K., Komaki, M., Sekiya, I., Sakaguchi, Y., Noguchi, K., Oda, S., Muneta, T., & Ishikawa, I. (2006). Stem cell properties of human periodontal ligament cells. Journal of Periodontal Research, 41(4), 303–310.CrossRef
61.
Zurück zum Zitat Amrollahi, P., Shah, B., Seifi, A., & Tayebi, L. (2016). Recent advancements in regenerative dentistry: A review. Materials Science and Engineering C, 69, 1383–1390.CrossRef Amrollahi, P., Shah, B., Seifi, A., & Tayebi, L. (2016). Recent advancements in regenerative dentistry: A review. Materials Science and Engineering C, 69, 1383–1390.CrossRef
62.
Zurück zum Zitat Bhandari, R. N., Riccalton, L. A., Lewis, A. L., Fry, J. R., Hammond, A. H., Tendler, S. J., & Shakesheff, K. M. (2001). Liver tissue engineering: A role for co-culture systems in modifying hepatocyte function and viability. Tissue Engineering, 7(3), 345–357.CrossRef Bhandari, R. N., Riccalton, L. A., Lewis, A. L., Fry, J. R., Hammond, A. H., Tendler, S. J., & Shakesheff, K. M. (2001). Liver tissue engineering: A role for co-culture systems in modifying hepatocyte function and viability. Tissue Engineering, 7(3), 345–357.CrossRef
63.
Zurück zum Zitat Beltrán-Aguilar, E. D., Barker, L., Canto, M., Dye, B., Gooch, B., Griffin, S., et al. (2005). Centers for Disease Control and Prevention (CDC). Surveillance for dental caries, dental sealants, tooth retention, edentulism, and enamel fluorosis—United States, 1988–1994 and 1999–2002. MMWR Surveillance Summaries, 54(3), 1–43. Beltrán-Aguilar, E. D., Barker, L., Canto, M., Dye, B., Gooch, B., Griffin, S., et al. (2005). Centers for Disease Control and Prevention (CDC). Surveillance for dental caries, dental sealants, tooth retention, edentulism, and enamel fluorosis—United States, 1988–1994 and 1999–2002. MMWR Surveillance Summaries, 54(3), 1–43.
64.
Zurück zum Zitat Wada, N., Menicanin, D., Shi, S., Bartold, P. M., & Gronthos, S. (2009). Immunomodulatory properties of human periodontal ligament stem cells. Journal of Cellular Physiology, 219(3), 667–676.CrossRef Wada, N., Menicanin, D., Shi, S., Bartold, P. M., & Gronthos, S. (2009). Immunomodulatory properties of human periodontal ligament stem cells. Journal of Cellular Physiology, 219(3), 667–676.CrossRef
65.
Zurück zum Zitat Gay, I. C., Chen, S., & MacDougall, M. (2007). Isolation and characterization of multipotent human periodontal ligament stem cells. Orthodontics and Craniofacial Research, 10(3), 149–160.CrossRef Gay, I. C., Chen, S., & MacDougall, M. (2007). Isolation and characterization of multipotent human periodontal ligament stem cells. Orthodontics and Craniofacial Research, 10(3), 149–160.CrossRef
66.
Zurück zum Zitat Lang, H., Schuler, N., & Nolden, R. (1998). Attachment formation following replantation of cultured cells into periodontal defects: A study in minipigs. Journal of Dental Research, 77, 393–405.CrossRef Lang, H., Schuler, N., & Nolden, R. (1998). Attachment formation following replantation of cultured cells into periodontal defects: A study in minipigs. Journal of Dental Research, 77, 393–405.CrossRef
67.
Zurück zum Zitat Isaka, J., Ohazama, A., Kobayashi, M., Nagashima, C., Takiguchi, T., Kawasaki, H., Tachikawa, T., & Hasegawa, K. (2001). Participation of periodontal ligament cells with regeneration of alveolar bone. Journal of Periodontology, 72, 314–323.CrossRef Isaka, J., Ohazama, A., Kobayashi, M., Nagashima, C., Takiguchi, T., Kawasaki, H., Tachikawa, T., & Hasegawa, K. (2001). Participation of periodontal ligament cells with regeneration of alveolar bone. Journal of Periodontology, 72, 314–323.CrossRef
68.
Zurück zum Zitat Dogan, A., Ozdemir, A., Kubar, A., & Oygur, T. (2002). Assessment of periodontal healing by seeding of fibroblast like cells derived from regenerated periodontal ligament in artificial furcation defects in a dog: A pilot study. Tissue Engineering, 8, 273–282.CrossRef Dogan, A., Ozdemir, A., Kubar, A., & Oygur, T. (2002). Assessment of periodontal healing by seeding of fibroblast like cells derived from regenerated periodontal ligament in artificial furcation defects in a dog: A pilot study. Tissue Engineering, 8, 273–282.CrossRef
69.
Zurück zum Zitat Dogan, A., Ozdemir, A., Kubar, A., & Oygur, T. (2003). Healing of artificial fenestration defects by seeding of fibroblast-like cells derived from regenerated periodontal ligament in a dog: A preliminary study. Tissue Engineering, 9, 1189–1196.CrossRef Dogan, A., Ozdemir, A., Kubar, A., & Oygur, T. (2003). Healing of artificial fenestration defects by seeding of fibroblast-like cells derived from regenerated periodontal ligament in a dog: A preliminary study. Tissue Engineering, 9, 1189–1196.CrossRef
70.
Zurück zum Zitat Seo, B. M., Miura, M., Gronthos, S., Bartold, P. M., Batouli, S., Brahim, J., Young, M., Robey, P. G., Wang, C. Y., & Shi, S. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364, 149–155.CrossRef Seo, B. M., Miura, M., Gronthos, S., Bartold, P. M., Batouli, S., Brahim, J., Young, M., Robey, P. G., Wang, C. Y., & Shi, S. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364, 149–155.CrossRef
71.
Zurück zum Zitat Park, J.-Y., Jeon, S. H., & Choung, P.-H. (2011). Efficacy of periodontal stem cell transplantation in the treatment of advanced periodontitis. Cell Transplantation, 20(2), 271–285.CrossRef Park, J.-Y., Jeon, S. H., & Choung, P.-H. (2011). Efficacy of periodontal stem cell transplantation in the treatment of advanced periodontitis. Cell Transplantation, 20(2), 271–285.CrossRef
72.
Zurück zum Zitat Liu, Y., Zheng, Y., Ding, G., Fang, D., Zhang, C., Bartold, P. M., Gronthos, S., Shi, S., & Wang, S. (2008). Periodontal ligament stem cell mediated treatment for periodontitis in miniature swine. Stem Cells, 26(4), 1065–1073.CrossRef Liu, Y., Zheng, Y., Ding, G., Fang, D., Zhang, C., Bartold, P. M., Gronthos, S., Shi, S., & Wang, S. (2008). Periodontal ligament stem cell mediated treatment for periodontitis in miniature swine. Stem Cells, 26(4), 1065–1073.CrossRef
73.
Zurück zum Zitat Huang, C. Y., Pelaez, D., Dominguez-Bendala, J., Garcia-Godoy, F., & Cheung, H. S. (2009). Plasticity of stem cells derived from adult periodontal ligament. Regenerative Medicine, 4(6), 809–821.CrossRef Huang, C. Y., Pelaez, D., Dominguez-Bendala, J., Garcia-Godoy, F., & Cheung, H. S. (2009). Plasticity of stem cells derived from adult periodontal ligament. Regenerative Medicine, 4(6), 809–821.CrossRef
74.
Zurück zum Zitat Dan, H., Vaquette, C., Fisher, A., Hamlet, S. M., Xiao, Y., Hutmacher, D. W., & Ivanovski, S. (2014). The influence of cellular source on periodontal regeneration using calcium phosphate coated polycaprolactone scaffold supported cell sheets. Biomaterials, 35, 113–122.CrossRef Dan, H., Vaquette, C., Fisher, A., Hamlet, S. M., Xiao, Y., Hutmacher, D. W., & Ivanovski, S. (2014). The influence of cellular source on periodontal regeneration using calcium phosphate coated polycaprolactone scaffold supported cell sheets. Biomaterials, 35, 113–122.CrossRef
75.
Zurück zum Zitat Morsczeck, C., Gotz, W., Schierholz, J., Zeilhofer, F., Kuhn, U., Mohl, C., et al. (2005). Matrix Biology, 24, 155–165.CrossRef Morsczeck, C., Gotz, W., Schierholz, J., Zeilhofer, F., Kuhn, U., Mohl, C., et al. (2005). Matrix Biology, 24, 155–165.CrossRef
76.
