Skip to main content
Erschienen in: Experiments in Fluids 1/2014

01.01.2014 | Research Article

Tomographic PIV measurements of flow patterns in a nasal cavity with geometry acquisition

verfasst von: Sunghyuk Im, Go Eun Heo, Young Jin Jeon, Hyung Jin Sung, Sung Kyun Kim

Erschienen in: Experiments in Fluids | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The flow patterns inside a scaled transparent model of a nasal cavity were measured by tomographic particle image velocimetry (PIV) with three-dimensional (3D) geometry acquisition. The model was constructed using transparent silicone. The refractive index of the working fluid was matched to the index of silicone by mixing water and glycerol. Four cameras and a double-pulse laser system were used for tomographic PIV. Red fluorescent particles and long-pass filters were used to obtain a high signal-to-noise ratio. The complex geometry of the 3D nasal model was acquired by accumulating triangulated 3D particle positions, obtained through a least square-based triangulation method. Certain morphological operations, such as the opening and closing of the nasal cavity, were used to improve the quality of acquired nasal geometry data. The geometry information was used to distinguish the fluid from the solid regions during the tomographic reconstruction procedure. The quality of the model geometry acquisition and tomographic reconstruction algorithms was evaluated using a synthetic image test. Synthetic images were generated by fitting a computational model (stereolithography file) to the virtual 3D coordinates and by randomly seeding particles inside the nasal region. A perspective transformation matrix of each camera was used to generate the synthetic images based on the experimental configuration of the camera. The synthetic image test showed that the voxel reconstruction quality could be improved by applying acquired model geometry in the tomographic reconstruction step. The nasal geometry was acquired and a flow velocity field was determined by cross-correlating the reconstructed 3D voxel intensities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adhikari D, Longmire E (2012) Visual hull method for tomographic PIV measurement of flow around moving objects. Exp Fluids 53:943–964CrossRef Adhikari D, Longmire E (2012) Visual hull method for tomographic PIV measurement of flow around moving objects. Exp Fluids 53:943–964CrossRef
Zurück zum Zitat Arroyo MP, Hinsch KD (2008) Recent developments of PIV towards 3D measurements particle image velocimetry. Springer, New York, pp 127–154 Arroyo MP, Hinsch KD (2008) Recent developments of PIV towards 3D measurements particle image velocimetry. Springer, New York, pp 127–154
Zurück zum Zitat Atkinson C, Soria J (2009) An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Exp Fluids 47:553–568CrossRef Atkinson C, Soria J (2009) An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Exp Fluids 47:553–568CrossRef
Zurück zum Zitat Barnhart DH, Adrian RJ, Menhart C, Papen GC (1995) Phase-conjugate holographic system for high-resolution particle image velocimetry through thick-walled curved windows SPIE’s 1995 international symposium on optical science, engineering, and instrumentation. International Society for Optics and Photonics, pp 165–175 Barnhart DH, Adrian RJ, Menhart C, Papen GC (1995) Phase-conjugate holographic system for high-resolution particle image velocimetry through thick-walled curved windows SPIE’s 1995 international symposium on optical science, engineering, and instrumentation. International Society for Optics and Photonics, pp 165–175
Zurück zum Zitat Brücker C (1995) Digital-particle-image-velocimetry (DPIV) in a scanning light-sheet: 3D starting flow around a short cylinder. Exp Fluids 19:255–263CrossRef Brücker C (1995) Digital-particle-image-velocimetry (DPIV) in a scanning light-sheet: 3D starting flow around a short cylinder. Exp Fluids 19:255–263CrossRef
