Skip to main content
Erschienen in: Physics of Metals and Metallography 3/2022

01.03.2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Topologically Nontrivial Spin Textures in Thin Magnetic Films

verfasst von: A. S. Samardak, A. G. Kolesnikov, A. V. Davydenko, M. E. Steblii, A. V. Ognev

Erschienen in: Physics of Metals and Metallography | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The results of advanced research in the developing field of modern magnetism and spintronics, namely, topological nanomagnetism, in the framework of which the nature of the nontrivial spin textures and topological effects is studied, are reported. Most attention is paid to chiral spin textures that are recently discovered in thin magnetic films, such as skyrmions, skyrmioniums, antiskyrmions, and others, as well as to their static and dynamic properties, methods for their generation and control, and the prospects for creating functional devices based on them. Interest in one-, two-, and three-dimensional magnetic structures is driven not only by the range of new properties and effects that require further theoretical and experimental studies, but also by the potential for their applications in practice. The possibility of generating small and stable magnetic textures, such as skyrmions, opens up prospects for creating new types of random access memory and configurable logic, and for developing neuromorphic computation systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Fert and F. N. Van Dau, “Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators,” C. R. Phys. 20, No. 7, 817–831 (2019).CrossRef A. Fert and F. N. Van Dau, “Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators,” C. R. Phys. 20, No. 7, 817–831 (2019).CrossRef
2.
Zurück zum Zitat A. Manchon and A. Belabbes, Chapter One – Spin-Orbitronics at Transition Metal Interfaces, Solid State Physics, Ed. by R. E. Camley and R. L. Stamps (Academic, 2017), pp. 1–89. A. Manchon and A. Belabbes, Chapter One – Spin-Orbitronics at Transition Metal Interfaces, Solid State Physics, Ed. by R. E. Camley and R. L. Stamps (Academic, 2017), pp. 1–89.
3.
Zurück zum Zitat S. Ghosh and S. Grytsiuk, Chapter One – Orbitronics with uniform and nonuniform magnetic structures, Solid State Physics, Ed. by R. L. Stamps (Academic, 2020), pp. 1–38. S. Ghosh and S. Grytsiuk, Chapter One – Orbitronics with uniform and nonuniform magnetic structures, Solid State Physics, Ed. by R. L. Stamps (Academic, 2020), pp. 1–38.
4.
Zurück zum Zitat A. Fert, N. Reyren, and V. Cros, “Magnetic skyrmions: advances in physics and potential applications, Nat. Rev. Mater. 2, No. 7, 17031 (2017).CrossRef A. Fert, N. Reyren, and V. Cros, “Magnetic skyrmions: advances in physics and potential applications, Nat. Rev. Mater. 2, No. 7, 17031 (2017).CrossRef
5.
Zurück zum Zitat H. Vakili, W. Zhou, C. T. Ma, S. J. Poon, M. G. Morshed, M. N. Sakib, S. Ganguly, M. Stan, T. Q. Hartnett, P. Balachandran, J. -W. Xu, Y. Quessab, A. D. Kent, K. Litzius, G. S. D. Beach, and A. W. Ghosh, “Skyrmionics–Computing and memory technologies based on topological excitations in magnets,” J. Appl. Phys. 130, No. 7, 070908 (2021).CrossRef H. Vakili, W. Zhou, C. T. Ma, S. J. Poon, M. G. Morshed, M. N. Sakib, S. Ganguly, M. Stan, T. Q. Hartnett, P. Balachandran, J. -W. Xu, Y. Quessab, A. D. Kent, K. Litzius, G. S. D. Beach, and A. W. Ghosh, “Skyrmionics–Computing and memory technologies based on topological excitations in magnets,” J. Appl. Phys. 130, No. 7, 070908 (2021).CrossRef
6.
Zurück zum Zitat J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, “Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures,” Nat. Nanotechnol. 8, No. 11, 839–844 (2013).CrossRef J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, “Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures,” Nat. Nanotechnol. 8, No. 11, 839–844 (2013).CrossRef
7.
Zurück zum Zitat R. Wiesendanger, “Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics,” Nat. Rev. Mater. 1, No. 7, 16044 (2016).CrossRef R. Wiesendanger, “Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics,” Nat. Rev. Mater. 1, No. 7, 16044 (2016).CrossRef
8.
Zurück zum Zitat A. Polyakov and A. Belavin, “Metastable states of two-dimensional isotropic ferromagnets,” JETP Lett. 22, No, 503–506 (1975). A. Polyakov and A. Belavin, “Metastable states of two-dimensional isotropic ferromagnets,” JETP Lett. 22, No, 503–506 (1975).
9.
Zurück zum Zitat A. K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U. K. Rößler, C. Felser, and S. S. P. Parkin, “Magnetic antiskyrmions above room temperature in tetragonal Heusler materials,” Nat. 548, No. 7669, 561–566 (2017).CrossRef A. K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U. K. Rößler, C. Felser, and S. S. P. Parkin, “Magnetic antiskyrmions above room temperature in tetragonal Heusler materials,” Nat. 548, No. 7669, 561–566 (2017).CrossRef
10.
Zurück zum Zitat K. Everschor-Sitte, J. Masell, R. M. Reeve, and M. Kläui, “Perspective: Magnetic skyrmions–Overview of recent progress in an active research field,” J. Appl. Phys. 124, No. 24, 240901 (2018).CrossRef K. Everschor-Sitte, J. Masell, R. M. Reeve, and M. Kläui, “Perspective: Magnetic skyrmions–Overview of recent progress in an active research field,” J. Appl. Phys. 124, No. 24, 240901 (2018).CrossRef
11.
Zurück zum Zitat M. T. Birch, D. Cortés-Ortuño, L. A. Turnbull, M. N. Wilson, F. Groß, N. Träger, A. Laurenson, N. Bukin, S. H. Moody, M. Weigand, G. Schütz, H. Popescu, R. Fan, P. Steadman, J. A. T. Verezhak, G. Balakrishnan, J. C. Loudon, A. C. Twitchett-Harrison, O. Hovorka, H. Fangohr, F. Y. Ogrin, J. Gräfe, and P. D. Hatton, “Real-space imaging of confined magnetic skyrmion tubes,” Nat. Commun. 11, No. 1, 1726 (2020).CrossRef M. T. Birch, D. Cortés-Ortuño, L. A. Turnbull, M. N. Wilson, F. Groß, N. Träger, A. Laurenson, N. Bukin, S. H. Moody, M. Weigand, G. Schütz, H. Popescu, R. Fan, P. Steadman, J. A. T. Verezhak, G. Balakrishnan, J. C. Loudon, A. C. Twitchett-Harrison, O. Hovorka, H. Fangohr, F. Y. Ogrin, J. Gräfe, and P. D. Hatton, “Real-space imaging of confined magnetic skyrmion tubes,” Nat. Commun. 11, No. 1, 1726 (2020).CrossRef
12.
Zurück zum Zitat F. Zheng, F. N. Rybakov, A. B. Borisov, D. Song, S. Wang, Z.-A. Li, H. Du, N. S. Kiselev, J. Caron, A. Kovács, M. Tian, Y. Zhang, S. Blügel, and R. E. Dunin-Borkowski, “Experimental observation of chiral magnetic bobbers in B20-type FeGe,” Nat. Nanotechnol. 13, No. 6, 451–455 (2018).CrossRef F. Zheng, F. N. Rybakov, A. B. Borisov, D. Song, S. Wang, Z.-A. Li, H. Du, N. S. Kiselev, J. Caron, A. Kovács, M. Tian, Y. Zhang, S. Blügel, and R. E. Dunin-Borkowski, “Experimental observation of chiral magnetic bobbers in B20-type FeGe,” Nat. Nanotechnol. 13, No. 6, 451–455 (2018).CrossRef
13.
Zurück zum Zitat N. Kent, N. Reynolds, D. Raftrey, I. T. G. Campbell, S. Virasawmy, S. Dhuey, R. V. Chopdekar, A. Hierro-Rodriguez, A. Sorrentino, E. Pereiro, S. Ferrer, F. Hellman, P. Sutcliffe, and P. Fischer, “Creation and observation of Hopfions in magnetic multilayer systems,” Nat. Commun. 12, No. 1, 1562 (2021).CrossRef N. Kent, N. Reynolds, D. Raftrey, I. T. G. Campbell, S. Virasawmy, S. Dhuey, R. V. Chopdekar, A. Hierro-Rodriguez, A. Sorrentino, E. Pereiro, S. Ferrer, F. Hellman, P. Sutcliffe, and P. Fischer, “Creation and observation of Hopfions in magnetic multilayer systems,” Nat. Commun. 12, No. 1, 1562 (2021).CrossRef
14.
Zurück zum Zitat I. Dzyaloshinsky, “A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics,” J. Phys. Chem. Solids 4, No. 4, 241–255 (1958).CrossRef I. Dzyaloshinsky, “A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics,” J. Phys. Chem. Solids 4, No. 4, 241–255 (1958).CrossRef
15.
Zurück zum Zitat T. Moriya, “Anisotropic superexchange interaction and weak ferromagnetism,” Phys. Rev. 120, No. 1, 91–98 (1960).CrossRef T. Moriya, “Anisotropic superexchange interaction and weak ferromagnetism,” Phys. Rev. 120, No. 1, 91–98 (1960).CrossRef
16.
Zurück zum Zitat A. G. Kolesnikov, M. E. Stebliy, A. V. Davydenko, A. G. Kozlov, I. S. Osmushko, V. V. Korochentsev, A. V. Ognev, A. V. Gerasimenko, A. V. Sadovnikov, V. A. Gubanov, S. A. Nikitov, X. Wang, C. H. Wan, C. Fang, M. Zhao, X. F. Han, and A. Samardak, “Magnetic properties and the interfacial Dzyaloshinskii–Moriya interaction in exchange biased Pt/Co/NixOy films,” Appl. Surf. Sci. 543, 148720 (2021).CrossRef A. G. Kolesnikov, M. E. Stebliy, A. V. Davydenko, A. G. Kozlov, I. S. Osmushko, V. V. Korochentsev, A. V. Ognev, A. V. Gerasimenko, A. V. Sadovnikov, V. A. Gubanov, S. A. Nikitov, X. Wang, C. H. Wan, C. Fang, M. Zhao, X. F. Han, and A. Samardak, “Magnetic properties and the interfacial Dzyaloshinskii–Moriya interaction in exchange biased Pt/Co/NixOy films,” Appl. Surf. Sci. 543, 148720 (2021).CrossRef
17.
Zurück zum Zitat F. Hellman, A. Hoffmann, Y. Tserkovnyak, G. S. D. Beach, E. E. Fullerton, C. Leighton, A. H. MacDonald, D. C. Ralph, D. A. Arena, H. A. Dürr, P. Fischer, J. Grollier, J. Heremans, T. Jungwirth, A. V. Kimel, B. Koopmans, I. N. Krivorotov, S. J. May, A. K. Petford-Long, J. M. Rondinelli, N. Samarth, I. K. Schuller, A. N. Slavin, M. D. Stiles, O. Tchernyshyov, A. Thiaville, and B. L. Zink, “Interface-induced phenomena in magnetism,” Rev. Mod. Phys. 89, No. 2, 025006 (2017).CrossRef F. Hellman, A. Hoffmann, Y. Tserkovnyak, G. S. D. Beach, E. E. Fullerton, C. Leighton, A. H. MacDonald, D. C. Ralph, D. A. Arena, H. A. Dürr, P. Fischer, J. Grollier, J. Heremans, T. Jungwirth, A. V. Kimel, B. Koopmans, I. N. Krivorotov, S. J. May, A. K. Petford-Long, J. M. Rondinelli, N. Samarth, I. K. Schuller, A. N. Slavin, M. D. Stiles, O. Tchernyshyov, A. Thiaville, and B. L. Zink, “Interface-induced phenomena in magnetism,” Rev. Mod. Phys. 89, No. 2, 025006 (2017).CrossRef
18.
