Skip to main content

2019 | OriginalPaper | Buchkapitel

6. Topological Optimization with Interfaces

verfasst von : N. Vermaak, G. Michailidis, A. Faure, G. Parry, R. Estevez, F. Jouve, G. Allaire, Y. Bréchet

Erschienen in: Architectured Materials in Nature and Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Design of architectured materials and structures, whether in nature or in engineering, often relies on forms of optimization. In nature, controlling architecture or spatial heterogeneity is usually adaptive and incremental. Naturally occuring architectured materials exploit heterogeneity with typically graded interfaces, smoothly transitioning across properties and scales in the pursuit of performance and longevity. This chapter explores an engineering tool, topology optimization, that is at the frontier of designing architectured materials and structures. Topology optimization offers a mathematical framework to determine the most efficient material layout for prescribed constraints and loading conditions. In engineering, topology optimization is identifying designs with interfaces, materials, manufacturing methods, and functionalities unavailable to the natural world. The particular focus is on the variety of roles that interfaces may play in advancing architectured materials and structures with topology optimization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Plasma and other states of matter that occur under extreme conditions are not considered.
 
Literatur
1.
Zurück zum Zitat M. Ashby, Designing architectured materials. Scr. Mater. 68(1), 4–7 (2013)CrossRef M. Ashby, Designing architectured materials. Scr. Mater. 68(1), 4–7 (2013)CrossRef
2.
Zurück zum Zitat M. Ashby, Y. Brechet, Designing hybrid materials. Acta Mater. 51(19), 5801–5821 (2003)CrossRef M. Ashby, Y. Brechet, Designing hybrid materials. Acta Mater. 51(19), 5801–5821 (2003)CrossRef
3.
Zurück zum Zitat S. Torquato, Optimal design of heterogeneous materials. Ann. Rev. Mater. Res. 40, 101–129 (2010)CrossRef S. Torquato, Optimal design of heterogeneous materials. Ann. Rev. Mater. Res. 40, 101–129 (2010)CrossRef
4.
Zurück zum Zitat M. Bendsoe, O. Sigmund, in Topology Optimization: Theory, Methods and Applications (Springer, 2004) M. Bendsoe, O. Sigmund, in Topology Optimization: Theory, Methods and Applications (Springer, 2004)
5.
Zurück zum Zitat D. Wolf, J. Jaszczak, in Materials Interfaces: Atomic-level Structure and Properties (1992) D. Wolf, J. Jaszczak, in Materials Interfaces: Atomic-level Structure and Properties (1992)
6.
Zurück zum Zitat G. Allaire, Conception optimale de structures, vol. 58, in Mathématiques & Applications (Springer-Verlag, Berlin, 2007) G. Allaire, Conception optimale de structures, vol. 58, in Mathématiques & Applications (Springer-Verlag, Berlin, 2007)
7.
Zurück zum Zitat P. Christensen, A. Klarbring, in An Introduction to Structural Optimization, vol. 153. (Springer, 2009) P. Christensen, A. Klarbring, in An Introduction to Structural Optimization, vol. 153. (Springer, 2009)
8.
Zurück zum Zitat J.D. Deaton, R.V. Grandhi, A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multi. Optim. 49(1), 1–38 (2014)CrossRef J.D. Deaton, R.V. Grandhi, A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multi. Optim. 49(1), 1–38 (2014)CrossRef
9.
Zurück zum Zitat G. Allaire, E. Bonnetier, G. Francfort, F. Jouve, Shape optimization by the homogenization method. Numer. Math. 76(1), 27–68 (1997)CrossRef G. Allaire, E. Bonnetier, G. Francfort, F. Jouve, Shape optimization by the homogenization method. Numer. Math. 76(1), 27–68 (1997)CrossRef
10.
Zurück zum Zitat M. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988)CrossRef M. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988)CrossRef
11.
Zurück zum Zitat L. Gibiansky and A. Cherkaev, Design of composite plates of extremal rigidity, in Topics in the Mathematical Modelling of Composite Materials (Springer, 1997), pp. 95–137 L. Gibiansky and A. Cherkaev, Design of composite plates of extremal rigidity, in Topics in the Mathematical Modelling of Composite Materials (Springer, 1997), pp. 95–137
12.