Zurück zum Zitat Sethi, M., Dua, A., & Dodwad, V. (2012). Stem cells: A window to regenerative dentistry. International Journal of Pharmaceutical Biomedical Research, 3(3), 175–180. Sethi, M., Dua, A., & Dodwad, V. (2012). Stem cells: A window to regenerative dentistry. International Journal of Pharmaceutical Biomedical Research, 3(3), 175–180.
77.
Zurück zum Zitat Yao, S., Pan, F., Prpic, V., & Wise, G. E. (2008). Differentiation of stem cells in the dental follicle. Journal of Dental Research, 87, 767–771.CrossRef Yao, S., Pan, F., Prpic, V., & Wise, G. E. (2008). Differentiation of stem cells in the dental follicle. Journal of Dental Research, 87, 767–771.CrossRef
78.
Zurück zum Zitat Morsczeck, C., Gotz, W., Schierholz, J., Zeilhofer, F., Kuhn, U., Mohl, C., & Hoffmann, K. H. (2005). Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biology, 24, 155–165.CrossRef Morsczeck, C., Gotz, W., Schierholz, J., Zeilhofer, F., Kuhn, U., Mohl, C., & Hoffmann, K. H. (2005). Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biology, 24, 155–165.CrossRef
79.
Zurück zum Zitat Yokoi, T., Saito, M., Kiyono, T., Iseki, S., Kosaka, K., Nishida, E., Tsubakimoto, T., Harada, H., Eto, K., Noguchi, T., & Teranaka, T. (2007). Establishment of immortalized dental follicle cells for generating periodontal ligament in vivo. Cell and Tissue Research, 327(2), 301–311.CrossRef Yokoi, T., Saito, M., Kiyono, T., Iseki, S., Kosaka, K., Nishida, E., Tsubakimoto, T., Harada, H., Eto, K., Noguchi, T., & Teranaka, T. (2007). Establishment of immortalized dental follicle cells for generating periodontal ligament in vivo. Cell and Tissue Research, 327(2), 301–311.CrossRef
80.
Zurück zum Zitat Bai, Y., Bai, K., Matsuzaka, S., Hashimoto, S., Fukuyama, T., Wu, L., Miwa, T., Liu, X., Wang, X., & Inoue, T. (2011). Cementum-and periodontal ligament–like tissue formation by dental follicle cell sheets co-cultured with Hertwig’s epithelial root sheath cells. Bone, 48, 1417–1426.CrossRef Bai, Y., Bai, K., Matsuzaka, S., Hashimoto, S., Fukuyama, T., Wu, L., Miwa, T., Liu, X., Wang, X., & Inoue, T. (2011). Cementum-and periodontal ligament–like tissue formation by dental follicle cell sheets co-cultured with Hertwig’s epithelial root sheath cells. Bone, 48, 1417–1426.CrossRef
81.
Zurück zum Zitat Okuda, K., Momose, M., Murata, M., Saito, Y., lnoie, M., Shinohara, C., Wolff, L. F., & Yoshie, H. (2004). Treatment of chronic desquamative gingivitis using tissue-engineered human cultured gingival epithelial sheets: A case report. The International Journal of Periodontics Restorative Dentistry, 24, 119–125. Okuda, K., Momose, M., Murata, M., Saito, Y., lnoie, M., Shinohara, C., Wolff, L. F., & Yoshie, H. (2004). Treatment of chronic desquamative gingivitis using tissue-engineered human cultured gingival epithelial sheets: A case report. The International Journal of Periodontics Restorative Dentistry, 24, 119–125.
82.
Zurück zum Zitat Mohammadi, M., Shokrgozar, M. A., & Mofid, R. (2007). Culture of human gingival fibroblasts on a biodegradable scaffold and evaluation of its effect on attached gingiva: A randomized, controlled pilot study. Journal of Periodontology, 78, 1897–1903.CrossRef Mohammadi, M., Shokrgozar, M. A., & Mofid, R. (2007). Culture of human gingival fibroblasts on a biodegradable scaffold and evaluation of its effect on attached gingiva: A randomized, controlled pilot study. Journal of Periodontology, 78, 1897–1903.CrossRef
83.
Zurück zum Zitat McGuire, M. K., Scheyer, E. T., Nevins, M. L., Neiva, R., Cochran, D. L., Mellonig, J. T., Giannobile, W. V., & Bates, D. (2011). Living cellular construct for increasing the width of keratinized gingiva: Results from a randomized, within-patient, controlled trial. Journal of Periodontology, 82, 1414–1423.CrossRef McGuire, M. K., Scheyer, E. T., Nevins, M. L., Neiva, R., Cochran, D. L., Mellonig, J. T., Giannobile, W. V., & Bates, D. (2011). Living cellular construct for increasing the width of keratinized gingiva: Results from a randomized, within-patient, controlled trial. Journal of Periodontology, 82, 1414–1423.CrossRef
84.
Zurück zum Zitat Allen, M. R., Hock, J. M., & Burr, D. B. (2004). Periosteum: Biology, regulation, and response to osteoporosis therapies. Bone, 35, 1003–1012.CrossRef Allen, M. R., Hock, J. M., & Burr, D. B. (2004). Periosteum: Biology, regulation, and response to osteoporosis therapies. Bone, 35, 1003–1012.CrossRef
85.
Zurück zum Zitat Yamamiya, K., Okuda, K., Kawase, T., Hata, K., Wolff, L. F., & Yoshie, H. (2008). Tissue-engineered cultured periosteum used with platelet-rich plasma and hydroxyapatite in treating human osseous defects. Journal of Periodontology, 79, 811–818.CrossRef Yamamiya, K., Okuda, K., Kawase, T., Hata, K., Wolff, L. F., & Yoshie, H. (2008). Tissue-engineered cultured periosteum used with platelet-rich plasma and hydroxyapatite in treating human osseous defects. Journal of Periodontology, 79, 811–818.CrossRef
86.
Zurück zum Zitat Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13625–13630.CrossRef Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13625–13630.CrossRef
87.
Zurück zum Zitat Shi, S., Robey, P. G., & Gronthos, S. (2001). Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone, 29, 532–539.CrossRef Shi, S., Robey, P. G., & Gronthos, S. (2001). Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone, 29, 532–539.CrossRef
88.
Zurück zum Zitat Arthur, A., Shi, S., Zannettino, A. C. W., Fujii, N., Gronthos, S., & Koblar, S. A. (2009). Implanted adult human dental pulp stem cells induce endogenous axon guidance. Stem Cells, 27(9), 2229–2237.CrossRef Arthur, A., Shi, S., Zannettino, A. C. W., Fujii, N., Gronthos, S., & Koblar, S. A. (2009). Implanted adult human dental pulp stem cells induce endogenous axon guidance. Stem Cells, 27(9), 2229–2237.CrossRef
89.
Zurück zum Zitat Gronthos, S., Brahim, J., Li, W., et al. (2002). Stem cell properties of human dental pulp stem cells. Journal of Dental Research, 81(8), 531–535.CrossRef Gronthos, S., Brahim, J., Li, W., et al. (2002). Stem cell properties of human dental pulp stem cells. Journal of Dental Research, 81(8), 531–535.CrossRef
90.
Zurück zum Zitat Ishkitiev, N., Yaegaki, K., Calenic, B., et al. (2010). Deciduous and permanent dental pulp mesenchymal cells acquire hepatic morphologic and functional features in vitro. Journal of Endodontics, 36(3), 469–474.CrossRef Ishkitiev, N., Yaegaki, K., Calenic, B., et al. (2010). Deciduous and permanent dental pulp mesenchymal cells acquire hepatic morphologic and functional features in vitro. Journal of Endodontics, 36(3), 469–474.CrossRef
91.
Zurück zum Zitat Alongi, D. J., Yamaza, T., Song, Y., et al. (2010). Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regenerative Medicine, 5(4), 617–631.CrossRef Alongi, D. J., Yamaza, T., Song, Y., et al. (2010). Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regenerative Medicine, 5(4), 617–631.CrossRef
92.
Zurück zum Zitat Huang, A. H., Chen, Y. K., Lin, L. M., Shieh, T. Y., & Chan, A. W. (2008). Isolation and characterization of dental pulp stem cells from a supernumerary tooth. Journal of Oral Pathology and Medicine, 37(9), 571–574.CrossRef Huang, A. H., Chen, Y. K., Lin, L. M., Shieh, T. Y., & Chan, A. W. (2008). Isolation and characterization of dental pulp stem cells from a supernumerary tooth. Journal of Oral Pathology and Medicine, 37(9), 571–574.CrossRef
93.