Zurück zum Zitat M. Heide, G. Bihlmayer, and S. Blügel, “Dzya-loshinskii–Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110),” Phys. Rev. B 78, No. 14, 140403 (2008).CrossRef M. Heide, G. Bihlmayer, and S. Blügel, “Dzya-loshinskii–Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110),” Phys. Rev. B 78, No. 14, 140403 (2008).CrossRef
19.
Zurück zum Zitat G. W. Kim, A. S. Samardak, Y. J. Kim, I. H. Cha, A. V. Ognev, A. V. Sadovnikov, S. A. Nikitov, and Y. K. Kim, “Role of the heavy metal’s crystal phase in oscillations of perpendicular magnetic anisotropy and the interfacial dzyaloshinskii-moriya interaction in W/CoFeB/MgO films,” Phys. Rev. Appl. 9, No. 6, 064005 (2018).CrossRef G. W. Kim, A. S. Samardak, Y. J. Kim, I. H. Cha, A. V. Ognev, A. V. Sadovnikov, S. A. Nikitov, and Y. K. Kim, “Role of the heavy metal’s crystal phase in oscillations of perpendicular magnetic anisotropy and the interfacial dzyaloshinskii-moriya interaction in W/CoFeB/MgO films,” Phys. Rev. Appl. 9, No. 6, 064005 (2018).CrossRef
20.
Zurück zum Zitat A. Samardak, A. Kolesnikov, M. Stebliy, L. Chebotkevich, A. Sadovnikov, S. Nikitov, A. Talapatra, J. Mohanty, A. Ognev, Enhanced interfacial Dzya-loshinskii–Moriya interaction and isolated skyrmions in the inversion-symmetry-broken Ru/Co/W/Ru films, Appl. Phys. Lett. 2018 112, No. 19, 192406.CrossRef A. Samardak, A. Kolesnikov, M. Stebliy, L. Chebotkevich, A. Sadovnikov, S. Nikitov, A. Talapatra, J. Mohanty, A. Ognev, Enhanced interfacial Dzya-loshinskii–Moriya interaction and isolated skyrmions in the inversion-symmetry-broken Ru/Co/W/Ru films, Appl. Phys. Lett. 2018 112, No. 19, 192406.CrossRef
21.
Zurück zum Zitat S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323, No. 5916, 915 (2009).CrossRef S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323, No. 5916, 915 (2009).CrossRef
22.
Zurück zum Zitat C. Back, V. Cros, H. Ebert, K. Everschor-Sitte, A. Fert, M. Garst, T. Ma, S. Mankovsky, T. L. Monchesky, M. Mostovoy, N. Nagaosa, S. S. P. Parkin, C. Pfleiderer, N. Reyren, A. Rosch, Y. Taguchi, Y. Tokura, K. von Bergmann, and J. Zang, “The 2020 skyrmionics roadmap,” J. Phys. D: Appl. Phys. 53, No. 36, 363001 (2020).CrossRef C. Back, V. Cros, H. Ebert, K. Everschor-Sitte, A. Fert, M. Garst, T. Ma, S. Mankovsky, T. L. Monchesky, M. Mostovoy, N. Nagaosa, S. S. P. Parkin, C. Pfleiderer, N. Reyren, A. Rosch, Y. Taguchi, Y. Tokura, K. von Bergmann, and J. Zang, “The 2020 skyrmionics roadmap,” J. Phys. D: Appl. Phys. 53, No. 36, 363001 (2020).CrossRef
23.
Zurück zum Zitat B. Göbel, I. Mertig, and O. A. Tretiakov, “Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles,” Phys. Rep. 895, 1–28 (2021).CrossRef B. Göbel, I. Mertig, and O. A. Tretiakov, “Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles,” Phys. Rep. 895, 1–28 (2021).CrossRef
24.
Zurück zum Zitat S. Luo and L. You, “Skyrmion devices for memory and logic applications,” APL Mater. 9, No. 5, 050901 (2021).CrossRef S. Luo and L. You, “Skyrmion devices for memory and logic applications,” APL Mater. 9, No. 5, 050901 (2021).CrossRef
25.
Zurück zum Zitat M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Phys. Rev. Lett. 61, No. 21, 2472–2475 (1988).CrossRef M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Phys. Rev. Lett. 61, No. 21, 2472–2475 (1988).CrossRef
26.
Zurück zum Zitat G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange,” Phys. Rev. B 39, No. 7, 4828–4830 (1989).CrossRef G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange,” Phys. Rev. B 39, No. 7, 4828–4830 (1989).CrossRef
27.
Zurück zum Zitat T. Miyazaki and N. Tezuka, “Giant magnetic tunneling effect in Fe/Al2O3/Fe junction,” J. Magn. Magn. Mater 139, No. 3, 231–234 (1995).CrossRef T. Miyazaki and N. Tezuka, “Giant magnetic tunneling effect in Fe/Al2O3/Fe junction,” J. Magn. Magn. Mater 139, No. 3, 231–234 (1995).CrossRef
28.
Zurück zum Zitat J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, “Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions,” Phys. Rev. Lett. 74, No. 16, 3273–3276 (1995).CrossRef J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, “Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions,” Phys. Rev. Lett. 74, No. 16, 3273–3276 (1995).CrossRef
29.
Zurück zum Zitat M. I. Dyakonov and V. I. Perel, “Current-induced spin orientation of electrons in semiconductors,” Phys. Lett. A 35, No. 6, 459–460 (1971).CrossRef M. I. Dyakonov and V. I. Perel, “Current-induced spin orientation of electrons in semiconductors,” Phys. Lett. A 35, No. 6, 459–460 (1971).CrossRef
30.
Zurück zum Zitat J. E. Hirsch, “Spin Hall effect,” Phys. Rev. Lett. 83, No. 9, 1834–1837 (1999).CrossRef J. E. Hirsch, “Spin Hall effect,” Phys. Rev. Lett. 83, No. 9, 1834–1837 (1999).CrossRef
31.
Zurück zum Zitat J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, “Spin Hall effects,” Rev. Mod. Phys. 87, No. 4, 1213–1260 (2015).CrossRef J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, “Spin Hall effects,” Rev. Mod. Phys. 87, No. 4, 1213–1260 (2015).CrossRef
32.
Zurück zum Zitat A. R. Fert, “Magnetic and transport properties of metallic multilayers,” Mater. Sci. Forum 59–60, 439–480 (1991).CrossRef A. R. Fert, “Magnetic and transport properties of metallic multilayers,” Mater. Sci. Forum 5960, 439–480 (1991).CrossRef
33.
Zurück zum Zitat J. C. Slonczewski, “Current-driven excitation of magnetic multilayers,” J. Magn. Magn. Mater. 159, No. 1, L1–L7 (1996).CrossRef J. C. Slonczewski, “Current-driven excitation of magnetic multilayers,” J. Magn. Magn. Mater. 159, No. 1, L1–L7 (1996).CrossRef
34.
Zurück zum Zitat A. Brataas, A. D. Kent, and H. Ohno, “Current-induced torques in magnetic materials,” Nat. Mater. 11, No. 5, 372–381 (2012).CrossRef A. Brataas, A. D. Kent, and H. Ohno, “Current-induced torques in magnetic materials,” Nat. Mater. 11, No. 5, 372–381 (2012).CrossRef
35.
Zurück zum Zitat S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic Domain-Wall racetrack memory,” Science 320, No. 5873, 190 (2008).CrossRef S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic Domain-Wall racetrack memory,” Science 320, No. 5873, 190 (2008).CrossRef
36.
Zurück zum Zitat I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and applications,” Rev. Mod. Phys. 76, No. 2, 323–410 (2004).CrossRef I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and applications,” Rev. Mod. Phys. 76, No. 2, 323–410 (2004).CrossRef
37.
Zurück zum Zitat R. Schäfer, P. M. Oppeneer, A. V. Ognev, A. S. Samardak, and I. V. Soldatov, “Analyzer-free, intensity-based, wide-field magneto-optical microscopy,” Appl. Phys. Rev. 8, No. 3, 031402 (2021).CrossRef R. Schäfer, P. M. Oppeneer, A. V. Ognev, A. S. Samardak, and I. V. Soldatov, “Analyzer-free, intensity-based, wide-field magneto-optical microscopy,” Appl. Phys. Rev. 8, No. 3, 031402 (2021).CrossRef
38.
Zurück zum Zitat A. A. Stashkevich, “Spin-orbitronics a novel trend in spin oriented electronics,” J. Russ. Univ. Radioelectron. 22, No. 6, 45–54 (2019).CrossRef A. A. Stashkevich, “Spin-orbitronics a novel trend in spin oriented electronics,” J. Russ. Univ. Radioelectron. 22, No. 6, 45–54 (2019).CrossRef
39.
Zurück zum Zitat Y. Cao, G. Xing, H. Lin, N. Zhang, H. Zheng, and K. Wang, “Prospect of spin-orbitronic devices and their applications,” Science 23, No. 10, 101614 (2020). Y. Cao, G. Xing, H. Lin, N. Zhang, H. Zheng, and K. Wang, “Prospect of spin-orbitronic devices and their applications,” Science 23, No. 10, 101614 (2020).
40.
Zurück zum Zitat Y. Dong, T. Xu, H. -A. Zhou, L. Cai, H. Wu, J. Tang, and W. Jiang, “Electrically reconfigurable 3D spin-orbitronics,” Adv. Funct. Mater. 31, No. 9, 2007485 (2021).CrossRef Y. Dong, T. Xu, H. -A. Zhou, L. Cai, H. Wu, J. Tang, and W. Jiang, “Electrically reconfigurable 3D spin-orbitronics,” Adv. Funct. Mater. 31, No. 9, 2007485 (2021).CrossRef
41.
Zurück zum Zitat K. -W. Kim, H. -W. Lee, K. -J. Lee, and M. D. Stiles, “Chirality from interfacial spin-orbit coupling effects in magnetic bilayers,” Phys. Rev. Lett. 111, No. 21, 216601 (2013).CrossRef K. -W. Kim, H. -W. Lee, K. -J. Lee, and M. D. Stiles, “Chirality from interfacial spin-orbit coupling effects in magnetic bilayers,” Phys. Rev. Lett. 111, No. 21, 216601 (2013).CrossRef
42.
Zurück zum Zitat T. Kim, I. H. Cha, Y. J. Kim, G. W. Kim, A. Stashke-vich, Y. Roussigne, M. Belmeguenai, S. M. Cherif, A. S. Samardak, and Y. K. Kim, “Ruderman–Kittel–Kasuya–Yosida-type interfacial Dzyaloshinskii–Moriya interaction in heavy metal/ferromagnet heterostructures,” Nat. Commun. 12, No. 1, 3280 (2021).CrossRef T. Kim, I. H. Cha, Y. J. Kim, G. W. Kim, A. Stashke-vich, Y. Roussigne, M. Belmeguenai, S. M. Cherif, A. S. Samardak, and Y. K. Kim, “Ruderman–Kittel–Kasuya–Yosida-type interfacial Dzyaloshinskii–Moriya interaction in heavy metal/ferromagnet heterostructures,” Nat. Commun. 12, No. 1, 3280 (2021).CrossRef
43.