Zurück zum Zitat R. Kohn, G. Strang, Optimal design and relaxation of variational problems, I. Commun. Pure Appl. Math. 39(1), 113–137 (1986a)CrossRef R. Kohn, G. Strang, Optimal design and relaxation of variational problems, I. Commun. Pure Appl. Math. 39(1), 113–137 (1986a)CrossRef
13.
Zurück zum Zitat R. Kohn, G. Strang, Optimal design and relaxation of variational problems, II. Commun. Pure Appl. Math. 39(2), 139–182 (1986b)CrossRef R. Kohn, G. Strang, Optimal design and relaxation of variational problems, II. Commun. Pure Appl. Math. 39(2), 139–182 (1986b)CrossRef
14.
Zurück zum Zitat R. Kohn, G. Strang, Optimal design and relaxation of variational problems, III. Commun. Pure Appl. Math. 39(3), 353–377 (1986c)CrossRef R. Kohn, G. Strang, Optimal design and relaxation of variational problems, III. Commun. Pure Appl. Math. 39(3), 353–377 (1986c)CrossRef
15.
Zurück zum Zitat F. Murat, L. Tartar, Calcul des variations et homogénéisation. Les méthodes de lhomogénéisation: théorie et applications en physique 57, 319–369 (1985) F. Murat, L. Tartar, Calcul des variations et homogénéisation. Les méthodes de lhomogénéisation: théorie et applications en physique 57, 319–369 (1985)
16.
Zurück zum Zitat S. Osher, J. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)CrossRef S. Osher, J. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)CrossRef
17.
Zurück zum Zitat J. Sethian, A. Wiegmann, Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163(2), 489–528 (2000)CrossRef J. Sethian, A. Wiegmann, Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163(2), 489–528 (2000)CrossRef
18.
Zurück zum Zitat G. Allaire, F. Jouve, A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004)CrossRef G. Allaire, F. Jouve, A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004)CrossRef
19.
Zurück zum Zitat M. Wang, X. Wang, D. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(1), 227–246 (2003)CrossRef M. Wang, X. Wang, D. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(1), 227–246 (2003)CrossRef
20.
Zurück zum Zitat A. Christiansen, M. Nobel-Jørgensen, N. Aage, O. Sigmund, J. Bærentzen, Topology optimization using an explicit interface representation, in Structural and Multidisciplinary Optimization (2013), pp. 1–13 A. Christiansen, M. Nobel-Jørgensen, N. Aage, O. Sigmund, J. Bærentzen, Topology optimization using an explicit interface representation, in Structural and Multidisciplinary Optimization (2013), pp. 1–13
21.
Zurück zum Zitat L. Blank, M. Farshbaf-Shaker, H. Garcke, C. Rupprecht, V. Styles, Multi-material phase field approach to structural topology optimization, in Trends in PDE Constrained Optimization (Springer, 2014), pp. 231–246 L. Blank, M. Farshbaf-Shaker, H. Garcke, C. Rupprecht, V. Styles, Multi-material phase field approach to structural topology optimization, in Trends in PDE Constrained Optimization (Springer, 2014), pp. 231–246
22.
Zurück zum Zitat S. Zhou, M. Wang, Multimaterial structural topology optimization with a generalized cahn-hilliard model of multiphase transition. Struct. Multi. Optim. 33(2), 89–111 (2007)CrossRef S. Zhou, M. Wang, Multimaterial structural topology optimization with a generalized cahn-hilliard model of multiphase transition. Struct. Multi. Optim. 33(2), 89–111 (2007)CrossRef
23.
Zurück zum Zitat O. Querin, G. Steven, Y. Xie, Evolutionary structural optimisation (eso) using a bidirectional algorithm. Eng. Comput. 15(8), 1031–1048 (1998)CrossRef O. Querin, G. Steven, Y. Xie, Evolutionary structural optimisation (eso) using a bidirectional algorithm. Eng. Comput. 15(8), 1031–1048 (1998)CrossRef
24.