Zurück zum Zitat Karaoz, E., Dogan, B. N., Aksoy, A., et al. (2010). Isolation and in vitro characterization of dental pulp stem cells from natal teeth. Histochemistry and Cell Biology, 133(1), 95–112.CrossRef Karaoz, E., Dogan, B. N., Aksoy, A., et al. (2010). Isolation and in vitro characterization of dental pulp stem cells from natal teeth. Histochemistry and Cell Biology, 133(1), 95–112.CrossRef
94.
Zurück zum Zitat D’Aquino, R., De Rosa, A., Lanza, V., et al. (2009). Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. European Cells and Materials, 18(7), 75–83.CrossRef D’Aquino, R., De Rosa, A., Lanza, V., et al. (2009). Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. European Cells and Materials, 18(7), 75–83.CrossRef
95.
Zurück zum Zitat Zhao, Y., Wang, L., Jin, Y., & Shi, S. (2012). Fas ligand regulates the immunomodulatory properties of dental pulp stem cells. Journal of Dental Research, 91, 948–954.CrossRef Zhao, Y., Wang, L., Jin, Y., & Shi, S. (2012). Fas ligand regulates the immunomodulatory properties of dental pulp stem cells. Journal of Dental Research, 91, 948–954.CrossRef
96.
Zurück zum Zitat Grzesik, W. J., Kuzentsov, S. A., Uzawa, K., Mankani, M., Robey, P. G., & Yamauchi, M. (1998). Normal human cementum-derived cells: Isolation, clonal expansion, and in vitro and in vivo characterization. Journal of Bone and Mineral Research, 13(10), 1547–1554.CrossRef Grzesik, W. J., Kuzentsov, S. A., Uzawa, K., Mankani, M., Robey, P. G., & Yamauchi, M. (1998). Normal human cementum-derived cells: Isolation, clonal expansion, and in vitro and in vivo characterization. Journal of Bone and Mineral Research, 13(10), 1547–1554.CrossRef
97.
Zurück zum Zitat Huang, G. T.-J., El Ayachi, I., & Zou, X.-Y. (2016). Induced pluripotent stem cell technologies for tissue engineering. In R. J. Waddington & A. J. Sloan (Eds.), Tissue engineering and regeneration in dentistry. Huang, G. T.-J., El Ayachi, I., & Zou, X.-Y. (2016). Induced pluripotent stem cell technologies for tissue engineering. In R. J. Waddington & A. J. Sloan (Eds.), Tissue engineering and regeneration in dentistry.
98.
Zurück zum Zitat Nakamura, S., Yamada, Y., Katagiri, W., Sugito, T., Ito, K., & Ueda, M. (2009). Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. Journal of Endodontics, 35(11), 1536–1542.CrossRef Nakamura, S., Yamada, Y., Katagiri, W., Sugito, T., Ito, K., & Ueda, M. (2009). Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. Journal of Endodontics, 35(11), 1536–1542.CrossRef
99.
Zurück zum Zitat Wang, X., Sha, X.-J., Li, G.-H., et al. (2012). Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Archives of Oral Biology, 57(9), 1231–1240.CrossRef Wang, X., Sha, X.-J., Li, G.-H., et al. (2012). Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Archives of Oral Biology, 57(9), 1231–1240.CrossRef
100.
Zurück zum Zitat Sonoyama, W., Liu, Y., Fang, D., et al. (2006). Mesenchymal stem cell mediated functional tooth regeneration in swine. PLoS One, 1(1), e79.CrossRef Sonoyama, W., Liu, Y., Fang, D., et al. (2006). Mesenchymal stem cell mediated functional tooth regeneration in swine. PLoS One, 1(1), e79.CrossRef
101.
Zurück zum Zitat Bakopoulou, A., Leyhausen, G., Volk, J., et al. (2011). Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Archives of Oral Biology, 56(7), 709–721.CrossRef Bakopoulou, A., Leyhausen, G., Volk, J., et al. (2011). Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Archives of Oral Biology, 56(7), 709–721.CrossRef
102.
Zurück zum Zitat Abe, S., Hamada, K., Miura, M., & Yamaguchi, S. (2012). Neural crest stem cell property of apical pulp cells derived from human developing tooth. Cell Biology International, 36(10), 927–936.CrossRef Abe, S., Hamada, K., Miura, M., & Yamaguchi, S. (2012). Neural crest stem cell property of apical pulp cells derived from human developing tooth. Cell Biology International, 36(10), 927–936.CrossRef
103.
Zurück zum Zitat Ding, G., Liu, Y., An, Y., et al. (2010). Suppression of T cell proliferation by root apical papilla stem cells in vitro. Cells, Tissues, Organs, 191(5), 357–364.CrossRef Ding, G., Liu, Y., An, Y., et al. (2010). Suppression of T cell proliferation by root apical papilla stem cells in vitro. Cells, Tissues, Organs, 191(5), 357–364.CrossRef
104.
Zurück zum Zitat Yagyuu, T., Ikeda, E., Ohgushi, H., et al. (2010). Hard tissue-forming potential of stem/progenitor cells in human dental follicle and dental papilla. Archives of Oral Biology, 55(1), 68–76.CrossRef Yagyuu, T., Ikeda, E., Ohgushi, H., et al. (2010). Hard tissue-forming potential of stem/progenitor cells in human dental follicle and dental papilla. Archives of Oral Biology, 55(1), 68–76.CrossRef
105.
Zurück zum Zitat Bianco, P., Riminucci, M., Gronthos, S., & Robey, P. G. (2001). Bone marrow stromal stem cells: Nature, biology and potential applications. Stem Cells, 19(3), 180–192.CrossRef Bianco, P., Riminucci, M., Gronthos, S., & Robey, P. G. (2001). Bone marrow stromal stem cells: Nature, biology and potential applications. Stem Cells, 19(3), 180–192.CrossRef
106.
Zurück zum Zitat Mehta, D. S., Jyothy, T. M., & Kumar, T. (2005). Stem cells in dentofacial research-at the cross roads. J. Indian. Soc. Periodontol., 9, 91–108. Mehta, D. S., Jyothy, T. M., & Kumar, T. (2005). Stem cells in dentofacial research-at the cross roads. J. Indian. Soc. Periodontol., 9, 91–108.
107.
Zurück zum Zitat Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.CrossRef Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.CrossRef
108.
Zurück zum Zitat Kuo, T. F., Lin, H. C., Yang, K. C., Lin, F. H., Chen, M. H., Wu, C. C., et al. (2011). Bone marrow combined with dental bud cells promotes tooth regeneration in miniature pig model. Artificial Organs, 35, 113–121. Kuo, T. F., Lin, H. C., Yang, K. C., Lin, F. H., Chen, M. H., Wu, C. C., et al. (2011). Bone marrow combined with dental bud cells promotes tooth regeneration in miniature pig model. Artificial Organs, 35, 113–121.
109.
Zurück zum Zitat Kawaguchi, H., Hirachi, A., Hasegawa, N., Iwata, T., Hamaguchi, H., Shiba, H., et al. (2004). Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells. Journal of Periodontology, 75, 1281–1287.CrossRef Kawaguchi, H., Hirachi, A., Hasegawa, N., Iwata, T., Hamaguchi, H., Shiba, H., et al. (2004). Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells. Journal of Periodontology, 75, 1281–1287.CrossRef
110.
Zurück zum Zitat Fiorina, P., Jurewicz, M., Augello, A., Vergani, A., Dada, S., La Rosa, S., et al. (2009). Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. Journal of Immunology, 183, 993–1004.CrossRef Fiorina, P., Jurewicz, M., Augello, A., Vergani, A., Dada, S., La Rosa, S., et al. (2009). Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. Journal of Immunology, 183, 993–1004.CrossRef
111.
Zurück zum Zitat Wu, Y., Chen, L., Scott, P. G., & Tredget, E. E. (2007). Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells, 25, 2648–2659.CrossRef Wu, Y., Chen, L., Scott, P. G., & Tredget, E. E. (2007). Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells, 25, 2648–2659.CrossRef
112.
Zurück zum Zitat Locke, M. B., & J, V. (2015). Human, adipose-derived stem cells (ASC): Their efficacy in clinical applications. In Regenerative medicine: Springer (pp. 135–149). Locke, M. B., & J, V. (2015). Human, adipose-derived stem cells (ASC): Their efficacy in clinical applications. In Regenerative medicine: Springer (pp. 135–149).
113.