Zurück zum Zitat P. Gambardella and I. M. Miron, “Current-induced spin–orbit torques,” Philos. Trans. R. Soc., A 369, No. 1948, 3175–3197 (2011). P. Gambardella and I. M. Miron, “Current-induced spin–orbit torques,” Philos. Trans. R. Soc., A 369, No. 1948, 3175–3197 (2011).
44.
Zurück zum Zitat M. E. Stebliy, A. G. Kolesnikov, A. V. Ognev, A. V. Davydenko, E. V. Stebliy, X. Wang, X. Han, and A. S. Samardak, “Advanced method for the reliable estimation of spin-orbit-torque efficiency in low-coercivity ferromagnetic multilayers,” Phys. Rev. Appl. 11, No. 5, 054047 (2019).CrossRef M. E. Stebliy, A. G. Kolesnikov, A. V. Ognev, A. V. Davydenko, E. V. Stebliy, X. Wang, X. Han, and A. S. Samardak, “Advanced method for the reliable estimation of spin-orbit-torque efficiency in low-coercivity ferromagnetic multilayers,” Phys. Rev. Appl. 11, No. 5, 054047 (2019).CrossRef
45.
Zurück zum Zitat C. H. Wan, M. E. Stebliy, X. Wang, G. Q. Yu, X. F. Han, A. G. Kolesnikov, M. A. Bazrov, M. E. Letushev, A. V. Ognev, and A. S. Samardak, “Gradual magnetization switching via domain nucleation driven by spin–orbit torque,” Appl. Phys. Lett. 118, No. 3, 032407 (2021).CrossRef C. H. Wan, M. E. Stebliy, X. Wang, G. Q. Yu, X. F. Han, A. G. Kolesnikov, M. A. Bazrov, M. E. Letushev, A. V. Ognev, and A. S. Samardak, “Gradual magnetization switching via domain nucleation driven by spin–orbit torque,” Appl. Phys. Lett. 118, No. 3, 032407 (2021).CrossRef
46.
Zurück zum Zitat S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. N. Piramanayagam, “Spintronics based random access memory: a review,” Mater. Today 20, No. 9, 530–548 (2017).CrossRef S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. N. Piramanayagam, “Spintronics based random access memory: a review,” Mater. Today 20, No. 9, 530–548 (2017).CrossRef
47.
Zurück zum Zitat Q. Shao, P. Li, L. Liu, H. Yang, S. Fukami, A. Razavi, H. Wu, K. Wang, F. Freimuth, Y. Mokrousov, M. D. Stiles, S. Emori, A. Hoffmann, J. Akerman, K. Roy, J. P. Wang, S. H. Yang, K. Garello, and W. Zhang, “Roadmap of spin–orbit torques,” IEEE Trans. Magn. 57, No. 7, 1–39 (2021).CrossRef Q. Shao, P. Li, L. Liu, H. Yang, S. Fukami, A. Razavi, H. Wu, K. Wang, F. Freimuth, Y. Mokrousov, M. D. Stiles, S. Emori, A. Hoffmann, J. Akerman, K. Roy, J. P. Wang, S. H. Yang, K. Garello, and W. Zhang, “Roadmap of spin–orbit torques,” IEEE Trans. Magn. 57, No. 7, 1–39 (2021).CrossRef
48.
Zurück zum Zitat T. H. R. Skyrme, “A unified field theory of mesons and baryons,” Nucl. Phys. 31, 556–569 (1962).CrossRef T. H. R. Skyrme, “A unified field theory of mesons and baryons,” Nucl. Phys. 31, 556–569 (1962).CrossRef
49.
Zurück zum Zitat P. Barla, V. K. Joshi, and S. Bhat, “Spintronic devices: a promising alternative to CMOS devices,” J. Comp. Electron. 20, No. 2, 805–837 (2021).CrossRef P. Barla, V. K. Joshi, and S. Bhat, “Spintronic devices: a promising alternative to CMOS devices,” J. Comp. Electron. 20, No. 2, 805–837 (2021).CrossRef
50.
Zurück zum Zitat G. Finocchio, M. Di Ventra, K. Y. Camsari, K. Everschor-Sitte, P. Amiri Khalili, and Z. Zeng, “The promise of spintronics for unconventional computing,” J. Magn. Magn. Mater. 521, 167506 (2021).CrossRef G. Finocchio, M. Di Ventra, K. Y. Camsari, K. Everschor-Sitte, P. Amiri Khalili, and Z. Zeng, “The promise of spintronics for unconventional computing,” J. Magn. Magn. Mater. 521, 167506 (2021).CrossRef
51.
Zurück zum Zitat J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte, S. Fukami, and M. D. Stiles, “Neuromorphic spintronics,” Nat. Electron. 3, No. 7, 360–370 (2020).CrossRef J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte, S. Fukami, and M. D. Stiles, “Neuromorphic spintronics,” Nat. Electron. 3, No. 7, 360–370 (2020).CrossRef
52.
Zurück zum Zitat S. Li, W. Kang, X. Zhang, T. Nie, Y. Zhou, K. L. Wang, and W. Zhao, “Magnetic skyrmions for unconventional computing,” Mater. Horizons 8, No. 3, 854–868 (2021).CrossRef S. Li, W. Kang, X. Zhang, T. Nie, Y. Zhou, K. L. Wang, and W. Zhao, “Magnetic skyrmions for unconventional computing,” Mater. Horizons 8, No. 3, 854–868 (2021).CrossRef
53.
Zurück zum Zitat B. Sun, T. Guo, G. Zhou, S. Ranjan, Y. Jiao, L. Wei, Y. N. Zhou, and Y. A. Wu, “Synaptic devices based neuromorphic computing applications in artificial intelligence,” Mater. Today Phys. 18, 100393 (2021).CrossRef B. Sun, T. Guo, G. Zhou, S. Ranjan, Y. Jiao, L. Wei, Y. N. Zhou, and Y. A. Wu, “Synaptic devices based neuromorphic computing applications in artificial intelligence,” Mater. Today Phys. 18, 100393 (2021).CrossRef
54.
Zurück zum Zitat D. Marković, A. Mizrahi, D. Querlioz, and J. Grollier, “Physics for neuromorphic computing,” Nat. Rev. Phys. 2, No. 9, 499–510 (2020).CrossRef D. Marković, A. Mizrahi, D. Querlioz, and J. Grollier, “Physics for neuromorphic computing,” Nat. Rev. Phys. 2, No. 9, 499–510 (2020).CrossRef
55.
Zurück zum Zitat G. Yin, Y. Li, L. Kong, R. K. Lake, C. L. Chien, and J. Zang, “Topological charge analysis of ultrafast single skyrmion creation,” Phys. Rev. B 93, No. 17, 174403 (2016).CrossRef G. Yin, Y. Li, L. Kong, R. K. Lake, C. L. Chien, and J. Zang, “Topological charge analysis of ultrafast single skyrmion creation,” Phys. Rev. B 93, No. 17, 174403 (2016).CrossRef
56.
Zurück zum Zitat S. Wintz, C. Bunce, A. Neudert, M. Korner, T. Strache, M. Buhl, A. Erbe, S. Gemming, J. Raabe, C. Quitmann, and J. Fassbender, “Topology and origin of effective spin meron pairs in ferromagnetic multilayer elements,” Phys. Rev. Lett. 110, No. 17, 177201 (2013).CrossRef S. Wintz, C. Bunce, A. Neudert, M. Korner, T. Strache, M. Buhl, A. Erbe, S. Gemming, J. Raabe, C. Quitmann, and J. Fassbender, “Topology and origin of effective spin meron pairs in ferromagnetic multilayer elements,” Phys. Rev. Lett. 110, No. 17, 177201 (2013).CrossRef
57.
Zurück zum Zitat H.-B. Braun, “Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons,” Adv. Phys. 61, No. 1, 1–116 (2012).CrossRef H.-B. Braun, “Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons,” Adv. Phys. 61, No. 1, 1–116 (2012).CrossRef
58.
Zurück zum Zitat A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Böni, “Topological Hall effect in the a phase of MnSi,” Phys. Rev. Lett. 102, No. 18, 186602 (2009).CrossRef A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Böni, “Topological Hall effect in the a phase of MnSi,” Phys. Rev. Lett. 102, No. 18, 186602 (2009).CrossRef
59.
Zurück zum Zitat X. Z. Yu, N. Kanazawa, W. Z. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui, Y. Onose, and Y. Tokura, “Skyrmion flow near room temperature in an ultralow current density,” Nat. Commun. 3, 988 (2012).CrossRef X. Z. Yu, N. Kanazawa, W. Z. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui, Y. Onose, and Y. Tokura, “Skyrmion flow near room temperature in an ultralow current density,” Nat. Commun. 3, 988 (2012).CrossRef
60.
Zurück zum Zitat W. Kang, Y. Huang, C. Zheng, W. Lv, N. Lei, Y. Zhang, X. Zhang, Y. Zhou, and W. Zhao, “voltage controlled magnetic skyrmion motion for racetrack memory,” Scientific Rep. 6, 23164 (2016).CrossRef W. Kang, Y. Huang, C. Zheng, W. Lv, N. Lei, Y. Zhang, X. Zhang, Y. Zhou, and W. Zhao, “voltage controlled magnetic skyrmion motion for racetrack memory,” Scientific Rep. 6, 23164 (2016).CrossRef
61.
Zurück zum Zitat J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Current-induced skyrmion dynamics in constricted geometries,” Nat. Nanotechnol. 8, 742 (2013).CrossRef J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Current-induced skyrmion dynamics in constricted geometries,” Nat. Nanotechnol. 8, 742 (2013).CrossRef
62.
Zurück zum Zitat W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch, Y. Fradin Frank, E. Pearson John, Y. Tserkovnyak, L. Wang Kang, O. Heinonen, G. E. te Velthuis Suzanne, and A. Hoffmann, “Blowing magnetic skyrmion bubbles,” Science 349, No. 6245, 283–286 (2015).CrossRef W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch, Y. Fradin Frank, E. Pearson John, Y. Tserkovnyak, L. Wang Kang, O. Heinonen, G. E. te Velthuis Suzanne, and A. Hoffmann, “Blowing magnetic skyrmion bubbles,” Science 349, No. 6245, 283–286 (2015).CrossRef
63.
Zurück zum Zitat F. Büttner, C. Moutafis, M. Schneider, B. Kruger, C. M. Günther, J. Geilhufe, C. V. K. Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C. A. F. Vaz, J. H. Franken, H. J. M. Swagten, M. Kläui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11, 225 (2015).CrossRef F. Büttner, C. Moutafis, M. Schneider, B. Kruger, C. M. Günther, J. Geilhufe, C. V. K. Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C. A. F. Vaz, J. H. Franken, H. J. M. Swagten, M. Kläui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11, 225 (2015).CrossRef
64.
Zurück zum Zitat S. Woo, K. Litzius, B. Kruger, M. Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R. M. Reeve, M. Weigand, P. Agrawal, I. Lemesh, M. A. Mawass, P. Fischer, M. Klaui, and G. R. S. D. Beach, “Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets,” Nat. Mater. 15, No. 5, 501-506 (2016).CrossRef S. Woo, K. Litzius, B. Kruger, M. Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R. M. Reeve, M. Weigand, P. Agrawal, I. Lemesh, M. A. Mawass, P. Fischer, M. Klaui, and G. R. S. D. Beach, “Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets,” Nat. Mater. 15, No. 5, 501-506 (2016).CrossRef
65.