Zurück zum Zitat A. Baumgartner, L. Harzheim, C. Mattheck, Sko (soft kill option): the biological way to find an optimum structure topology. Int. J. Fatigue 14(6), 387–393 (1992)CrossRef A. Baumgartner, L. Harzheim, C. Mattheck, Sko (soft kill option): the biological way to find an optimum structure topology. Int. J. Fatigue 14(6), 387–393 (1992)CrossRef
25.
Zurück zum Zitat C. Mattheck, Design and growth rules for biological structures and their application to engineering. Fatigue Fract. Eng. Mater. Struct. 13(5), 535–550 (1990)CrossRef C. Mattheck, Design and growth rules for biological structures and their application to engineering. Fatigue Fract. Eng. Mater. Struct. 13(5), 535–550 (1990)CrossRef
26.
Zurück zum Zitat O. Sigmund, On the usefulness of non-gradient approaches in topology optimization. Struct. Multi. Optim. 43(5), 589–596 (2011)CrossRef O. Sigmund, On the usefulness of non-gradient approaches in topology optimization. Struct. Multi. Optim. 43(5), 589–596 (2011)CrossRef
27.
Zurück zum Zitat J. Guest, Topology optimization with multiple phase projection. Comput. Methods Appl. Mech. Eng. 199(1), 123–135 (2009)CrossRef J. Guest, Topology optimization with multiple phase projection. Comput. Methods Appl. Mech. Eng. 199(1), 123–135 (2009)CrossRef
28.
Zurück zum Zitat A. Clausen, N. Aage, O. Sigmund, Topology optimization of coated structures and material interface problems. Comput. Methods Appl. Mech. Eng. 290, 524–541 (2015)CrossRef A. Clausen, N. Aage, O. Sigmund, Topology optimization of coated structures and material interface problems. Comput. Methods Appl. Mech. Eng. 290, 524–541 (2015)CrossRef
29.
30.
Zurück zum Zitat F. Murat, J. Simon, Etude de problèmes d’optimal design. Optim. Tech. Model. Optim. Serv. Man Part 2, 54–62 (1976)CrossRef F. Murat, J. Simon, Etude de problèmes d’optimal design. Optim. Tech. Model. Optim. Serv. Man Part 2, 54–62 (1976)CrossRef
31.
Zurück zum Zitat J. Simon, F. Murat, in Sur le contrôle par un domaine géométrique. Publication 76015 du Laboratoire d’Analyse Numérique de l’Université Paris VI, (76015):222 pages (1976) J. Simon, F. Murat, in Sur le contrôle par un domaine géométrique. Publication 76015 du Laboratoire d’Analyse Numérique de l’Université Paris VI, (76015):222 pages (1976)
32.
Zurück zum Zitat B. Merriman, J.K. Bence, S.J. Osher, Motion of multiple junctions: a level set approach. J. Comput. Phys. 112(2), 334–363 (1994)CrossRef B. Merriman, J.K. Bence, S.J. Osher, Motion of multiple junctions: a level set approach. J. Comput. Phys. 112(2), 334–363 (1994)CrossRef
33.
Zurück zum Zitat M. Wang, X. Wang, Color level sets: a multi-phase method for structural topology optimization with multiple materials. Comput. Methods Appl. Mech. Eng. 193(6), 469–496 (2004)CrossRef M. Wang, X. Wang, Color level sets: a multi-phase method for structural topology optimization with multiple materials. Comput. Methods Appl. Mech. Eng. 193(6), 469–496 (2004)CrossRef
35.
Zurück zum Zitat O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer Series in Computational Physics. (Springer-Verlag, New York, 1984) O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer Series in Computational Physics. (Springer-Verlag, New York, 1984)
36.
Zurück zum Zitat J. Sokołowski and J.-P. Zolésio. Introduction to Shape Optimization, vol. 16, Springer Series in Computational Mathematics. (Springer-Verlag, Berlin, 1992). Shape sensitivity analysis J. Sokołowski and J.-P. Zolésio. Introduction to Shape Optimization, vol. 16, Springer Series in Computational Mathematics. (Springer-Verlag, Berlin, 1992). Shape sensitivity analysis
37.