Zurück zum Zitat Bassir, S. H., Wisitrasameewong, W., Raanan, J., Ghaffarigarakani, S., Chung, J., Freire, M., Andrada, L. C., & Intini, G. (2016). Potential for stem cell-based periodontal therapy. Journal of Cellular Physiology, 231(1), 50–61.CrossRef Bassir, S. H., Wisitrasameewong, W., Raanan, J., Ghaffarigarakani, S., Chung, J., Freire, M., Andrada, L. C., & Intini, G. (2016). Potential for stem cell-based periodontal therapy. Journal of Cellular Physiology, 231(1), 50–61.CrossRef
114.
Zurück zum Zitat Gimble, J., & Guilak, F. (2003). Adipose-derived adult stem cells: Isolation, characterization, and differentiation potential. Cytotherapy, 5(5), 362–369.CrossRef Gimble, J., & Guilak, F. (2003). Adipose-derived adult stem cells: Isolation, characterization, and differentiation potential. Cytotherapy, 5(5), 362–369.CrossRef
115.
Zurück zum Zitat Lee, R. H., Kim, B., Choi, I., Kim, H., Choi, H. S., Suh, K., Bae, Y. C., & Jung, J. S. (2004). Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 14(4–6), 311–324.CrossRef Lee, R. H., Kim, B., Choi, I., Kim, H., Choi, H. S., Suh, K., Bae, Y. C., & Jung, J. S. (2004). Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 14(4–6), 311–324.CrossRef
116.
Zurück zum Zitat Planat-Benard, V., Silvestre, J. S., Cousin, B., Andre, M., Nibbelink, M., Tamarat, R., Clergue, M., Manneville, C., Saillan-Barreau, C., Duriez, M., Tedgui, A., Levy, B., Penicaud, L., & Casteilla, L. (2004). Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives. Circulation, 109(5), 656–663.CrossRef Planat-Benard, V., Silvestre, J. S., Cousin, B., Andre, M., Nibbelink, M., Tamarat, R., Clergue, M., Manneville, C., Saillan-Barreau, C., Duriez, M., Tedgui, A., Levy, B., Penicaud, L., & Casteilla, L. (2004). Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives. Circulation, 109(5), 656–663.CrossRef
117.
Zurück zum Zitat Tobita, M., Uysal, A. C., Ogawa, R., Hyakusoku, H., & Mizuno, H. (2008). Periodontal tissue regeneration with adipose-derived stem cells. Tissue Engineering. Part A, 14, 945–953.CrossRef Tobita, M., Uysal, A. C., Ogawa, R., Hyakusoku, H., & Mizuno, H. (2008). Periodontal tissue regeneration with adipose-derived stem cells. Tissue Engineering. Part A, 14, 945–953.CrossRef
118.
Zurück zum Zitat Bennett, N. T., & Schultz, G. S. (1993). Growth factors and wound healing: Biochemical properties of growth factors and their receptors. American Journal of Surgery, 165, 728–737.CrossRef Bennett, N. T., & Schultz, G. S. (1993). Growth factors and wound healing: Biochemical properties of growth factors and their receptors. American Journal of Surgery, 165, 728–737.CrossRef
119.
Zurück zum Zitat Alluri, S. V., Bhola, S., Gangavati, R., Shirlal, S., & Belgaumi, U. (2012). Tissue engineering in periodontics -a novel therapy. Annals of Dental Research, 2(1), 01–07. Alluri, S. V., Bhola, S., Gangavati, R., Shirlal, S., & Belgaumi, U. (2012). Tissue engineering in periodontics -a novel therapy. Annals of Dental Research, 2(1), 01–07.
120.
Zurück zum Zitat Murakami, S. (2011). Periodontal tissue regeneration by signaling molecule(s): What role does basic fibroblast growth factor (FGF-2) have in periodontal therapy. Periodontology 2000, 56(1), 188–208.CrossRef Murakami, S. (2011). Periodontal tissue regeneration by signaling molecule(s): What role does basic fibroblast growth factor (FGF-2) have in periodontal therapy. Periodontology 2000, 56(1), 188–208.CrossRef
121.
Zurück zum Zitat Kastin, A. (2013). Handbook of biologically active peptides. San Diego, CA. Academic Press. Kastin, A. (2013). Handbook of biologically active peptides. San Diego, CA. Academic Press.
122.
Zurück zum Zitat Sigurdsson, T. J., Lee, M. B., & Kubota, K. (1995). Periodontal repair in dogs: Recombinant bone morphogenetic protein 2 significantly enhances periodontal regeneration. Journal of Periodontology, 66, 131–138.CrossRef Sigurdsson, T. J., Lee, M. B., & Kubota, K. (1995). Periodontal repair in dogs: Recombinant bone morphogenetic protein 2 significantly enhances periodontal regeneration. Journal of Periodontology, 66, 131–138.CrossRef
123.
Zurück zum Zitat Wozney, J. M. (1995). The potential role of bone morphogenetic proteins in periodontal reconstruction. Journal of Periodontology, 66(6), 506–510.CrossRef Wozney, J. M. (1995). The potential role of bone morphogenetic proteins in periodontal reconstruction. Journal of Periodontology, 66(6), 506–510.CrossRef
124.
Zurück zum Zitat Heijl, L., Heden, G., Svärdström, G., & Ostgren, A. (1997). Enamel matrix derivative (EMDOGAIN) in the treatment of intrabony periodontal defects. Journal of Clinical Periodontology, 24, 705–714.CrossRef Heijl, L., Heden, G., Svärdström, G., & Ostgren, A. (1997). Enamel matrix derivative (EMDOGAIN) in the treatment of intrabony periodontal defects. Journal of Clinical Periodontology, 24, 705–714.CrossRef
125.
Zurück zum Zitat Del Fabbro, M., Bortolin, M., Taschieri, S., & Weinstein, R. (2011). Is platelet concentrate advantageous for the surgical treatment of periodontal diseases? A systematic review and meta-analysis. J. Periodontology 2000, 82, 1100–1111. Del Fabbro, M., Bortolin, M., Taschieri, S., & Weinstein, R. (2011). Is platelet concentrate advantageous for the surgical treatment of periodontal diseases? A systematic review and meta-analysis. J. Periodontology 2000, 82, 1100–1111.
126.
Zurück zum Zitat Giannobile, W. V., Hernandez, R. A., Finkelman, R. D., Ryan, S., Kiritsy, C. P., D’Andrea, M., & Lynch, S. E. (1996). Comparative effects of platelet derived growth factor-BB and insulin-like growth factor-I, individually and in combination, on periodontal regeneration in Macaca fascicularis. Journal of Periodontal Research, 31, 301–312.CrossRef Giannobile, W. V., Hernandez, R. A., Finkelman, R. D., Ryan, S., Kiritsy, C. P., D’Andrea, M., & Lynch, S. E. (1996). Comparative effects of platelet derived growth factor-BB and insulin-like growth factor-I, individually and in combination, on periodontal regeneration in Macaca fascicularis. Journal of Periodontal Research, 31, 301–312.CrossRef
127.
Zurück zum Zitat Lynch, S. E., Williams, R. C., Polson, A. M., Howell, T. H., Reddy, M. S., Zappa, U. E., & Antoniades, H. N. (1989). A combination of platelet-derived and insulin-like growth factors enhances periodontal regeneration. Journal of Clinical Periodontology, 16, 545–548.CrossRef Lynch, S. E., Williams, R. C., Polson, A. M., Howell, T. H., Reddy, M. S., Zappa, U. E., & Antoniades, H. N. (1989). A combination of platelet-derived and insulin-like growth factors enhances periodontal regeneration. Journal of Clinical Periodontology, 16, 545–548.CrossRef
128.
Zurück zum Zitat Matsuda, N., Lin, W. L., Kumar, N. M., Cho, M. I., & Genco, R. J. (1992). Mitogenic, chemotactic and synthetic response of rat periodontal ligament fibroblastic cells to polypeptide growth factors in vitro. Journal of Periodontology, 63, 515–525.CrossRef Matsuda, N., Lin, W. L., Kumar, N. M., Cho, M. I., & Genco, R. J. (1992). Mitogenic, chemotactic and synthetic response of rat periodontal ligament fibroblastic cells to polypeptide growth factors in vitro. Journal of Periodontology, 63, 515–525.CrossRef
129.
Zurück zum Zitat Nevins, M., Giannobile, W. V., McGuire, M. K., et al. (2005). Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: Results of a large multicenter randomized controlled trial. Journal of Periodontology, 76, 2205–2215.CrossRef Nevins, M., Giannobile, W. V., McGuire, M. K., et al. (2005). Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: Results of a large multicenter randomized controlled trial. Journal of Periodontology, 76, 2205–2215.CrossRef
130.
