Skip to main content

2025 | OriginalPaper | Buchkapitel

Topological Optimization of a Car Module with TRIZ and Machine Learning

verfasst von : Stelian Brad, Dana Ioana Rat

Erschienen in: World Conference of AI-Powered Innovation and Inventive Design

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study explores a methodology for the topological optimization of car modules by integrating TRIZ (Theory of Inventive Problem Solving) and machine learning techniques. Initially, TRIZ principles guide the qualitative optimization phase, establishing proper design directions aimed at weight reduction and durability enhancement. Following this, machine learning tools, including ARRK’s proprietary algorithms, are applied for precise parametric optimization, ensuring alignment with performance criteria. The findings demonstrate the efficacy of this integrated approach, significantly improving car module design by refining geometrical proportions and achieving dual objectives: weight reduction and enhanced strength. While the study highlights the potential of combining TRIZ and machine learning, it acknowledges limitations due to the use of freely available 3D models and the proprietary nature of certain algorithms. Nonetheless, this research provides a comprehensive framework for automotive engineers and designers, setting a new benchmark for incorporating qualitative insights into the quantitative optimization of complex systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post-2000. Struct. Multidiscip. Optim. 49(1), 1–38 (2014)MathSciNetCrossRef Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post-2000. Struct. Multidiscip. Optim. 49(1), 1–38 (2014)MathSciNetCrossRef
2.
Zurück zum Zitat Gradišar, L., Klinc, R., Turk, Ž, Dolenc, M.: Generative design methodology and framework exploiting designer-algorithm synergies. Buildings 12, 2194 (2022)CrossRef Gradišar, L., Klinc, R., Turk, Ž, Dolenc, M.: Generative design methodology and framework exploiting designer-algorithm synergies. Buildings 12, 2194 (2022)CrossRef
4.
Zurück zum Zitat Fang, S., Li, M., Liu, L., Han, X., Duan, B., Qin, L.: A quantitative and optimization model for microstructure uniformity of sinter based on multiple regression-NSGA2. Metals 14(2), 169 (2024)CrossRef Fang, S., Li, M., Liu, L., Han, X., Duan, B., Qin, L.: A quantitative and optimization model for microstructure uniformity of sinter based on multiple regression-NSGA2. Metals 14(2), 169 (2024)CrossRef
5.
Zurück zum Zitat Hurme, M., Järveläinen, M., Parsons, S., Dohnal, M.: A qualitative commonsense method for optimization of complex engineering systems. Eng. Optim. 20(4), 323–339 (1993)CrossRef Hurme, M., Järveläinen, M., Parsons, S., Dohnal, M.: A qualitative commonsense method for optimization of complex engineering systems. Eng. Optim. 20(4), 323–339 (1993)CrossRef
6.
Zurück zum Zitat Altshuller, G.: The Innovation Algorithm: TRIZ, Systematic Innovation and Technical Creativity. Technical Innovation Center Inc, New York (1999) Altshuller, G.: The Innovation Algorithm: TRIZ, Systematic Innovation and Technical Creativity. Technical Innovation Center Inc, New York (1999)
7.
Zurück zum Zitat Cascini, G., Cugini, U., Frillici, F.S., Rotini, F.: Computer-aided conceptual design through TRIZ-based manipulation of topological optimizations. In: Proceedings of the 19th CIRP Design Conference – Competitive Design, Cranfield University, UK, p. 263, 30–31 March 2009 Cascini, G., Cugini, U., Frillici, F.S., Rotini, F.: Computer-aided conceptual design through TRIZ-based manipulation of topological optimizations. In: Proceedings of the 19th CIRP Design Conference – Competitive Design, Cranfield University, UK, p. 263, 30–31 March 2009