Zurück zum Zitat S. Osher, R. Fedkiw, Level set methods and dynamic implicit surfaces, in Applied Mathematical Sciences,vol. 153 (Springer-Verlag, New York, 2003) S. Osher, R. Fedkiw, Level set methods and dynamic implicit surfaces, in Applied Mathematical Sciences,vol. 153 (Springer-Verlag, New York, 2003)
38.
Zurück zum Zitat J. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (Cambridge University Press, Cambridge, 1999) J. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (Cambridge University Press, Cambridge, 1999)
39.
Zurück zum Zitat G. Allaire, C. Dapogny, P. Frey, A mesh evolution algorithm based on the level set method for geometry and topology optimization. Struct. Multi. Optim. 48(4), 711–715 (2013)CrossRef G. Allaire, C. Dapogny, P. Frey, A mesh evolution algorithm based on the level set method for geometry and topology optimization. Struct. Multi. Optim. 48(4), 711–715 (2013)CrossRef
40.
Zurück zum Zitat Q. Xia, T. Shi, S. Liu, M. Wang, A level set solution to the stress-based structural shape and topology optimization. Comput. Struct. 9091, 55–64 (2012)CrossRef Q. Xia, T. Shi, S. Liu, M. Wang, A level set solution to the stress-based structural shape and topology optimization. Comput. Struct. 9091, 55–64 (2012)CrossRef
41.
Zurück zum Zitat L. Ambrosio, G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. Partial. Differ. Equ. 1(1), 55–69 (1993)CrossRef L. Ambrosio, G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. Partial. Differ. Equ. 1(1), 55–69 (1993)CrossRef
43.
Zurück zum Zitat G. Allaire, F. Jouve, G. Michailidis, Thickness control in structural optimization via a level set method. Struct. Multi. Optim. 53(6), 1349–1382 (2016)CrossRef G. Allaire, F. Jouve, G. Michailidis, Thickness control in structural optimization via a level set method. Struct. Multi. Optim. 53(6), 1349–1382 (2016)CrossRef
44.
Zurück zum Zitat F. Feppon, Design and Optimization for Wear of Bi-material Composite Surfaces. Master’s thesis, Ecole Polytechnique, Promotion X2012, 2015 F. Feppon, Design and Optimization for Wear of Bi-material Composite Surfaces. Master’s thesis, Ecole Polytechnique, Promotion X2012, 2015
45.
46.
Zurück zum Zitat N. Vermaak, G. Michailidis, G. Parry, R. Estevez, G. Allaire, Y. Bréchet, Material interface effects on the topology optimizationof multi-phase structures using a level set method. Struct. Multi. Optim. 50(4), 623–644 (2014)CrossRef N. Vermaak, G. Michailidis, G. Parry, R. Estevez, G. Allaire, Y. Bréchet, Material interface effects on the topology optimizationof multi-phase structures using a level set method. Struct. Multi. Optim. 50(4), 623–644 (2014)CrossRef
47.
Zurück zum Zitat O. Sigmund, Tailoring materials with prescribed elastic properties. Mech. Mater. 20(4), 351–368 (1995)CrossRef O. Sigmund, Tailoring materials with prescribed elastic properties. Mech. Mater. 20(4), 351–368 (1995)CrossRef
49.
Zurück zum Zitat A. Clausen, N. Aage, O. Sigmund, Exploiting additive manufacturing infill in topology optimization for improved buckling load. Engineering 2(2), 250–257 (2016)CrossRef A. Clausen, N. Aage, O. Sigmund, Exploiting additive manufacturing infill in topology optimization for improved buckling load. Engineering 2(2), 250–257 (2016)CrossRef
50.
Zurück zum Zitat P. Zhang, J. Liu, A. To, Role of anisotropic properties on topology optimization of additive manufactured load bearing structures. Scripta Mater. 135, 148–152 (2016)CrossRef P. Zhang, J. Liu, A. To, Role of anisotropic properties on topology optimization of additive manufactured load bearing structures. Scripta Mater. 135, 148–152 (2016)CrossRef
Metadaten
Titel
Topological Optimization with Interfaces
verfasst von
N. Vermaak
G. Michailidis
A. Faure
G. Parry
R. Estevez
F. Jouve
G. Allaire
Y. Bréchet
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-11942-3_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.