Zurück zum Zitat P. Johnson, A. K. Gangopadhyay, R. Kalyanaraman, and Z. Nussinov, “Demagnetization-borne microscale skyrmions,” Phys. Rev. B 86, No. 6, 064427 (2012).CrossRef P. Johnson, A. K. Gangopadhyay, R. Kalyanaraman, and Z. Nussinov, “Demagnetization-borne microscale skyrmions,” Phys. Rev. B 86, No. 6, 064427 (2012).CrossRef
66.
Zurück zum Zitat M. E. Stebliy, A. G. Kolesnikov, A. V. Davydenko, A. V. Ognev, A. S. Samardak, and L. A. Chebotkevich, “Experimental evidence of skyrmion-like configurations in bilayer nanodisks with perpendicular magnetic anisotropy,” J. Appl. Phys. 117, No. 17, 17B529 (2015). M. E. Stebliy, A. G. Kolesnikov, A. V. Davydenko, A. V. Ognev, A. S. Samardak, and L. A. Chebotkevich, “Experimental evidence of skyrmion-like configurations in bilayer nanodisks with perpendicular magnetic anisotropy,” J. Appl. Phys. 117, No. 17, 17B529 (2015).
67.
Zurück zum Zitat A. I. Marchenko and V. N. Krivoruchko, “Skyrmion-like bubbles and stripes in a thin ferromagnetic film with lattice of antidots,” J. Magn. Magn. Mater. 377, 153–158 (2015).CrossRef A. I. Marchenko and V. N. Krivoruchko, “Skyrmion-like bubbles and stripes in a thin ferromagnetic film with lattice of antidots,” J. Magn. Magn. Mater. 377, 153–158 (2015).CrossRef
68.
Zurück zum Zitat M. V. Sapozhnikov, “Skyrmion lattice in a magnetic film with spatially modulated material parameters,” J. Magn. Magn. Mater. 396, 338–344 (2015).CrossRef M. V. Sapozhnikov, “Skyrmion lattice in a magnetic film with spatially modulated material parameters,” J. Magn. Magn. Mater. 396, 338–344 (2015).CrossRef
69.
Zurück zum Zitat M. V. Sapozhnikov, S. N. Vdovichev, O. L. Ermolaeva, N. S. Gusev, A. A. Fraerman, S. A. Gusev, and Y. V. Petrov, “Artificial dense lattice of magnetic bubbles,” Appl. Phys. Lett. 109, No. 4, 042406 (2016).CrossRef M. V. Sapozhnikov, S. N. Vdovichev, O. L. Ermolaeva, N. S. Gusev, A. A. Fraerman, S. A. Gusev, and Y. V. Petrov, “Artificial dense lattice of magnetic bubbles,” Appl. Phys. Lett. 109, No. 4, 042406 (2016).CrossRef
70.
Zurück zum Zitat N. Nagaosa and Y. Tokura, “Topological properties and dynamics of magnetic skyrmions,” Nat. Nanotechnol. 8, No. 12, 899–911 (2013).CrossRef N. Nagaosa and Y. Tokura, “Topological properties and dynamics of magnetic skyrmions,” Nat. Nanotechnol. 8, No. 12, 899–911 (2013).CrossRef
71.
Zurück zum Zitat X. S. Wang, H. Y. Yuan, and X. R. Wang, “A theory on skyrmion size,” Commun. Phys. 1, No. 1, 31 (2018).CrossRef X. S. Wang, H. Y. Yuan, and X. R. Wang, “A theory on skyrmion size,” Commun. Phys. 1, No. 1, 31 (2018).CrossRef
72.
Zurück zum Zitat Y. Ishida and K. Kondo, “Theoretical comparison between skyrmion and skyrmionium motions for spintronics applications,” Jpn. J. App. Phys. 59, No. SG, SGGI04 (2020). Y. Ishida and K. Kondo, “Theoretical comparison between skyrmion and skyrmionium motions for spintronics applications,” Jpn. J. App. Phys. 59, No. SG, SGGI04 (2020).
73.
Zurück zum Zitat A. G. Kolesnikov, M. E. Stebliy, A. S. Samardak, and A. V. Ognev, “Skyrmionium—high velocity without the skyrmion Hall effect,” Sci. Rep. 8, No. 1, 16966 (2018).CrossRef A. G. Kolesnikov, M. E. Stebliy, A. S. Samardak, and A. V. Ognev, “Skyrmionium—high velocity without the skyrmion Hall effect,” Sci. Rep. 8, No. 1, 16966 (2018).CrossRef
74.
Zurück zum Zitat A. V. Davydenko, A. G. Kozlov, A. V. Ognev, M. E. Stebliy, A. S. Samardak, K. S. Ermakov, A. G. Kolesnikov, and L. A. Chebotkevich, “Origin of perpendicular magnetic anisotropy in epitaxial Pd/Co/Pd(111) trilayers,” Phys. Rev. B 95, No. 6, 064430 (2017).CrossRef A. V. Davydenko, A. G. Kozlov, A. V. Ognev, M. E. Stebliy, A. S. Samardak, K. S. Ermakov, A. G. Kolesnikov, and L. A. Chebotkevich, “Origin of perpendicular magnetic anisotropy in epitaxial Pd/Co/Pd(111) trilayers,” Phys. Rev. B 95, No. 6, 064430 (2017).CrossRef
75.
Zurück zum Zitat Topology in Magnetism. Springer Series in Solid-State Sciences, Ed. by V. C. Jiadong Zang and A. Hoffmann (Springer, Berlin, 2018), Vol. 192. Topology in Magnetism. Springer Series in Solid-State Sciences, Ed. by V. C. Jiadong Zang and A. Hoffmann (Springer, Berlin, 2018), Vol. 192.
76.
Zurück zum Zitat A. G. Kolesnikov, A. S. Samardak, M. E. Stebliy, A. V. Ognev, L. A. Chebotkevich, A. V. Sadovnikov, S. A. Nikitov, Y. J. Kim, I. H. Cha, and Y. K. Kim, “Spontaneous nucleation and topological stabilization of skyrmions in magnetic nanodisks with the interfacial Dzyaloshinskii–Moriya interaction,” J. Magn. Magn. Mater. 429, 221–226 (2017).CrossRef A. G. Kolesnikov, A. S. Samardak, M. E. Stebliy, A. V. Ognev, L. A. Chebotkevich, A. V. Sadovnikov, S. A. Nikitov, Y. J. Kim, I. H. Cha, and Y. K. Kim, “Spontaneous nucleation and topological stabilization of skyrmions in magnetic nanodisks with the interfacial Dzyaloshinskii–Moriya interaction,” J. Magn. Magn. Mater. 429, 221–226 (2017).CrossRef
77.
Zurück zum Zitat T. Srivastava, W. Lim, I. Joumard, S. Auffret, C. Baraduc, and H. Béa, “Mapping different skyrmion phases in double wedges of Ta/FeCoB/TaOx trilayers,” Phys. Rev. B 100, No. 22, 220401 (2019).CrossRef T. Srivastava, W. Lim, I. Joumard, S. Auffret, C. Baraduc, and H. Béa, “Mapping different skyrmion phases in double wedges of Ta/FeCoB/TaOx trilayers,” Phys. Rev. B 100, No. 22, 220401 (2019).CrossRef
78.
Zurück zum Zitat K. -W. Moon, S. Yang, T. -S. Ju, C. Kim, B. S. Chun, S. Park, and C. Hwang, “Universal method for magnetic skyrmion bubble generation by controlling the stripe domain instability,” NPG Asia Mater. 13, No. 1, 20 (2021).CrossRef K. -W. Moon, S. Yang, T. -S. Ju, C. Kim, B. S. Chun, S. Park, and C. Hwang, “Universal method for magnetic skyrmion bubble generation by controlling the stripe domain instability,” NPG Asia Mater. 13, No. 1, 20 (2021).CrossRef
79.
Zurück zum Zitat M. Schott, L. Ranno, H. Bea, C. Baraduc, S. Auffret, and A. Bernand-Mantel, “Electric field control of interfacial Dzyaloshinskii-Moriya interaction in Pt/Co/AlOx thin films,” J. Magn. Magn. Mater. 520, 167122 (2021).CrossRef M. Schott, L. Ranno, H. Bea, C. Baraduc, S. Auffret, and A. Bernand-Mantel, “Electric field control of interfacial Dzyaloshinskii-Moriya interaction in Pt/Co/AlOx thin films,” J. Magn. Magn. Mater. 520, 167122 (2021).CrossRef
80.
Zurück zum Zitat A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv. 4, No. 10, 107133 (2014).CrossRef A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv. 4, No. 10, 107133 (2014).CrossRef
81.
Zurück zum Zitat A. Bernand-Mantel, L. Camosi, A. Wartelle, N. Rougemaille, M. L. Darques, and L. Ranno, “The skyrmion-bubble transition in a ferromagnetic thin film,” SciPost Phys., No. 5, 027 (2018). A. Bernand-Mantel, L. Camosi, A. Wartelle, N. Rougemaille, M. L. Darques, and L. Ranno, “The skyrmion-bubble transition in a ferromagnetic thin film,” SciPost Phys., No. 5, 027 (2018).
82.
Zurück zum Zitat K. G. Rana, A. Finco, F. Fabre, S. Chouaieb, A. Haykal, L. D. Buda-Prejbeanu, O. Fruchart, S. Le Denmat, P. David, M. Belmeguenai, T. Denneulin, R. E. Dunin-Borkowski, G. Gaudin, V. Jacques, and O. Boulle, “Room-temperature skyrmions at zero field in exchange-biased ultrathin films,” Phys. Rev. Appl. 13, No. 4, 044079 (2020).CrossRef K. G. Rana, A. Finco, F. Fabre, S. Chouaieb, A. Haykal, L. D. Buda-Prejbeanu, O. Fruchart, S. Le Denmat, P. David, M. Belmeguenai, T. Denneulin, R. E. Dunin-Borkowski, G. Gaudin, V. Jacques, and O. Boulle, “Room-temperature skyrmions at zero field in exchange-biased ultrathin films,” Phys. Rev. Appl. 13, No. 4, 044079 (2020).CrossRef
83.
Zurück zum Zitat J. Wild, T. N. G. Meier, S. Pollath, M. Kronseder, A. Bauer, A. Chacon, M. Halder, M. Schowalter, A. Rosenauer, J. Zweck, J. Muller, A. Rosch, C. Pfleiderer, and C. H. Back, “Entropy-limited topological protection of skyrmions,” Sci. Adv. 3, No. 9, e1701704 (2017).CrossRef J. Wild, T. N. G. Meier, S. Pollath, M. Kronseder, A. Bauer, A. Chacon, M. Halder, M. Schowalter, A. Rosenauer, J. Zweck, J. Muller, A. Rosch, C. Pfleiderer, and C. H. Back, “Entropy-limited topological protection of skyrmions,” Sci. Adv. 3, No. 9, e1701704 (2017).CrossRef
84.
Zurück zum Zitat M. Hervé, B. Dupé, R. Lopes, M. Böttcher, M. D. Martins, T. Balashov, L. Gerhard, J. Sinova, and W. Wulfhekel, “Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy,” Nat. Commun. 9, No. 1, 1015 (2018).CrossRef M. Hervé, B. Dupé, R. Lopes, M. Böttcher, M. D. Martins, T. Balashov, L. Gerhard, J. Sinova, and W. Wulfhekel, “Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy,” Nat. Commun. 9, No. 1, 1015 (2018).CrossRef
85.