8.
Zurück zum Zitat Cardillo, A., Cascini, G., Frillici, F.S., Rotini, F.: A novel paradigm for computer-aided design: TRIZ-based hybridization of topologically optimized density distributions. In: Tan, R., Cao, G., León, N. (eds.), CAI 2009, IFIP AICT 304, pp. 38–50. Springer (2009) Cardillo, A., Cascini, G., Frillici, F.S., Rotini, F.: A novel paradigm for computer-aided design: TRIZ-based hybridization of topologically optimized density distributions. In: Tan, R., Cao, G., León, N. (eds.), CAI 2009, IFIP AICT 304, pp. 38–50. Springer (2009)
9.
Zurück zum Zitat Cascini, G., Rissone, P., Rotini, F., Russo, D.: Systematic design through the integration of TRIZ and optimization tools. Procedia Eng. 9, 674–679 (2011)CrossRef Cascini, G., Rissone, P., Rotini, F., Russo, D.: Systematic design through the integration of TRIZ and optimization tools. Procedia Eng. 9, 674–679 (2011)CrossRef
10.
Zurück zum Zitat Gatel, L., Lauvernet, C., Carluer, N., Weill, S., Paniconi, C.: Sobol global sensitivity analysis of a coupled surface/subsurface water flow and reactive solute transfer model on a real hillslope. Water 12(1), 121 (2020)CrossRef Gatel, L., Lauvernet, C., Carluer, N., Weill, S., Paniconi, C.: Sobol global sensitivity analysis of a coupled surface/subsurface water flow and reactive solute transfer model on a real hillslope. Water 12(1), 121 (2020)CrossRef
11.
Zurück zum Zitat Li, Z., Bucior, B.J., Chen, H., Haranczyk, M., Siepmann, J.I., Snurr, R.Q.: Machine learning using host/guest energy histograms to predict adsorption in metal–organic frameworks: application to short alkanes and Xe/Kr mixtures. J. Chem. Phys. 155(1), 014701 (2021)CrossRef Li, Z., Bucior, B.J., Chen, H., Haranczyk, M., Siepmann, J.I., Snurr, R.Q.: Machine learning using host/guest energy histograms to predict adsorption in metal–organic frameworks: application to short alkanes and Xe/Kr mixtures. J. Chem. Phys. 155(1), 014701 (2021)CrossRef
12.
Zurück zum Zitat Kumar, S., Chong, I.: Correlation analysis to identify the effective data in machine learning: prediction of depressive disorder and emotion states. Int. J. Environ. Res. Public Health 15(12), 2907 (2018)CrossRef Kumar, S., Chong, I.: Correlation analysis to identify the effective data in machine learning: prediction of depressive disorder and emotion states. Int. J. Environ. Res. Public Health 15(12), 2907 (2018)CrossRef
13.
Zurück zum Zitat Cortes, C., Vapnik, V.: Support-Vector Networks. Mach. Learn. 20(3), 273–297 (1995)CrossRef Cortes, C., Vapnik, V.: Support-Vector Networks. Mach. Learn. 20(3), 273–297 (1995)CrossRef
14.
Zurück zum Zitat Broomhead, D.S., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex Syst. 2(3), 321–355 (1988)MathSciNet Broomhead, D.S., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex Syst. 2(3), 321–355 (1988)MathSciNet
15.
Zurück zum Zitat Montazer, G.A., Giveki, D., Karami, M., Rastegar, H.: Radial basis function neural networks: A review. Comput. Rev. J. 1(1) (2018) Montazer, G.A., Giveki, D., Karami, M., Rastegar, H.: Radial basis function neural networks: A review. Comput. Rev. J. 1(1) (2018)
16.
Zurück zum Zitat Sobol, I.M.: Sensitivity estimates for non-linear mathematical models. Math. Model. Comput. Exp. 1(4), 407–414 (1993) Sobol, I.M.: Sensitivity estimates for non-linear mathematical models. Math. Model. Comput. Exp. 1(4), 407–414 (1993)
Metadaten
Titel
Topological Optimization of a Car Module with TRIZ and Machine Learning
verfasst von
Stelian Brad
Dana Ioana Rat
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-75923-9_6