Zurück zum Zitat Cho, M., Lin, W. L., & Genco, R. J. (1995). Platelet-derived growth factor modulated guided tissue regenerative therapy. Journal of Periodontology, 66, 522–530.CrossRef Cho, M., Lin, W. L., & Genco, R. J. (1995). Platelet-derived growth factor modulated guided tissue regenerative therapy. Journal of Periodontology, 66, 522–530.CrossRef
131.
Zurück zum Zitat Nakashima, M., & Reddi, A. H. (2003). The application of bone morphogenetic proteins to dental tissue engineering. Nature Biotechnology, 21(9), 1025–1032.CrossRef Nakashima, M., & Reddi, A. H. (2003). The application of bone morphogenetic proteins to dental tissue engineering. Nature Biotechnology, 21(9), 1025–1032.CrossRef
132.
Zurück zum Zitat Kao, R. T., Murakami, S., & Beirne, O. R. (2009). The use of biologic mediators and tissue engineering in dentistry. Periodontology 2000, 50, 127–153.CrossRef Kao, R. T., Murakami, S., & Beirne, O. R. (2009). The use of biologic mediators and tissue engineering in dentistry. Periodontology 2000, 50, 127–153.CrossRef
133.
Zurück zum Zitat Shimabukuro, Y., Terashima, H., Takedachi, M., Maeda, K., Nakamura, T., Sawada, K., et al. (2011). Fibroblast growth factor-2 stimulates directed migration of periodontal ligament cells via PI3K/AKT signaling and CD44/hyaluronan interaction. Journal of Cellular Physiology, 226, 809–821.CrossRef Shimabukuro, Y., Terashima, H., Takedachi, M., Maeda, K., Nakamura, T., Sawada, K., et al. (2011). Fibroblast growth factor-2 stimulates directed migration of periodontal ligament cells via PI3K/AKT signaling and CD44/hyaluronan interaction. Journal of Cellular Physiology, 226, 809–821.CrossRef
134.
Zurück zum Zitat Murakami, S. (2011). Periodontal tissue regeneration by signaling molecule(s): What role does basic fibroblast growth factor (FGF-2) have in periodontal therapy. Periodontology 2000, 56, 188–208.CrossRef Murakami, S. (2011). Periodontal tissue regeneration by signaling molecule(s): What role does basic fibroblast growth factor (FGF-2) have in periodontal therapy. Periodontology 2000, 56, 188–208.CrossRef
135.
Zurück zum Zitat Nishino, Y., Ebisawa, K., Yamada, Y., Okabe, K., Kamei, Y., & Ueda, M. (2011). Human deciduous teeth dental pulp cells with basic fibroblast growth factor enhance wound healing of skin defect. The Journal of Craniofacial Surgery, 22, 438–442.CrossRef Nishino, Y., Ebisawa, K., Yamada, Y., Okabe, K., Kamei, Y., & Ueda, M. (2011). Human deciduous teeth dental pulp cells with basic fibroblast growth factor enhance wound healing of skin defect. The Journal of Craniofacial Surgery, 22, 438–442.CrossRef
136.
Zurück zum Zitat Lieberman, J. R., Daluiski, A., & Einhorn, T. A. (2002). The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am, 84-A, 1032–1044. Lieberman, J. R., Daluiski, A., & Einhorn, T. A. (2002). The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am, 84-A, 1032–1044.
137.
Zurück zum Zitat Janssens, K., Ten Dijke, P., Janssens, S., & Van Hul, W. (2005). Transforming growth factor-β1 to the bone. Endocrine Reviews, 26, 743–774.CrossRef Janssens, K., Ten Dijke, P., Janssens, S., & Van Hul, W. (2005). Transforming growth factor-β1 to the bone. Endocrine Reviews, 26, 743–774.CrossRef
138.
Zurück zum Zitat Bostrom, M. P. (1998). Expression of bone morphogenetic proteins in fracture healing. Clin. Orthopead. Rel. Res., 355, S116–S123.CrossRef Bostrom, M. P. (1998). Expression of bone morphogenetic proteins in fracture healing. Clin. Orthopead. Rel. Res., 355, S116–S123.CrossRef
139.
Zurück zum Zitat Worapamorn, W., Haase, H. R., Li, H., & Bartold, P. M. (2001). Growth factors and cytokines modulate gene expression of cell-surface proteoglycans in human periodontal ligament cells. Journal of Cellular Physiology, 186, 448–456.CrossRef Worapamorn, W., Haase, H. R., Li, H., & Bartold, P. M. (2001). Growth factors and cytokines modulate gene expression of cell-surface proteoglycans in human periodontal ligament cells. Journal of Cellular Physiology, 186, 448–456.CrossRef
140.
Zurück zum Zitat Fujii, S., Maeda, H., Tomokiyo, A., Monnouchi, S., Hori, K., Wada, N., & Akamine, A. (2010). Effects of TGF-β1 on the proliferation and differentiation of human periodontal ligament cells and a human periodontal ligament stem/progenitor cell line. Cell and Tissue Research, 342, 233–242.CrossRef Fujii, S., Maeda, H., Tomokiyo, A., Monnouchi, S., Hori, K., Wada, N., & Akamine, A. (2010). Effects of TGF-β1 on the proliferation and differentiation of human periodontal ligament cells and a human periodontal ligament stem/progenitor cell line. Cell and Tissue Research, 342, 233–242.CrossRef
141.
Zurück zum Zitat Fujita, T., Shiba, H., & Van Dyke, T. E. (2004). Differential effects of growth factors and cytokines on the synthesis of SPARC, DNA, fibronectin and alkaline phosphatase activity in human periodontal ligament cells. Cell Biology International, 28, 281–286.CrossRef Fujita, T., Shiba, H., & Van Dyke, T. E. (2004). Differential effects of growth factors and cytokines on the synthesis of SPARC, DNA, fibronectin and alkaline phosphatase activity in human periodontal ligament cells. Cell Biology International, 28, 281–286.CrossRef
142.
Zurück zum Zitat Takeuchi, H., Kubota, S., Murakashi, E., et al. (2009). Effect of transforming growth factor-beta1 on expression of the connective tissue growth factor (CCN2/CTGF) gene in normal human gingival fibroblasts and periodontal ligament cells. Journal of Periodontal Research, 44, 161–169.CrossRef Takeuchi, H., Kubota, S., Murakashi, E., et al. (2009). Effect of transforming growth factor-beta1 on expression of the connective tissue growth factor (CCN2/CTGF) gene in normal human gingival fibroblasts and periodontal ligament cells. Journal of Periodontal Research, 44, 161–169.CrossRef
143.
Zurück zum Zitat Nishimura, F., & Terranova, V. P. (1996). Comparative study of the chemotactic responses of periodontal ligament cells and gingival fibroblasts to polypeptide growth factors. Journal of Dental Research, 75(4), 986–992.CrossRef Nishimura, F., & Terranova, V. P. (1996). Comparative study of the chemotactic responses of periodontal ligament cells and gingival fibroblasts to polypeptide growth factors. Journal of Dental Research, 75(4), 986–992.CrossRef
144.
Zurück zum Zitat Hammarstrӧm, L. (1997). Enamel matrix, cementum development and regeneration. Journal of Clinical Periodontology, 24, 658–668.CrossRef Hammarstrӧm, L. (1997). Enamel matrix, cementum development and regeneration. Journal of Clinical Periodontology, 24, 658–668.CrossRef
145.
Zurück zum Zitat Grover, V., Malhotra, R., Kapoor, A., Verma, N., & Sahota, J. K. (2010). Future of periodontal regeneration. Journal of Oral Health Community Dentistry, 4, 38–47. Grover, V., Malhotra, R., Kapoor, A., Verma, N., & Sahota, J. K. (2010). Future of periodontal regeneration. Journal of Oral Health Community Dentistry, 4, 38–47.
146.
Zurück zum Zitat Griffith, L. G., & Naughton, G. (2002). Tissue engineering-current challenges and expanding opportunities. Science, 295, 1009.CrossRef Griffith, L. G., & Naughton, G. (2002). Tissue engineering-current challenges and expanding opportunities. Science, 295, 1009.CrossRef
147.
Zurück zum Zitat Yaszemski, M. J., Oldham, J. B., Lu, L., & Currier, B. L. (2000). In J. E. Davies (Ed.), Bone engineering (p. 541). Toronto: em2 Inc.. Yaszemski, M. J., Oldham, J. B., Lu, L., & Currier, B. L. (2000). In J. E. Davies (Ed.), Bone engineering (p. 541). Toronto: em2 Inc..
148.