Zurück zum Zitat N. S. Kiselev, A. N. Bogdanov, R. Schafer, and U. K. Rossler, “Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies?,” J. Phys. D: Appl. Phys. 44, 392001 (2011). N. S. Kiselev, A. N. Bogdanov, R. Schafer, and U. K. Rossler, “Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies?,” J. Phys. D: Appl. Phys. 44, 392001 (2011).
86.
Zurück zum Zitat S. Rohart and A. Thiaville, “Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii–Moriya interaction,” Phys. Rev. B 88, 184422 (2013). S. Rohart and A. Thiaville, “Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii–Moriya interaction,” Phys. Rev. B 88, 184422 (2013).
87.
Zurück zum Zitat A. K. Behera, S. S. Mishra, S. Mallick, B. B. Singh, and S. Bedanta, “Size and shape of skyrmions for variable Dzyaloshinskii–Moriya interaction and uniaxial anisotropy,” J. Phys. D: Appl. Phys. 51, No. 28, 285001 (2018).CrossRef A. K. Behera, S. S. Mishra, S. Mallick, B. B. Singh, and S. Bedanta, “Size and shape of skyrmions for variable Dzyaloshinskii–Moriya interaction and uniaxial anisotropy,” J. Phys. D: Appl. Phys. 51, No. 28, 285001 (2018).CrossRef
88.
Zurück zum Zitat A. Thiaville, S. Rohart, E. Jué, V. Cros, and A. Fert, “Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films,” Europhys. Lett. 100, No. 5, 57002 (2012).CrossRef A. Thiaville, S. Rohart, E. Jué, V. Cros, and A. Fert, “Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films,” Europhys. Lett. 100, No. 5, 57002 (2012).CrossRef
89.
Zurück zum Zitat F. Tejo, A. Riveros, J. Escrig, K. Y. Guslienko, and O. Chubykalo-Fesenko, “Distinct magnetic field dependence of Néel skyrmion sizes in ultrathin nanodots,” Sci. Rep. 8, No. 1, 6280 (2018).CrossRef F. Tejo, A. Riveros, J. Escrig, K. Y. Guslienko, and O. Chubykalo-Fesenko, “Distinct magnetic field dependence of Néel skyrmion sizes in ultrathin nanodots,” Sci. Rep. 8, No. 1, 6280 (2018).CrossRef
90.
Zurück zum Zitat K. Zeissler, M. Mruczkiewicz, S. Finizio, J. Raabe, P. M. Shepley, A. V. Sadovnikov, S. A. Nikitov, K. Fallon, S. McFadzean, S. McVitie, T. A. Moore, G. Burnell, and C. H. Marrows, “Pinning and hysteresis in the field dependent diameter evolution of skyrmions in Pt/Co/Ir superlattice stacks,” Sci. Rep. 7, No. 1, 15125 (2017).CrossRef K. Zeissler, M. Mruczkiewicz, S. Finizio, J. Raabe, P. M. Shepley, A. V. Sadovnikov, S. A. Nikitov, K. Fallon, S. McFadzean, S. McVitie, T. A. Moore, G. Burnell, and C. H. Marrows, “Pinning and hysteresis in the field dependent diameter evolution of skyrmions in Pt/Co/Ir superlattice stacks,” Sci. Rep. 7, No. 1, 15125 (2017).CrossRef
91.
Zurück zum Zitat R. Tomasello, K. Y. Guslienko, M. Ricci, A. Giordano, J. Barker, M. Carpentieri, O. Chubykalo-Fesenko, and G. Finocchio, “Origin of temperature and field dependence of magnetic skyrmion size in ultrathin nanodots,” Phys. Rev. B 97, No. 6, 060402 (2018).CrossRef R. Tomasello, K. Y. Guslienko, M. Ricci, A. Giordano, J. Barker, M. Carpentieri, O. Chubykalo-Fesenko, and G. Finocchio, “Origin of temperature and field dependence of magnetic skyrmion size in ultrathin nanodots,” Phys. Rev. B 97, No. 6, 060402 (2018).CrossRef
92.
Zurück zum Zitat M. Goto, H. Nomura, and Y. Suzuki, “Stochastic skyrmion dynamics under alternating magnetic fields,” J. Magn. Magn. Mater. 536, 167974 (2021).CrossRef M. Goto, H. Nomura, and Y. Suzuki, “Stochastic skyrmion dynamics under alternating magnetic fields,” J. Magn. Magn. Mater. 536, 167974 (2021).CrossRef
93.
Zurück zum Zitat V. L. Zhang, C. G. Hou, K. Di, H. S. Lim, S. C. Ng, S. D. Pollard, H. Yang, and M. H. Kuok, “Eigenmodes of Néel skyrmions in ultrathin magnetic films,” AIP Adv. 7, No. 5, 055212 (2017).CrossRef V. L. Zhang, C. G. Hou, K. Di, H. S. Lim, S. C. Ng, S. D. Pollard, H. Yang, and M. H. Kuok, “Eigenmodes of Néel skyrmions in ultrathin magnetic films,” AIP Adv. 7, No. 5, 055212 (2017).CrossRef
94.
Zurück zum Zitat M. Mochizuki, “Spin-wave modes and their intense excitation effects in skyrmion crystals,” Phys. Rev. Lett. 108, No. 1, 017601 (2012).CrossRef M. Mochizuki, “Spin-wave modes and their intense excitation effects in skyrmion crystals,” Phys. Rev. Lett. 108, No. 1, 017601 (2012).CrossRef
95.
Zurück zum Zitat K.-W. Moon, D.-H. Kim, S.-G. Je, B. S. Chun, W. Kim, Z. Q. Qiu, S. -B. Choe, and C. Hwang, “Skyrmion motion driven by oscillating magnetic field,” Sci. Rep. 6, No. 1, 20360 (2016).CrossRef K.-W. Moon, D.-H. Kim, S.-G. Je, B. S. Chun, W. Kim, Z. Q. Qiu, S. -B. Choe, and C. Hwang, “Skyrmion motion driven by oscillating magnetic field,” Sci. Rep. 6, No. 1, 20360 (2016).CrossRef
96.
Zurück zum Zitat S. L. Zhang, W. W. Wang, D. M. Burn, H. Peng, H. Berger, A. Bauer, C. Pfleiderer, G. van der Laan, and T. Hesjedal, “Manipulation of skyrmion motion by magnetic field gradients,” Nat. Commun. 9, No. 1, 2115 (2018).CrossRef S. L. Zhang, W. W. Wang, D. M. Burn, H. Peng, H. Berger, A. Bauer, C. Pfleiderer, G. van der Laan, and T. Hesjedal, “Manipulation of skyrmion motion by magnetic field gradients,” Nat. Commun. 9, No. 1, 2115 (2018).CrossRef
97.
Zurück zum Zitat A. Manchon, J. Železný, I. M. Miron, T. Jungwirth, J. Sinova, A. Thiaville, K. Garello, and P. Gambardella, “Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems,” Rev. Mod. Phys. 91, No. 3, 035004 (2019).CrossRef A. Manchon, J. Železný, I. M. Miron, T. Jungwirth, J. Sinova, A. Thiaville, K. Garello, and P. Gambardella, “Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems,” Rev. Mod. Phys. 91, No. 3, 035004 (2019).CrossRef
98.
Zurück zum Zitat K. Everschor-Sitte and M. Sitte, “Real-space Berry phases: Skyrmion soccer,” J. Appl. Phys. 115, No. 17, 172602 (2014).CrossRef K. Everschor-Sitte and M. Sitte, “Real-space Berry phases: Skyrmion soccer,” J. Appl. Phys. 115, No. 17, 172602 (2014).CrossRef
99.
Zurück zum Zitat G. Chen, “Skyrmion Hall effect,” Nat. Phys. 13, No. 2, 112–113 (2017).CrossRef G. Chen, “Skyrmion Hall effect,” Nat. Phys. 13, No. 2, 112–113 (2017).CrossRef
100.
Zurück zum Zitat K. Litzius, I. Lemesh, B. Krüger, P. Bassirian, L. Caretta, K. Richter, F. Büttner, K. Sato, O. A. Tretiakov, J. Förster, R. M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schütz, G. S. D. Beach, and M. Kläui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13, No. 2, 170–175 (2017).CrossRef K. Litzius, I. Lemesh, B. Krüger, P. Bassirian, L. Caretta, K. Richter, F. Büttner, K. Sato, O. A. Tretiakov, J. Förster, R. M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schütz, G. S. D. Beach, and M. Kläui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13, No. 2, 170–175 (2017).CrossRef
101.
Zurück zum Zitat A. A. Thiele, “Steady-state motion of magnetic domains,” Phys. Rev. Lett. 30, No. 6, 230–233 (1973).CrossRef A. A. Thiele, “Steady-state motion of magnetic domains,” Phys. Rev. Lett. 30, No. 6, 230–233 (1973).CrossRef
102.
Zurück zum Zitat W. Jiang, G. Chen, K. Liu, J. Zang, S. G. E. te Velthuis, and A. Hoffmann, “Skyrmions in magnetic multilayers,” Phys. Rep. 704, 1–49 (2017).CrossRef W. Jiang, G. Chen, K. Liu, J. Zang, S. G. E. te Velthuis, and A. Hoffmann, “Skyrmions in magnetic multilayers,” Phys. Rep. 704, 1–49 (2017).CrossRef
103.
Zurück zum Zitat T. Dohi, S. DuttaGupta, S. Fukami, and H. Ohno, “Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles,” Nat. Commun. 10, No. 1, 5153 (2019).CrossRef T. Dohi, S. DuttaGupta, S. Fukami, and H. Ohno, “Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles,” Nat. Commun. 10, No. 1, 5153 (2019).CrossRef
104.
Zurück zum Zitat S. Woo, K. M. Song, X. Zhang, Y. Zhou, M. Ezawa, X. Liu, S. Finizio, J. Raabe, N. J. Lee, S.-I. Kim, S.‑Y. Park, Y. Kim, J.-Y. Kim, D. Lee, O. Lee, J. W. Choi, B.-C. Min, H. C. Koo, and J. Chang, “Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films,” Nat. Commun. 9, No. 1, 959 (2018).CrossRef S. Woo, K. M. Song, X. Zhang, Y. Zhou, M. Ezawa, X. Liu, S. Finizio, J. Raabe, N. J. Lee, S.-I. Kim, S.‑Y. Park, Y. Kim, J.-Y. Kim, D. Lee, O. Lee, J. W. Choi, B.-C. Min, H. C. Koo, and J. Chang, “Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films,” Nat. Commun. 9, No. 1, 959 (2018).CrossRef
105.
Zurück zum Zitat Y. Zhang, S. Luo, B. Yan, J. Ou-Yang, X. Yang, S. Chen, B. Zhu, and L. You, “Magnetic skyrmions without the skyrmion Hall effect in a magnetic nanotrack with perpendicular anisotropy,” Nanoscale 9, No. 29, 10212–10218 (2017).CrossRef Y. Zhang, S. Luo, B. Yan, J. Ou-Yang, X. Yang, S. Chen, B. Zhu, and L. You, “Magnetic skyrmions without the skyrmion Hall effect in a magnetic nanotrack with perpendicular anisotropy,” Nanoscale 9, No. 29, 10212–10218 (2017).CrossRef
106.