Zurück zum Zitat Buchmann N, Atkinson C, Jeremy M, Soria J (2011) Tomographic particle image velocimetry investigation of the flow in a modeled human carotid artery bifurcation. Exp Fluids 50:1131–1151CrossRef Buchmann N, Atkinson C, Jeremy M, Soria J (2011) Tomographic particle image velocimetry investigation of the flow in a modeled human carotid artery bifurcation. Exp Fluids 50:1131–1151CrossRef
Zurück zum Zitat Chung S-K, Kim SK (2008) Digital particle image velocimetry studies of nasal airflow. Respir Physiol Neurobiol 163:111–120CrossRef Chung S-K, Kim SK (2008) Digital particle image velocimetry studies of nasal airflow. Respir Physiol Neurobiol 163:111–120CrossRef
Zurück zum Zitat Croce C, Fodil R, Durand M et al (2006) In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry. Ann Biomed Eng 34:997–1007CrossRef Croce C, Fodil R, Durand M et al (2006) In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry. Ann Biomed Eng 34:997–1007CrossRef
Zurück zum Zitat Doorly D, Taylor D, Gambaruto A, Schroter R, Tolley N (2008) Nasal architecture: form and flow. Philos Trans R Soc A Math Phys Eng Sci 366:3225–3246CrossRef Doorly D, Taylor D, Gambaruto A, Schroter R, Tolley N (2008) Nasal architecture: form and flow. Philos Trans R Soc A Math Phys Eng Sci 366:3225–3246CrossRef
Zurück zum Zitat Elsinga G, Scarano F, Wieneke B, van Oudheusden B (2006) Tomographic particle image velocimetry. Exp Fluids 41:933–947CrossRef Elsinga G, Scarano F, Wieneke B, van Oudheusden B (2006) Tomographic particle image velocimetry. Exp Fluids 41:933–947CrossRef
Zurück zum Zitat Geraets W, van Daatselaar A, Verheij J (2004) An efficient filling algorithm for counting regions. Comput Methods Programs Biomed 76:1–11CrossRef Geraets W, van Daatselaar A, Verheij J (2004) An efficient filling algorithm for counting regions. Comput Methods Programs Biomed 76:1–11CrossRef
Zurück zum Zitat Hartley RI, Sturm P (1997) Triangulation. Comput Vis Image Underst 68:146–157CrossRef Hartley RI, Sturm P (1997) Triangulation. Comput Vis Image Underst 68:146–157CrossRef
Zurück zum Zitat Hopkins L, Kelly J, Wexler A, Prasad A (2000) Particle image velocimetry measurements in complex geometries. Exp Fluids 29:91–95CrossRef Hopkins L, Kelly J, Wexler A, Prasad A (2000) Particle image velocimetry measurements in complex geometries. Exp Fluids 29:91–95CrossRef
Zurück zum Zitat Hörschler I, Meinke M, Schröder W (2003) Numerical simulation of the flow field in a model of the nasal cavity. Comput Fluids 32:39–45CrossRefMATH Hörschler I, Meinke M, Schröder W (2003) Numerical simulation of the flow field in a model of the nasal cavity. Comput Fluids 32:39–45CrossRefMATH
Zurück zum Zitat Hörschler I, Brücker C, Schröder W, Meinke M (2006) Investigation of the impact of the geometry on the nose flow. Eur J Mech B/Fluids 25:471–490CrossRefMATH Hörschler I, Brücker C, Schröder W, Meinke M (2006) Investigation of the impact of the geometry on the nose flow. Eur J Mech B/Fluids 25:471–490CrossRefMATH
Zurück zum Zitat Jeon YJ, Sung HJ (2011) PIV measurement of flow around an arbitrarily moving body. Exp Fluids 50:787–798CrossRef Jeon YJ, Sung HJ (2011) PIV measurement of flow around an arbitrarily moving body. Exp Fluids 50:787–798CrossRef
Zurück zum Zitat Jeon YJ, Sung HJ (2012) Three-dimensional PIV measurement of flow around an arbitrarily moving body. Exp Fluids 53:1057–1071CrossRef Jeon YJ, Sung HJ (2012) Three-dimensional PIV measurement of flow around an arbitrarily moving body. Exp Fluids 53:1057–1071CrossRef
Zurück zum Zitat Kelly J, Prasad A, Wexler A (2000) Detailed flow patterns in the nasal cavity. J Appl Physiol 89:323–337 Kelly J, Prasad A, Wexler A (2000) Detailed flow patterns in the nasal cavity. J Appl Physiol 89:323–337
Zurück zum Zitat Kim SK, Chung SK (2004) An investigation on airflow in disordered nasal cavity and its corrected models by tomographic PIV. Meas Sci Technol 15:1090CrossRefMathSciNet Kim SK, Chung SK (2004) An investigation on airflow in disordered nasal cavity and its corrected models by tomographic PIV. Meas Sci Technol 15:1090CrossRefMathSciNet