Zurück zum Zitat Patil, A. S., Merchant, Y., & Nagarajan, P. (2013). Tissue engineering of craniofacial tissues – A review. Journal of Regenerative Medicine & Tissue Engineering. 2, 1–6. Patil, A. S., Merchant, Y., & Nagarajan, P. (2013). Tissue engineering of craniofacial tissues – A review. Journal of Regenerative Medicine & Tissue Engineering. 2, 1–6.
149.
Zurück zum Zitat Horst, O. V., Chavez, M. G., Jheon, A. H., Desai, T., & Klein, O. D. (2012). Stem cell and biomaterials research in dental tissue engineering and regeneration. Dental Clinics of North America, 56, 495–520.CrossRef Horst, O. V., Chavez, M. G., Jheon, A. H., Desai, T., & Klein, O. D. (2012). Stem cell and biomaterials research in dental tissue engineering and regeneration. Dental Clinics of North America, 56, 495–520.CrossRef
150.
Zurück zum Zitat Tripathi, G., & Basu, B. (2012). A porous hydroxyapatite scaffold for bone tissue engineering: Physico-mechanical and biological evaluations. Ceramics International, 38(1), 341–349.CrossRef Tripathi, G., & Basu, B. (2012). A porous hydroxyapatite scaffold for bone tissue engineering: Physico-mechanical and biological evaluations. Ceramics International, 38(1), 341–349.CrossRef
151.
Zurück zum Zitat Shalini, M., & Gajendran, P. (2017). The role of scaffolds in periodontal regeneration. International Journal of Pharmaceutical Sciences Review and Research, 45(1), 135–140. Shalini, M., & Gajendran, P. (2017). The role of scaffolds in periodontal regeneration. International Journal of Pharmaceutical Sciences Review and Research, 45(1), 135–140.
152.
Zurück zum Zitat Mooney, D. J., Powell, C., Piana, J., & Rutherford, B. (1996). Engineering dental pulp-like tissue in vitro. Biotechnology Progress, 12, 865–868.CrossRef Mooney, D. J., Powell, C., Piana, J., & Rutherford, B. (1996). Engineering dental pulp-like tissue in vitro. Biotechnology Progress, 12, 865–868.CrossRef
153.
Zurück zum Zitat Kim, B. S., & Mooney, D. J. (1998). Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in Biotechnology, 16, 224–230.CrossRef Kim, B. S., & Mooney, D. J. (1998). Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in Biotechnology, 16, 224–230.CrossRef
154.
Zurück zum Zitat Freed, L. E., Vunjak-Novakovic, G., Biron, R. J., Eagles, D. B., Lesnoy, D. C., Barlow, S. K., & Langer, R. (1994). Biodegradable polymer scaffolds for tissue engineering. Biotechnology, 12, 689–693. Freed, L. E., Vunjak-Novakovic, G., Biron, R. J., Eagles, D. B., Lesnoy, D. C., Barlow, S. K., & Langer, R. (1994). Biodegradable polymer scaffolds for tissue engineering. Biotechnology, 12, 689–693.
155.
Zurück zum Zitat Thomson, R. C., Yaszemski, M. J., Powers, J. M., & Mikos, A. G. (1995). Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. Journal of Biomaterials Science. Polymer Edition, 7, 23–38.CrossRef Thomson, R. C., Yaszemski, M. J., Powers, J. M., & Mikos, A. G. (1995). Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. Journal of Biomaterials Science. Polymer Edition, 7, 23–38.CrossRef
156.
Zurück zum Zitat Temenoff, J. S., & Mikos, A. G. (2000). Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials, 21, 2405–2412.CrossRef Temenoff, J. S., & Mikos, A. G. (2000). Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials, 21, 2405–2412.CrossRef
157.
Zurück zum Zitat Hutmacher, D. W., Schantz, T., Zein, I., Ng, K. W., Teoh, S. H., & Tan, K. C. (2001). Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. Journal of Biomedical Materials Research, 55, 203–216.CrossRef Hutmacher, D. W., Schantz, T., Zein, I., Ng, K. W., Teoh, S. H., & Tan, K. C. (2001). Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. Journal of Biomedical Materials Research, 55, 203–216.CrossRef
158.
Zurück zum Zitat Ma, P. X., & Choi, J. W. (2001). Biodegradable polymer scaffolds with well defined interconnected spherical pore network. Tissue Engineering, 7, 23–33.CrossRef Ma, P. X., & Choi, J. W. (2001). Biodegradable polymer scaffolds with well defined interconnected spherical pore network. Tissue Engineering, 7, 23–33.CrossRef
159.
Zurück zum Zitat Agrawal, C. M., & Ray, R. B. (2001). Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. Journal of Biomedical Materials Research, 55, 141–150.CrossRef Agrawal, C. M., & Ray, R. B. (2001). Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. Journal of Biomedical Materials Research, 55, 141–150.CrossRef
160.
Zurück zum Zitat Dormer, K. J., & Gan, R. Z. (2001). Biomaterials for implantable middle ear hearing devices. Otolaryngologic Clinics of North America, 34, 289–297.CrossRef Dormer, K. J., & Gan, R. Z. (2001). Biomaterials for implantable middle ear hearing devices. Otolaryngologic Clinics of North America, 34, 289–297.CrossRef
161.
Zurück zum Zitat Langer, R. (2000). Biomaterials in drug delivery and tissue engineering: One laboratory’s experience. Accounts of Chemical Research, 33, 94–101.CrossRef Langer, R. (2000). Biomaterials in drug delivery and tissue engineering: One laboratory’s experience. Accounts of Chemical Research, 33, 94–101.CrossRef
162.
Zurück zum Zitat Burg, K. J., Porter, S., & Kellam, J. F. (2000). Biomaterial developments for bone tissue engineering. Biomaterials, 21, 2347–2359.CrossRef Burg, K. J., Porter, S., & Kellam, J. F. (2000). Biomaterial developments for bone tissue engineering. Biomaterials, 21, 2347–2359.CrossRef
163.
Zurück zum Zitat Nehrer, S., Breinan, H. A., Ramappa, A., Young, G., Shortkroff, S., Louie, L. K., Sledge, C. B., Yannas, I. V., & Spector, M. (1997). Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials, 18, 769.CrossRef Nehrer, S., Breinan, H. A., Ramappa, A., Young, G., Shortkroff, S., Louie, L. K., Sledge, C. B., Yannas, I. V., & Spector, M. (1997). Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials, 18, 769.CrossRef
164.
Zurück zum Zitat Suh, J. K., & Matthew, H. W. (2000). Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials, 21, 2589–2598.CrossRef Suh, J. K., & Matthew, H. W. (2000). Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials, 21, 2589–2598.CrossRef
165.
Zurück zum Zitat Van Osch, G. J., Van Der Veen, S. W., Burger, E. H., & Verwoerd-Verhoef, H. L. (2000). Chondrogenic potential of in vitro multiplied rabbit perichondrium cells cultured in alginate beads in defined medium. Tissue Engineering, 6, 321–330.CrossRef Van Osch, G. J., Van Der Veen, S. W., Burger, E. H., & Verwoerd-Verhoef, H. L. (2000). Chondrogenic potential of in vitro multiplied rabbit perichondrium cells cultured in alginate beads in defined medium. Tissue Engineering, 6, 321–330.CrossRef
166.
Zurück zum Zitat Rowley, J. A., Madlambayan, G., & Mooney, D. J. (1999). Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 20, 45–53.CrossRef Rowley, J. A., Madlambayan, G., & Mooney, D. J. (1999). Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 20, 45–53.CrossRef
167.
Zurück zum Zitat Singhal, A. R., Agrawal, C. M., & Athanasiou, K. A. (1996). Salient degradation features of a 50:50 PLA/PGA scaffold for tissue engineering. Tissue Engineering, 2, 197–207.CrossRef Singhal, A. R., Agrawal, C. M., & Athanasiou, K. A. (1996). Salient degradation features of a 50:50 PLA/PGA scaffold for tissue engineering. Tissue Engineering, 2, 197–207.CrossRef
168.
Zurück zum Zitat Lye, K. W., Tideman, H., Wolke, J. C., Merkx, M. A., Chin, F. K., & Jansen, J. A. (2013). Biocompatibility and bone formation with porous modified PMMA in normal and irradiated mandibular tissue. Clinical Oral Implants Research, 24, 100–109.CrossRef Lye, K. W., Tideman, H., Wolke, J. C., Merkx, M. A., Chin, F. K., & Jansen, J. A. (2013). Biocompatibility and bone formation with porous modified PMMA in normal and irradiated mandibular tissue. Clinical Oral Implants Research, 24, 100–109.CrossRef
169.