Zurück zum Zitat J. Ding, X. Yang, and T. Zhu, “Manipulating current induced motion of magnetic skyrmions in the magnetic nanotrack,” J. Phys. D: Appl. Phys. 48, No. 11, 115004 (2015).CrossRef J. Ding, X. Yang, and T. Zhu, “Manipulating current induced motion of magnetic skyrmions in the magnetic nanotrack,” J. Phys. D: Appl. Phys. 48, No. 11, 115004 (2015).CrossRef
107.
Zurück zum Zitat I. Gross, W. Akhtar, A. Hrabec, J. Sampaio, L. J. Martinez, S. Chouaieb, B. J. Shields, P. Maletinsky, A. Thiaville, S. Rohart, and V. Jacques, “Skyrmion morphology in ultrathin magnetic films,” Phys. Rev. Mater. 2, No. 2, 024406 (2018).CrossRef I. Gross, W. Akhtar, A. Hrabec, J. Sampaio, L. J. Martinez, S. Chouaieb, B. J. Shields, P. Maletinsky, A. Thiaville, S. Rohart, and V. Jacques, “Skyrmion morphology in ultrathin magnetic films,” Phys. Rev. Mater. 2, No. 2, 024406 (2018).CrossRef
108.
Zurück zum Zitat K. Litzius, J. Leliaert, P. Bassirian, D. Rodrigues, S. Kromin, I. Lemesh, J. Zazvorka, K.-J. Lee, J. Mulkers, N. Kerber, D. Heinze, N. Keil, R. M. Reeve, M. Weigand, B. Van Waeyenberge, G. Schutz, K. Everschor-Sitte, G. S. D. Beach, and M. Kläui, “The role of temperature and drive current in skyrmion dynamics,” Nat. Electron. 3, No. 1, 30–36 (2018).CrossRef K. Litzius, J. Leliaert, P. Bassirian, D. Rodrigues, S. Kromin, I. Lemesh, J. Zazvorka, K.-J. Lee, J. Mulkers, N. Kerber, D. Heinze, N. Keil, R. M. Reeve, M. Weigand, B. Van Waeyenberge, G. Schutz, K. Everschor-Sitte, G. S. D. Beach, and M. Kläui, “The role of temperature and drive current in skyrmion dynamics,” Nat. Electron. 3, No. 1, 30–36 (2018).CrossRef
109.
Zurück zum Zitat A. S. Samardak, A. V. Davydenko, A. G. Kolesnikov, A. Y. Samardak, A. G. Kozlov, B. Pal, A. V. Ognev, A. V. Sadovnikov, S. A. Nikitov, A. V. Gerasimenko, I. H. Cha, Y. J. Kim, G. W. Kim, O. A. Tretiakov, and Y. K. Kim, “Enhancement of perpendicular magnetic anisotropy and Dzyaloshinskii–Moriya interaction in thin ferromagnetic films by atomic-scale modulation of interfaces,” NPG Asia Mater. 12, No. 1, 51 (2020).CrossRef A. S. Samardak, A. V. Davydenko, A. G. Kolesnikov, A. Y. Samardak, A. G. Kozlov, B. Pal, A. V. Ognev, A. V. Sadovnikov, S. A. Nikitov, A. V. Gerasimenko, I. H. Cha, Y. J. Kim, G. W. Kim, O. A. Tretiakov, and Y. K. Kim, “Enhancement of perpendicular magnetic anisotropy and Dzyaloshinskii–Moriya interaction in thin ferromagnetic films by atomic-scale modulation of interfaces,” NPG Asia Mater. 12, No. 1, 51 (2020).CrossRef
110.
Zurück zum Zitat A. V. Davydenko, A. G. Kozlov, M. E. Stebliy, A. G. Kolesnikov, N. I. Sarnavskiy, I. G. Iliushin, A. P. Golikov, “Dzyaloshinskii–Moriya interaction and chiral damping effect in symmetric epitaxial Pd/Co/Pd(111) trilayers,” Phys. Rev. B 103, No. 9, 094435 (2021).CrossRef A. V. Davydenko, A. G. Kozlov, M. E. Stebliy, A. G. Kolesnikov, N. I. Sarnavskiy, I. G. Iliushin, A. P. Golikov, “Dzyaloshinskii–Moriya interaction and chiral damping effect in symmetric epitaxial Pd/Co/Pd(111) trilayers,” Phys. Rev. B 103, No. 9, 094435 (2021).CrossRef
111.
Zurück zum Zitat A. V. Davydenko, A. G. Kozlov, A. G. Kolesnikov, M. E. Stebliy, G. S. Suslin, Y. E. Vekovshinin, A. V. Sadovnikov, and S. A. Nikitov, “Dzyaloshinskii-Moriya interaction in symmetric epitaxial [Co/Pd(111)]N superlattices with different numbers of Co/Pd bilayers,” Phys. Rev. B 99, No. 1, 014433 (2019).CrossRef A. V. Davydenko, A. G. Kozlov, A. G. Kolesnikov, M. E. Stebliy, G. S. Suslin, Y. E. Vekovshinin, A. V. Sadovnikov, and S. A. Nikitov, “Dzyaloshinskii-Moriya interaction in symmetric epitaxial [Co/Pd(111)]N superlattices with different numbers of Co/Pd bilayers,” Phys. Rev. B 99, No. 1, 014433 (2019).CrossRef
112.
Zurück zum Zitat S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blugel, “Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions,” Nat. Phys. 7, No. 9, 713–718 (2011).CrossRef S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blugel, “Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions,” Nat. Phys. 7, No. 9, 713–718 (2011).CrossRef
113.
Zurück zum Zitat N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger, “Writing and deleting single magnetic skyrmions,” Science 341, No. 6146, 636–639 (2013).CrossRef N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger, “Writing and deleting single magnetic skyrmions,” Science 341, No. 6146, 636–639 (2013).CrossRef
114.
Zurück zum Zitat T. H. Pham, J. Vogel, J. Sampaio, M. Vanatka, J. C. Rojas-Sanchez, M. Bonfim, D. S. Chaves, F. Choueikani, P. Ohresser, E. Otero, A. Thiaville, and S. Pizzini, “Very large domain wall velocities in Pt/Co/GdOx and Pt/Co/Gd trilayers with Dzya-loshinskii–Moriya interaction,” Europhys. Lett. 113, No. 6, 67001 (2016).CrossRef T. H. Pham, J. Vogel, J. Sampaio, M. Vanatka, J. C. Rojas-Sanchez, M. Bonfim, D. S. Chaves, F. Choueikani, P. Ohresser, E. Otero, A. Thiaville, and S. Pizzini, “Very large domain wall velocities in Pt/Co/GdOx and Pt/Co/Gd trilayers with Dzya-loshinskii–Moriya interaction,” Europhys. Lett. 113, No. 6, 67001 (2016).CrossRef
115.
Zurück zum Zitat Y. Yoshimura, K. J. Kim, T. Taniguchi, T. Tono, K. Ueda, R. Hiramatsu, T. Moriyama, K. Yamada, Y. Nakatani, and T. Ono, “Soliton-like magnetic domain wall motion induced by the interfacial Dzya-loshinskii–Moriya interaction,” Nat. Phys. 12, No. 2, 157–161 (2016).CrossRef Y. Yoshimura, K. J. Kim, T. Taniguchi, T. Tono, K. Ueda, R. Hiramatsu, T. Moriyama, K. Yamada, Y. Nakatani, and T. Ono, “Soliton-like magnetic domain wall motion induced by the interfacial Dzya-loshinskii–Moriya interaction,” Nat. Phys. 12, No. 2, 157–161 (2016).CrossRef
116.
Zurück zum Zitat H. X. Yang, A. Thiaville, S. Rohart, A. Fert, and M. Chshiev, “Anatomy of Dzyaloshinskii–Moriya interaction at Co/Pt interfaces,” Phys. Rev. Lett. 115, 267210 (2015). H. X. Yang, A. Thiaville, S. Rohart, A. Fert, and M. Chshiev, “Anatomy of Dzyaloshinskii–Moriya interaction at Co/Pt interfaces,” Phys. Rev. Lett. 115, 267210 (2015).
117.
Zurück zum Zitat O. Boulle, J. Vogel, H. Yang, S. Pizzini, Chaves D. de Souza, A. Locatelli, T. O. Mentes, A. Sala, L. D. Buda-Prejbeanu, O. Klein, M. Belmeguenai, Y. Roussigné, A. Stashkevich, S. M. Chérif, L. Aballe, M. Foerster, M. Chshiev, S. Auffret, I. M. Miron, and G. Gaudin, “Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures,” Nat. Nanotechnol. 11, No. 5, 449–454 (2016).CrossRef O. Boulle, J. Vogel, H. Yang, S. Pizzini, Chaves D. de Souza, A. Locatelli, T. O. Mentes, A. Sala, L. D. Buda-Prejbeanu, O. Klein, M. Belmeguenai, Y. Roussigné, A. Stashkevich, S. M. Chérif, L. Aballe, M. Foerster, M. Chshiev, S. Auffret, I. M. Miron, and G. Gaudin, “Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures,” Nat. Nanotechnol. 11, No. 5, 449–454 (2016).CrossRef
118.
Zurück zum Zitat K. G. Rana, A. Finco, F. Fabre, S. Chouaieb, A. Haykal, L. D. Buda-Prejbeanu, O. Fruchart, S. Le Denmat, P. David, M. Belmeguenai, T. Denneulin, R. E. Dunin-Borkowski, G. Gaudin, V. Jacques, and O. Boulle, “Room-temperature skyrmions at zero field in exchange-biased ultrathin films,” Phys. Rev. Appl. 13, 044079 (2020). K. G. Rana, A. Finco, F. Fabre, S. Chouaieb, A. Haykal, L. D. Buda-Prejbeanu, O. Fruchart, S. Le Denmat, P. David, M. Belmeguenai, T. Denneulin, R. E. Dunin-Borkowski, G. Gaudin, V. Jacques, and O. Boulle, “Room-temperature skyrmions at zero field in exchange-biased ultrathin films,” Phys. Rev. Appl. 13, 044079 (2020).
119.
Zurück zum Zitat A. G. Kozlov, A. G. Kolesnikov, M. E. Stebliy, A. P. Golikov, and A. V. Davydenko, “Domain-period method for determination of the energy of the Dzyaloshinskii–Moriya interaction in [Co/Pd(111)]5 superlattices,” Phys. Rev. B 102, No. 14, 144411 (2020).CrossRef A. G. Kozlov, A. G. Kolesnikov, M. E. Stebliy, A. P. Golikov, and A. V. Davydenko, “Domain-period method for determination of the energy of the Dzyaloshinskii–Moriya interaction in [Co/Pd(111)]5 superlattices,” Phys. Rev. B 102, No. 14, 144411 (2020).CrossRef
120.
Zurück zum Zitat O. Hellwig, A. Berger, J. B. Kortright, and E. E. Fullerton, “Domain structure and magnetization reversal of antiferromagnetically coupled perpendicular anisotropy films,” J. Magn. Magn. Mater. 319, Nos. 1–2, 13‒55 (2007).CrossRef O. Hellwig, A. Berger, J. B. Kortright, and E. E. Fullerton, “Domain structure and magnetization reversal of antiferromagnetically coupled perpendicular anisotropy films,” J. Magn. Magn. Mater. 319, Nos. 1–2, 13‒55 (2007).CrossRef
121.