Zurück zum Zitat Kim H, Große S, Elsinga GE, Westerweel J (2011) Full 3D-3C velocity measurement inside a liquid immersion droplet. Exp Fluids 51:395–405CrossRef Kim H, Große S, Elsinga GE, Westerweel J (2011) Full 3D-3C velocity measurement inside a liquid immersion droplet. Exp Fluids 51:395–405CrossRef
Zurück zum Zitat Kim SK, Na Y, Kim JI, Chung SK (2013) Patient specific CFD models of nasal airflow: overview of methods and challenges. J Biomech 46:299CrossRef Kim SK, Na Y, Kim JI, Chung SK (2013) Patient specific CFD models of nasal airflow: overview of methods and challenges. J Biomech 46:299CrossRef
Zurück zum Zitat Kleven M, Melaaen MC, Djupesland PG (2012) Computational fluid dynamics (CFD) applied in the drug delivery design process to the nasal passages: a review. J Mech Med Biol 12:1230002 Kleven M, Melaaen MC, Djupesland PG (2012) Computational fluid dynamics (CFD) applied in the drug delivery design process to the nasal passages: a review. J Mech Med Biol 12:1230002
Zurück zum Zitat Maas H, Gruen A, Papantoniou D (1993) Particle tracking velocimetry in three-dimensional flows. Exp Fluids 15:133–146CrossRef Maas H, Gruen A, Papantoniou D (1993) Particle tracking velocimetry in three-dimensional flows. Exp Fluids 15:133–146CrossRef
Zurück zum Zitat Mishra D, Muralidhar K, Munshi P (1999) A robust MART algorithm for tomographic applications. Numer Heat Trans B Fundam 35:485–506CrossRef Mishra D, Muralidhar K, Munshi P (1999) A robust MART algorithm for tomographic applications. Numer Heat Trans B Fundam 35:485–506CrossRef
Zurück zum Zitat Na Y, Chung KS, Chung S-K, Kim SK (2012) Effects of single-sided inferior turbinectomy on nasal function and airflow characteristics. Respir Physiol Neurobiol 180:289–297CrossRef Na Y, Chung KS, Chung S-K, Kim SK (2012) Effects of single-sided inferior turbinectomy on nasal function and airflow characteristics. Respir Physiol Neurobiol 180:289–297CrossRef
Zurück zum Zitat Pereira F, Gharib M, Dabiri D, Modarress D (2000) Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows. Exp Fluids 29:S078–S084CrossRef Pereira F, Gharib M, Dabiri D, Modarress D (2000) Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows. Exp Fluids 29:S078–S084CrossRef
Zurück zum Zitat Scarano F (2013) Tomographic PIV: principles and practice. Meas Sci Technol 24:012001CrossRef Scarano F (2013) Tomographic PIV: principles and practice. Meas Sci Technol 24:012001CrossRef
Zurück zum Zitat Scarano F, Poelma C (2009) Three-dimensional vorticity patterns of cylinder wakes. Exp Fluids 47:69–83CrossRef Scarano F, Poelma C (2009) Three-dimensional vorticity patterns of cylinder wakes. Exp Fluids 47:69–83CrossRef
Zurück zum Zitat Spence C, Buchmann N, Jermy M, Moore S (2011) Stereoscopic PIV measurements of flow in the nasal cavity with high flow therapy. Exp Fluids 50:1005–1017CrossRef Spence C, Buchmann N, Jermy M, Moore S (2011) Stereoscopic PIV measurements of flow in the nasal cavity with high flow therapy. Exp Fluids 50:1005–1017CrossRef
Zurück zum Zitat Wang K, Denney Jr TS, Morrison EE, Vodyanoy VJ (2006) Numerical simulation of air flow in the human nasal cavity Engineering in Medicine and Biology Society, 2005 IEEE-EMBS 2005 27th annual international conference of the. IEEE, pp 5607–5610 Wang K, Denney Jr TS, Morrison EE, Vodyanoy VJ (2006) Numerical simulation of air flow in the human nasal cavity Engineering in Medicine and Biology Society, 2005 IEEE-EMBS 2005 27th annual international conference of the. IEEE, pp 5607–5610
Zurück zum Zitat Wieneke B (2008) Volume self-calibration for 3D particle image velocimetry. Exp Fluids 45:549–556CrossRef Wieneke B (2008) Volume self-calibration for 3D particle image velocimetry. Exp Fluids 45:549–556CrossRef
Metadaten
Titel
Tomographic PIV measurements of flow patterns in a nasal cavity with geometry acquisition
verfasst von
Sunghyuk Im
Go Eun Heo
Young Jin Jeon
Hyung Jin Sung
Sung Kyun Kim
Publikationsdatum
01.01.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 1/2014
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-013-1644-x

Weitere Artikel der Ausgabe 1/2014

Experiments in Fluids 1/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.