Zurück zum Zitat Punet, X., Mauchauffé, R., Rodríguez Cabello, J. C., Alonso, M., Engel, E., & Mateos-Timoneda, M. A. (2015). Biomolecular functionalization for enhanced cell–material interactions of poly(methyl methacrylate) surface. Regenerative Biomaterials, 2, 167–175.CrossRef Punet, X., Mauchauffé, R., Rodríguez Cabello, J. C., Alonso, M., Engel, E., & Mateos-Timoneda, M. A. (2015). Biomolecular functionalization for enhanced cell–material interactions of poly(methyl methacrylate) surface. Regenerative Biomaterials, 2, 167–175.CrossRef
170.
Zurück zum Zitat Chen, F. M., Zhao, Y. M., Wu, H., Deng, Z. H., Wang, Q. T., Zhou, W., Liu, Q., Dong, G. Y., Li, K., Wu, Z. F., & Jin, Y. (2006). Enhancement of periodontal tissue regeneration by locally controlled delivery of insulin-like growth factor-I from dextran-co-gelatin microspheres. Journal of Controlled Release, 114, 209.CrossRef Chen, F. M., Zhao, Y. M., Wu, H., Deng, Z. H., Wang, Q. T., Zhou, W., Liu, Q., Dong, G. Y., Li, K., Wu, Z. F., & Jin, Y. (2006). Enhancement of periodontal tissue regeneration by locally controlled delivery of insulin-like growth factor-I from dextran-co-gelatin microspheres. Journal of Controlled Release, 114, 209.CrossRef
171.
Zurück zum Zitat Chen, F. M., Zhao, Y. M., Zhang, R., Jin, T., Sun, H. H., Wu, Z. F., & Jin, Y. (2007). Periodontal regeneration using novel glycidyl methacrylate dextran (Dex-GMA)=gelatin scaffolds containing microspheres loaded with bone morphogenetic proteins. Journal of Controlled Release, 121, 81.CrossRef Chen, F. M., Zhao, Y. M., Zhang, R., Jin, T., Sun, H. H., Wu, Z. F., & Jin, Y. (2007). Periodontal regeneration using novel glycidyl methacrylate dextran (Dex-GMA)=gelatin scaffolds containing microspheres loaded with bone morphogenetic proteins. Journal of Controlled Release, 121, 81.CrossRef
172.
Zurück zum Zitat Ahmed, T. A., Dare, E. V., & Hincke, M. (2008). Fibrin: A versatile scaffold for tissue engineering applications. Tissue Engineering. Part B, Reviews, 14, 199.CrossRef Ahmed, T. A., Dare, E. V., & Hincke, M. (2008). Fibrin: A versatile scaffold for tissue engineering applications. Tissue Engineering. Part B, Reviews, 14, 199.CrossRef
173.
Zurück zum Zitat Kim, I. Y., Seo, S. J., Moon, H. S., Yoo, M. K., Park, I. Y., Kim, B. C., & Cho, C. S. (2008). Chitosan and its derivatives for tissue engineering applications. Biotechnology Advances, 26, 1–21.CrossRef Kim, I. Y., Seo, S. J., Moon, H. S., Yoo, M. K., Park, I. Y., Kim, B. C., & Cho, C. S. (2008). Chitosan and its derivatives for tissue engineering applications. Biotechnology Advances, 26, 1–21.CrossRef
174.
Zurück zum Zitat Muzzarelli, R., Tarsi, R., Filippini, O., Giovanetti, E., Biagini, G., & Varaldo, P. E. (1990). Antimicrobial properties of N-carboxybutyl chitosan. Antimicrobial Agents and Chemotherapy, 34, 2019–2023.CrossRef Muzzarelli, R., Tarsi, R., Filippini, O., Giovanetti, E., Biagini, G., & Varaldo, P. E. (1990). Antimicrobial properties of N-carboxybutyl chitosan. Antimicrobial Agents and Chemotherapy, 34, 2019–2023.CrossRef
175.
Zurück zum Zitat No, H. K., Park, N. Y., Lee, S. H., & Meyers, S. P. (2002). Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 74, 65–72.CrossRef No, H. K., Park, N. Y., Lee, S. H., & Meyers, S. P. (2002). Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 74, 65–72.CrossRef
176.
Zurück zum Zitat Bertram, U., & Bodmeier, R. (2006). In situ gelling, bioadhesive nasal inserts for extended drug delivery: In vitro characterization of a new nasal dosage form. European Journal of Pharmaceutical Sciences, 27, 62–71.CrossRef Bertram, U., & Bodmeier, R. (2006). In situ gelling, bioadhesive nasal inserts for extended drug delivery: In vitro characterization of a new nasal dosage form. European Journal of Pharmaceutical Sciences, 27, 62–71.CrossRef
177.
Zurück zum Zitat Muzzarelli, R., Baldassarre, V., Conti, F., Ferrara, P., Biagini, G., Gazzanelli, G., & Vasi, V. (1988). Biological activity of chitosan: Ultrastructural study. Biomaterials, 9, 247–252.CrossRef Muzzarelli, R., Baldassarre, V., Conti, F., Ferrara, P., Biagini, G., Gazzanelli, G., & Vasi, V. (1988). Biological activity of chitosan: Ultrastructural study. Biomaterials, 9, 247–252.CrossRef
178.
Zurück zum Zitat Costa-Pinto, A. R., Correlo, V. M., Sol, P. C., Bhattacharya, M., Charbord, P., Delorme, B., Reis, R. L., & Neves, N. M. (2009). Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications. Biomacromolecules, 10, 2067–2073.CrossRef Costa-Pinto, A. R., Correlo, V. M., Sol, P. C., Bhattacharya, M., Charbord, P., Delorme, B., Reis, R. L., & Neves, N. M. (2009). Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications. Biomacromolecules, 10, 2067–2073.CrossRef
179.
Zurück zum Zitat Seol, Y. J., Lee, J. Y., Park, Y. J., Lee, Y. M., Young, K., Rhyu, I. C., Lee, S. J., Han, S. B., & Chung, C. P. (2004). Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnology Letters, 26, 1037–1041.CrossRef Seol, Y. J., Lee, J. Y., Park, Y. J., Lee, Y. M., Young, K., Rhyu, I. C., Lee, S. J., Han, S. B., & Chung, C. P. (2004). Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnology Letters, 26, 1037–1041.CrossRef
180.
Zurück zum Zitat Maruyama, M., & Ito, M. (1996). In vitro properties of a chitosan-bonded self hardening paste with hydroxyapatite granules. Journal of Biomedical Materials Research, 32, 527–532.CrossRef Maruyama, M., & Ito, M. (1996). In vitro properties of a chitosan-bonded self hardening paste with hydroxyapatite granules. Journal of Biomedical Materials Research, 32, 527–532.CrossRef
181.
Zurück zum Zitat Jameela, S. R., Misra, A., & Jayakrishnan, A. (1994). Cross-linked chitosan microspheres as carriers for prolonged delivery of macromolecular drugs. Journal of Biomaterials Science. Polymer Edition, 6, 621–632.CrossRef Jameela, S. R., Misra, A., & Jayakrishnan, A. (1994). Cross-linked chitosan microspheres as carriers for prolonged delivery of macromolecular drugs. Journal of Biomaterials Science. Polymer Edition, 6, 621–632.CrossRef
182.
Zurück zum Zitat Costa-Pinto, A. R., Salgado, A. J., Correlo, V. M., Sol, P., Bhattacharya, M., Charbord, P., Reis, R. L., & Neves, N. M. (2008). Adhesion, proliferation, and osteogenic differentiation of a mouse mesenchymal stem cell line (BMC9) seeded on novel melt-based chitosan/polyester 3D porous scaffolds. Tissue Engineering. Part A, 14, 1049–1057.CrossRef Costa-Pinto, A. R., Salgado, A. J., Correlo, V. M., Sol, P., Bhattacharya, M., Charbord, P., Reis, R. L., & Neves, N. M. (2008). Adhesion, proliferation, and osteogenic differentiation of a mouse mesenchymal stem cell line (BMC9) seeded on novel melt-based chitosan/polyester 3D porous scaffolds. Tissue Engineering. Part A, 14, 1049–1057.CrossRef
183.
Zurück zum Zitat Kleinman, H. K., & Martin, G. R. (2005). Matrigel: Basement membrane matrix with biological activity. Seminars in Cancer Biology, 15, 378–386.CrossRef Kleinman, H. K., & Martin, G. R. (2005). Matrigel: Basement membrane matrix with biological activity. Seminars in Cancer Biology, 15, 378–386.CrossRef
184.