Zurück zum Zitat C. Moreau-Luchaire, C. Moutafis, N. Reyren, J. Sampaio, C. A. F. Vaz, N. Van Horne, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, P. Wohlhuter, J. M. George, M. Weigand, J. Raabe, V. Cros, and A. Fert, “Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature (vol. 11, pg 444, 2016),” Nat. Nanotechnol. 11, No. 8, 731 (2016).CrossRef C. Moreau-Luchaire, C. Moutafis, N. Reyren, J. Sampaio, C. A. F. Vaz, N. Van Horne, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, P. Wohlhuter, J. M. George, M. Weigand, J. Raabe, V. Cros, and A. Fert, “Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature (vol. 11, pg 444, 2016),” Nat. Nanotechnol. 11, No. 8, 731 (2016).CrossRef
122.
Zurück zum Zitat A. Soumyanarayanan, M. Raju, A. L. G. Oyarce, A. K. C. Tan, M. Y. Im, A. P. Petrovic, P. Ho, K. H. Khoo, M. Tran, C. K. Gan, F. Ernult, and C. Panagopoulos, “Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers,” Nat. Mater. 16, No. 9, 898–904 (2017).CrossRef A. Soumyanarayanan, M. Raju, A. L. G. Oyarce, A. K. C. Tan, M. Y. Im, A. P. Petrovic, P. Ho, K. H. Khoo, M. Tran, C. K. Gan, F. Ernult, and C. Panagopoulos, “Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers,” Nat. Mater. 16, No. 9, 898–904 (2017).CrossRef
123.
Zurück zum Zitat D. A. Dugato, J. Brandao, R. L. Seeger, F. Beron, J. C. Cezar, L. S. Dorneles, and T. J. A. Mori, “Magnetic domain size tuning in asymmetric Pd/Co/W/Pd multilayers with perpendicular magnetic anisotropy,” Appl. Phys. Lett. 115, 182408 (2019). D. A. Dugato, J. Brandao, R. L. Seeger, F. Beron, J. C. Cezar, L. S. Dorneles, and T. J. A. Mori, “Magnetic domain size tuning in asymmetric Pd/Co/W/Pd multilayers with perpendicular magnetic anisotropy,” Appl. Phys. Lett. 115, 182408 (2019).
124.
Zurück zum Zitat S. A. Montoya, S. Couture, J. J. Chess, J. C. T. Lee, N. Kent, D. Henze, S. K. Sinha, M. Y. Im, S. D. Kevan, P. Fischer, B. J. McMorran, V. Lomakin, S. Roy, and E. E. Fullerton, “Tailoring magnetic energies to form dipole skyrmions and skyrmion lattices,” Phys. Rev. B 95, 024415 (2017). S. A. Montoya, S. Couture, J. J. Chess, J. C. T. Lee, N. Kent, D. Henze, S. K. Sinha, M. Y. Im, S. D. Kevan, P. Fischer, B. J. McMorran, V. Lomakin, S. Roy, and E. E. Fullerton, “Tailoring magnetic energies to form dipole skyrmions and skyrmion lattices,” Phys. Rev. B 95, 024415 (2017).
125.
Zurück zum Zitat W. Legrand, J. Y. Chauleau, D. Maccariello, N. Reyren, S. Collin, K. Bouzehouane, N. Jaouen, V. Cros, and A. Fert, “Hybrid chiral domain walls and skyrmions in magnetic multilayers,” Sci. Adv. 4, No. 7, eaat041 (2018). W. Legrand, J. Y. Chauleau, D. Maccariello, N. Reyren, S. Collin, K. Bouzehouane, N. Jaouen, V. Cros, and A. Fert, “Hybrid chiral domain walls and skyrmions in magnetic multilayers,” Sci. Adv. 4, No. 7, eaat041 (2018).
126.
Zurück zum Zitat I. Lemesh and G. S. D. Beach, “Twisted domain walls and skyrmions in perpendicularly magnetized multilayers,” Phys. Rev. B 98, 104402 (2018). I. Lemesh and G. S. D. Beach, “Twisted domain walls and skyrmions in perpendicularly magnetized multilayers,” Phys. Rev. B 98, 104402 (2018).
127.
Zurück zum Zitat R. Bläsing, A. A. Khan, P. C. Filippou, C. Garg, F. Hameed, J. Castrillon, and S. S. P. Parkin, “Magnetic racetrack memory: From physics to the cusp of applications within a decade,” Proc. IEEE. 108, No. 8, 1303–1321 (2020).CrossRef R. Bläsing, A. A. Khan, P. C. Filippou, C. Garg, F. Hameed, J. Castrillon, and S. S. P. Parkin, “Magnetic racetrack memory: From physics to the cusp of applications within a decade,” Proc. IEEE. 108, No. 8, 1303–1321 (2020).CrossRef
128.
Zurück zum Zitat G. Yu, P. Upadhyaya, Q. Shao, H. Wu, G. Yin, X. Li, C. He, W. Jiang, X. Han, P. K. Amiri, and K. L. Wang, “Room-temperature skyrmion shift device for memory application,” Nano Lett. 17, No. 1, 261–268 (2017).CrossRef G. Yu, P. Upadhyaya, Q. Shao, H. Wu, G. Yin, X. Li, C. He, W. Jiang, X. Han, P. K. Amiri, and K. L. Wang, “Room-temperature skyrmion shift device for memory application,” Nano Lett. 17, No. 1, 261–268 (2017).CrossRef
129.
Zurück zum Zitat S. Luo, M. Song, X. Li, Y. Zhang, J. Hong, X. Yang, X. Zou, N. Xu, and L. You, Reconfigurable Skyrmion Logic Gates, Nano Lett. 18, No. 2, 1180–1184 (2018).CrossRef S. Luo, M. Song, X. Li, Y. Zhang, J. Hong, X. Yang, X. Zou, N. Xu, and L. You, Reconfigurable Skyrmion Logic Gates, Nano Lett. 18, No. 2, 1180–1184 (2018).CrossRef
130.
Zurück zum Zitat F. Büttner, I. Lemesh, M. Schneider, B. Pfau, C. M. Günther, P. Hessing, J. Geilhufe, L. Caretta, D. Engel, B. Krüger, J. Viefhaus, S. Eisebitt, and G. S. D. Beach, “Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques,” Nat. Nanotechnol. 12, No. 11, 1040–1044 (2017).CrossRef F. Büttner, I. Lemesh, M. Schneider, B. Pfau, C. M. Günther, P. Hessing, J. Geilhufe, L. Caretta, D. Engel, B. Krüger, J. Viefhaus, S. Eisebitt, and G. S. D. Beach, “Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques,” Nat. Nanotechnol. 12, No. 11, 1040–1044 (2017).CrossRef
131.
Zurück zum Zitat C. Ma, X. Zhang, J. Xia, M. Ezawa, W. Jiang, T. Ono, S. N. Piramanayagam, A. Morisako, Y. Zhou, and X. Liu, “Electric field-induced creation and directional motion of domain walls and skyrmion bubbles,” Nano Lett. 19, No. 1, 353–361 (2019).CrossRef C. Ma, X. Zhang, J. Xia, M. Ezawa, W. Jiang, T. Ono, S. N. Piramanayagam, A. Morisako, Y. Zhou, and X. Liu, “Electric field-induced creation and directional motion of domain walls and skyrmion bubbles,” Nano Lett. 19, No. 1, 353–361 (2019).CrossRef
132.
Zurück zum Zitat T. Srivastava, M. Schott, R. Juge, V. Křižáková, M. Belmeguenai, Y. Roussigné, A. Bernand-Mantel, L. Ranno, S. Pizzini, S. -M. Chérif, A. Stashkevich, S. Auffret, O. Boulle, G. Gaudin, M. Chshiev, C. Baraduc, and H. Béa, “Large-voltage tuning of Dzyaloshinskii–Moriya interactions: A route toward dynamic control of skyrmion chirality,” Nano Lett. 18, No. 8, 4871–4877 (2018).CrossRef T. Srivastava, M. Schott, R. Juge, V. Křižáková, M. Belmeguenai, Y. Roussigné, A. Bernand-Mantel, L. Ranno, S. Pizzini, S. -M. Chérif, A. Stashkevich, S. Auffret, O. Boulle, G. Gaudin, M. Chshiev, C. Baraduc, and H. Béa, “Large-voltage tuning of Dzyaloshinskii–Moriya interactions: A route toward dynamic control of skyrmion chirality,” Nano Lett. 18, No. 8, 4871–4877 (2018).CrossRef
133.
Zurück zum Zitat S. Zhang, J. Zhang, Q. Zhang, C. Barton, V. Neu, Y. Zhao, Z. Hou, Y. Wen, C. Gong, O. Kazakova, W. Wang, Y. Peng, D. A. Garanin, E. M. Chudnovsky, and X. Zhang, “Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field,” Appl. Phys. Lett. 112, No. 13, 132405 (2018).CrossRef S. Zhang, J. Zhang, Q. Zhang, C. Barton, V. Neu, Y. Zhao, Z. Hou, Y. Wen, C. Gong, O. Kazakova, W. Wang, Y. Peng, D. A. Garanin, E. M. Chudnovsky, and X. Zhang, “Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field,” Appl. Phys. Lett. 112, No. 13, 132405 (2018).CrossRef
134.
Zurück zum Zitat A. V. Ognev, A. G. Kolesnikov, Y. J. Kim, I. H. Cha, A. V. Sadovnikov, S. A. Nikitov, I. V. Soldatov, A. Talapatra, J. Mohanty, M. Mruczkiewicz, Y. Ge, N. Kerber, F. Dittrich, P. Virnau, M. Klaui, Y. K. Kim, and A. S. Samardak, “Magnetic direct-write skyrmion nanolithography,” ACS Nano. 14, No. 11, 14960–14970 (2020).CrossRef A. V. Ognev, A. G. Kolesnikov, Y. J. Kim, I. H. Cha, A. V. Sadovnikov, S. A. Nikitov, I. V. Soldatov, A. Talapatra, J. Mohanty, M. Mruczkiewicz, Y. Ge, N. Kerber, F. Dittrich, P. Virnau, M. Klaui, Y. K. Kim, and A. S. Samardak, “Magnetic direct-write skyrmion nanolithography,” ACS Nano. 14, No. 11, 14960–14970 (2020).CrossRef
135.
Zurück zum Zitat Z. Wang, M. Guo, H.-A. Zhou, L. Zhao, T. Xu, R. Tomasello, H. Bai, Y. Dong, S.-G. Je, W. Chao, H.-S. Han, S. Lee, K.-S. Lee, Y. Yao, W. Han, C. Song, H. Wu, M. Carpentieri, G. Finocchio, M.‑Y. Im, S.-Z. Lin, and W. Jiang, “Thermal generation, manipulation and thermoelectric detection of skyrmions,” Nat. Electron. 3, No. 11, 672–679 (2020).CrossRef Z. Wang, M. Guo, H.-A. Zhou, L. Zhao, T. Xu, R. Tomasello, H. Bai, Y. Dong, S.-G. Je, W. Chao, H.-S. Han, S. Lee, K.-S. Lee, Y. Yao, W. Han, C. Song, H. Wu, M. Carpentieri, G. Finocchio, M.‑Y. Im, S.-Z. Lin, and W. Jiang, “Thermal generation, manipulation and thermoelectric detection of skyrmions,” Nat. Electron. 3, No. 11, 672–679 (2020).CrossRef
136.