Zurück zum Zitat Rosso, F., Marino, G., Giordano, A., Barbarisi, M., Parmeggiani, D., & Barbarisi, A. (2005). Smart materials as scaffolds for tissue engineering. Journal of Cellular Physiology, 203, 465–470.CrossRef Rosso, F., Marino, G., Giordano, A., Barbarisi, M., Parmeggiani, D., & Barbarisi, A. (2005). Smart materials as scaffolds for tissue engineering. Journal of Cellular Physiology, 203, 465–470.CrossRef
185.
Zurück zum Zitat Vasita, R., & Katti, D. S. (2006). Growth factor-delivery systems for tissue engineering: A materials perspective. Expert Review of Medical Devices, 3, 29.CrossRef Vasita, R., & Katti, D. S. (2006). Growth factor-delivery systems for tissue engineering: A materials perspective. Expert Review of Medical Devices, 3, 29.CrossRef
186.
Zurück zum Zitat Barboza, E. P., Duarte, M. E., Geola, S. L., Sorensen, R. G., Riedel, G. E., & Wikesjo, U. M. (2000). Ridge augmentation following implantation of recombinant human bone morphogenetic protein-2 in the dog. Journal of Periodontology, 71, 488.CrossRef Barboza, E. P., Duarte, M. E., Geola, S. L., Sorensen, R. G., Riedel, G. E., & Wikesjo, U. M. (2000). Ridge augmentation following implantation of recombinant human bone morphogenetic protein-2 in the dog. Journal of Periodontology, 71, 488.CrossRef
187.
Zurück zum Zitat Cen, L., Liu, W., Cui, L., Zhang, W., & Cao, Y. (2008). Collagen tissue engineering: Development of novel biomaterials and applications. Pediatric Research, 63, 492.CrossRef Cen, L., Liu, W., Cui, L., Zhang, W., & Cao, Y. (2008). Collagen tissue engineering: Development of novel biomaterials and applications. Pediatric Research, 63, 492.CrossRef
188.
Zurück zum Zitat Galler, K. M., C, A., Cavender, U., Koeklue, et al. (2011). Bioengineering of dental stem cells in a PEGylated fibrin gel. Regenerative Medicine, 6, 191–200.CrossRef Galler, K. M., C, A., Cavender, U., Koeklue, et al. (2011). Bioengineering of dental stem cells in a PEGylated fibrin gel. Regenerative Medicine, 6, 191–200.CrossRef
189.
Zurück zum Zitat Drury, J. L., & Mooney, D. J. (2003). Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials, 24, 4337.CrossRef Drury, J. L., & Mooney, D. J. (2003). Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials, 24, 4337.CrossRef
190.
Zurück zum Zitat Hall, H. (2007). Modified fibrin hydrogel matrices: Both, 3D scaffolds and local and controlled release systems to stimulate angiogenesis. Current Pharmaceutical Design, 13, 3597.CrossRef Hall, H. (2007). Modified fibrin hydrogel matrices: Both, 3D scaffolds and local and controlled release systems to stimulate angiogenesis. Current Pharmaceutical Design, 13, 3597.CrossRef
191.
Zurück zum Zitat Buxton, P. G., & Cobourne, M. T. (2007). Regenerative approaches in the craniofacial region: Manipulating cellular progenitors for oro-facial repair. Oral Diseases, 13, 452.CrossRef Buxton, P. G., & Cobourne, M. T. (2007). Regenerative approaches in the craniofacial region: Manipulating cellular progenitors for oro-facial repair. Oral Diseases, 13, 452.CrossRef
192.
Zurück zum Zitat Smidsrod, O., & Skjak-Braek, G. (1990). Alginate as immobilization matrix for cells. Trends in Biotechnology, 8, 71–78.CrossRef Smidsrod, O., & Skjak-Braek, G. (1990). Alginate as immobilization matrix for cells. Trends in Biotechnology, 8, 71–78.CrossRef
193.
Zurück zum Zitat Drury, J. L., Dennis, R. G., & Mooney, D. J. (2004). The tensile properties of alginate hydrogels. Biomaterials, 25, 3187–3199.CrossRef Drury, J. L., Dennis, R. G., & Mooney, D. J. (2004). The tensile properties of alginate hydrogels. Biomaterials, 25, 3187–3199.CrossRef
194.
Zurück zum Zitat Yuan, Z., Nie, H., Wang, S., et al. (2011). Biomaterial selection for tooth regeneration. Tissue Engineering. Part B, Reviews, 17, 373–388.CrossRef Yuan, Z., Nie, H., Wang, S., et al. (2011). Biomaterial selection for tooth regeneration. Tissue Engineering. Part B, Reviews, 17, 373–388.CrossRef
195.
Zurück zum Zitat Matsuura, K., Utoh, R., Nagase, K., & Okano, T. (2014). Cell sheet approach for tissue engineering and regenerative medicine. Journal of Controlled Release, 190, 228–239.CrossRef Matsuura, K., Utoh, R., Nagase, K., & Okano, T. (2014). Cell sheet approach for tissue engineering and regenerative medicine. Journal of Controlled Release, 190, 228–239.CrossRef
196.
Zurück zum Zitat Yang, J., Yamato, M., Shimizu, T., Sekine, H., Ohashi, K., Kanzaki, M., Ohki, T., Nishida, K., & Okano, T. (2007). Reconstruction of functional tissues with cell sheet engineering. Biomaterials, 28, 5033–5043.CrossRef Yang, J., Yamato, M., Shimizu, T., Sekine, H., Ohashi, K., Kanzaki, M., Ohki, T., Nishida, K., & Okano, T. (2007). Reconstruction of functional tissues with cell sheet engineering. Biomaterials, 28, 5033–5043.CrossRef
197.
Zurück zum Zitat Zhang, H., Liu, S., Zhu, B., Xu, Q., Ding, Y., & Jin, Y. (2016). Composite cell sheet for periodontal regeneration: Crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration. Stem Cell Research & Therapy, 7(168), 1–15. Zhang, H., Liu, S., Zhu, B., Xu, Q., Ding, Y., & Jin, Y. (2016). Composite cell sheet for periodontal regeneration: Crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration. Stem Cell Research & Therapy, 7(168), 1–15.
198.
Zurück zum Zitat Tsumanuma, Y., Iwata, T., Washio, K., Yoshida, T., Yamada, A., Takagi, R., Ohno, T., Lin, K., Yamato, M., Ishikawa, I., Okano, T., & Izumi, Y. (2011). Comparison of different tissue-derived stem cell sheets for periodontal regeneration in a canine 1-wall defect model. Biomaterials, 32, 5819–5825.CrossRef Tsumanuma, Y., Iwata, T., Washio, K., Yoshida, T., Yamada, A., Takagi, R., Ohno, T., Lin, K., Yamato, M., Ishikawa, I., Okano, T., & Izumi, Y. (2011). Comparison of different tissue-derived stem cell sheets for periodontal regeneration in a canine 1-wall defect model. Biomaterials, 32, 5819–5825.CrossRef
199.
Zurück zum Zitat Sawa, Y., & Miyagawa, S. (2013). Present and future perspectives on cell sheet-based myocardial regeneration therapy. BioMed Research International, 2013, 583912.CrossRef Sawa, Y., & Miyagawa, S. (2013). Present and future perspectives on cell sheet-based myocardial regeneration therapy. BioMed Research International, 2013, 583912.CrossRef
200.
Zurück zum Zitat Zavala, J., Jaime, G. R. L., Barrientos, C. A. R., & Valdez-Garcia, J. (2013). Corneal endothelium: Developmental strategies for regeneration. Eye (London, England), 27, 579–588.CrossRef Zavala, J., Jaime, G. R. L., Barrientos, C. A. R., & Valdez-Garcia, J. (2013). Corneal endothelium: Developmental strategies for regeneration. Eye (London, England), 27, 579–588.CrossRef
201.
Zurück zum Zitat Wang, J., Zhang, R., Shen, Y., Xu, C., Qi, S., Lu, L., Wang, R., & Xu, Y. (2014). Recent advances in cell sheet technology for periodontal regeneration. Current Stem Cell Research & Therapy, 9, 162–173.CrossRef Wang, J., Zhang, R., Shen, Y., Xu, C., Qi, S., Lu, L., Wang, R., & Xu, Y. (2014). Recent advances in cell sheet technology for periodontal regeneration. Current Stem Cell Research & Therapy, 9, 162–173.CrossRef
Metadaten
Titel
Tissue Engineering in Periodontal Regeneration
verfasst von
Aysel Iranparvar
Amin Nozariasbmarz
Sara DeGrave
Lobat Tayebi
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-21583-5_14

Neuer Inhalt