Zurück zum Zitat W. Koshibae and N. Nagaosa, “Creation of skyrmions and antiskyrmions by local heating,” Nat. Commun. 5, No. 1, 5148 (2014).CrossRef W. Koshibae and N. Nagaosa, “Creation of skyrmions and antiskyrmions by local heating,” Nat. Commun. 5, No. 1, 5148 (2014).CrossRef
137.
Zurück zum Zitat S. Woo, K. M. Song, X. Zhang, M. Ezawa, Y. Zhou, X. Liu, M. Weigand, S. Finizio, J. Raabe, M.-C. Park, K.-Y. Lee, J. W. Choi, B.-C. Min, H. C. Koo, and J. Chang, “Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved X-ray microscopy,” Nat. Electron. 1, No. 5, 288–296 (2018).CrossRef S. Woo, K. M. Song, X. Zhang, M. Ezawa, Y. Zhou, X. Liu, M. Weigand, S. Finizio, J. Raabe, M.-C. Park, K.-Y. Lee, J. W. Choi, B.-C. Min, H. C. Koo, and J. Chang, “Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved X-ray microscopy,” Nat. Electron. 1, No. 5, 288–296 (2018).CrossRef
138.
Zurück zum Zitat R. Juge, S.-G. Je, ChavesD. de Souza, S. Pizzini, L. D. Buda-Prejbeanu, L. Aballe, M. Foerster, A. Locatelli, T. O. Mentes, A. Sala, F. Maccherozzi, S. S. Dhesi, S. Auffret, E. Gautier, G. Gaudin, J. Vogel, and O. Boulle, “Magnetic skyrmions in confined geometries: Effect of the magnetic field and the disorder,” J. Magn. Magn. Mater. 455, 3–8 (2018).CrossRef R. Juge, S.-G. Je, ChavesD. de Souza, S. Pizzini, L. D. Buda-Prejbeanu, L. Aballe, M. Foerster, A. Locatelli, T. O. Mentes, A. Sala, F. Maccherozzi, S. S. Dhesi, S. Auffret, E. Gautier, G. Gaudin, J. Vogel, and O. Boulle, “Magnetic skyrmions in confined geometries: Effect of the magnetic field and the disorder,” J. Magn. Magn. Mater. 455, 3–8 (2018).CrossRef
139.
Zurück zum Zitat D. A. Gilbert, B. B. Maranville, A. L. Balk, B. J. Kirby, P. Fischer, D. T. Pierce, J. Unguris, J. A. Borchers, and K. Liu, “Realization of ground-state artificial skyrmion lattices at room temperature,” Nat. Commun. 6, No. 1, 8462 (2015).CrossRef D. A. Gilbert, B. B. Maranville, A. L. Balk, B. J. Kirby, P. Fischer, D. T. Pierce, J. Unguris, J. A. Borchers, and K. Liu, “Realization of ground-state artificial skyrmion lattices at room temperature,” Nat. Commun. 6, No. 1, 8462 (2015).CrossRef
140.
Zurück zum Zitat S. Finizio, K. Zeissler, S. Wintz, S. Mayr, T. Wessels, A. J. Huxtable, G. Burnell, C. H. Marrows, and J. Raabe, “Deterministic field-free skyrmion nucleation at a nanoengineered injector device,” Nano Lett. 19, No. 10, 7246–7255 (2019).CrossRef S. Finizio, K. Zeissler, S. Wintz, S. Mayr, T. Wessels, A. J. Huxtable, G. Burnell, C. H. Marrows, and J. Raabe, “Deterministic field-free skyrmion nucleation at a nanoengineered injector device,” Nano Lett. 19, No. 10, 7246–7255 (2019).CrossRef
141.
Zurück zum Zitat K. Garello, C. O. Avci, I. M. Miron, M. Baumgartner, A. Ghosh, S. Auffret, O. Boulle, G. Gaudin, and P. Gambardella, “Ultrafast magnetization switching by spin-orbit torques,” Appl. Phys Lett. 105, No. 21, 212402 (2014).CrossRef K. Garello, C. O. Avci, I. M. Miron, M. Baumgartner, A. Ghosh, S. Auffret, O. Boulle, G. Gaudin, and P. Gambardella, “Ultrafast magnetization switching by spin-orbit torques,” Appl. Phys Lett. 105, No. 21, 212402 (2014).CrossRef
142.
Zurück zum Zitat B. Jinnai, H. Sato, S. Fukami, and H. Ohno, “Scalability and wide temperature range operation of spin-orbit torque switching devices using Co/Pt multilayer nanowires,” Appl. Phys. Lett. 113, No. 21, 212403 (2018).CrossRef B. Jinnai, H. Sato, S. Fukami, and H. Ohno, “Scalability and wide temperature range operation of spin-orbit torque switching devices using Co/Pt multilayer nanowires,” Appl. Phys. Lett. 113, No. 21, 212403 (2018).CrossRef
143.
Zurück zum Zitat A. G. Temiryazev, M. P. Temiryazeva, A. V. Zdoroveyshchev, O. V. Vikhrova, M. V. Dorokhin, P. B. Demina, and A. V. Kudrin, “Formation of a domain structure in multilayer CoPt films by magnetic probe of an atomic force microscope,” Phys. Solid State 60, No. 11, 2200–2206 (2018).CrossRef A. G. Temiryazev, M. P. Temiryazeva, A. V. Zdoroveyshchev, O. V. Vikhrova, M. V. Dorokhin, P. B. Demina, and A. V. Kudrin, “Formation of a domain structure in multilayer CoPt films by magnetic probe of an atomic force microscope,” Phys. Solid State 60, No. 11, 2200–2206 (2018).CrossRef
144.
Zurück zum Zitat D. A. Garanin, D. Capic, S. Zhang, X. Zhang, and E. M. Chudnovsky, “Writing skyrmions with a magnetic dipole,” J. Appl. Phys. 124, 113901 (2018). D. A. Garanin, D. Capic, S. Zhang, X. Zhang, and E. M. Chudnovsky, “Writing skyrmions with a magnetic dipole,” J. Appl. Phys. 124, 113901 (2018).
145.
Zurück zum Zitat F. Ma, Y. Zhou, H. B. Braun, and W. S. Lew, “Skyrmion-based dynamic magnonic crystal,” Nano Lett. 15, No. 6, 4029–4036 (2015).CrossRef F. Ma, Y. Zhou, H. B. Braun, and W. S. Lew, “Skyrmion-based dynamic magnonic crystal,” Nano Lett. 15, No. 6, 4029–4036 (2015).CrossRef
146.
Zurück zum Zitat C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, No. 4, 047601 (2007).CrossRef C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, No. 4, 047601 (2007).CrossRef
147.
Zurück zum Zitat C. H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345, No. 6202, 1337 (2014).CrossRef C. H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345, No. 6202, 1337 (2014).CrossRef
148.
Zurück zum Zitat F. Dalla Longa, J. T. Kohlhepp, W. J. M. de Jonge, and B. Koopmans, “Resolving the genuine laser-induced ultrafast dynamics of exchange interaction in ferromagnet/antiferromagnet bilayers,” Phys. Rev. B 81, 094435 (2010). F. Dalla Longa, J. T. Kohlhepp, W. J. M. de Jonge, and B. Koopmans, “Resolving the genuine laser-induced ultrafast dynamics of exchange interaction in ferromagnet/antiferromagnet bilayers,” Phys. Rev. B 81, 094435 (2010).
149.
Zurück zum Zitat M. S. El Hadri, P. Pirro, C. H. Lambert, S. Petit-Watelot, Y. Quessab, M. Hehn, F. Montaigne, G. Malinowski, and S. Mangin, “Two types of all-optical magnetization switching mechanisms using femtosecond laser pulses,” Phys. Rev. B 94, No. 6, 064412 (2016).CrossRef M. S. El Hadri, P. Pirro, C. H. Lambert, S. Petit-Watelot, Y. Quessab, M. Hehn, F. Montaigne, G. Malinowski, and S. Mangin, “Two types of all-optical magnetization switching mechanisms using femtosecond laser pulses,” Phys. Rev. B 94, No. 6, 064412 (2016).CrossRef
150.
Zurück zum Zitat M. Finazzi, M. Savoini, A. R. Khorsand, A. Tsukamoto, A. Itoh, L. Duo, A. Kirilyuk, T. Rasing, and M. Ezawa, “Laser-induced magnetic nanostructures with tunable topological properties,” Phys. Rev. Lett. 110, No. 17, 177205 (2013).CrossRef M. Finazzi, M. Savoini, A. R. Khorsand, A. Tsukamoto, A. Itoh, L. Duo, A. Kirilyuk, T. Rasing, and M. Ezawa, “Laser-induced magnetic nanostructures with tunable topological properties,” Phys. Rev. Lett. 110, No. 17, 177205 (2013).CrossRef
151.
Zurück zum Zitat S. G. Je, P. Vallobra, T. Srivastava, J. C. Rojas-Sanchez, T. H. Pham, M. Hehn, G. Malinowski, C. Baraduc, S. Auffret, G. Gaudin, S. Mangin, H. Bea, and O. Boulle, “Creation of magnetic skyrmion bubble lattices by ultrafast laser in ultrathin films,” Nano Lett. 18, No. 11, 7362–7371 (2018).CrossRef S. G. Je, P. Vallobra, T. Srivastava, J. C. Rojas-Sanchez, T. H. Pham, M. Hehn, G. Malinowski, C. Baraduc, S. Auffret, G. Gaudin, S. Mangin, H. Bea, and O. Boulle, “Creation of magnetic skyrmion bubble lattices by ultrafast laser in ultrathin films,” Nano Lett. 18, No. 11, 7362–7371 (2018).CrossRef
152.
Zurück zum Zitat Y. Liu, N. Lei, C. Wang, X. Zhang, W. Kang, D. Zhu, Y. Zhou, X. Liu, Y. Zhang, and W. Zhao, “Voltage-driven high-speed skyrmion motion in a skyrmion-shift device,” Phys. Rev. Appl. 11, No. 1, 014004 (2019).CrossRef Y. Liu, N. Lei, C. Wang, X. Zhang, W. Kang, D. Zhu, Y. Zhou, X. Liu, Y. Zhang, and W. Zhao, “Voltage-driven high-speed skyrmion motion in a skyrmion-shift device,” Phys. Rev. Appl. 11, No. 1, 014004 (2019).CrossRef
153.
Zurück zum Zitat R. Chen, Y. Li, V. F. Pavlidis, and C. Moutafis, “Skyrmionic interconnect device,” Phys. Rev. Res. 2, No. 4, 043312 (2020).CrossRef R. Chen, Y. Li, V. F. Pavlidis, and C. Moutafis, “Skyrmionic interconnect device,” Phys. Rev. Res. 2, No. 4, 043312 (2020).CrossRef
154.
Zurück zum Zitat S. Li, W. Kang, Y. Huang, X. Zhang, Y. Zhou, and W. Zhao, “Magnetic skyrmion-based artificial neuron device,” Nanotechnology 28, No. 31, 31LT01 (2017).CrossRef S. Li, W. Kang, Y. Huang, X. Zhang, Y. Zhou, and W. Zhao, “Magnetic skyrmion-based artificial neuron device,” Nanotechnology 28, No. 31, 31LT01 (2017).CrossRef
155.
Zurück zum Zitat X. Chen, W. Kang, D. Zhu, X. Zhang, N. Lei, Y. Zhang, Y. Zhou, and W. Zhao, “A compact skyrmionic leaky–integrate–fire spiking neuron device,” Nanoscale 10, No. 13, 6139–6146 (2018).CrossRef X. Chen, W. Kang, D. Zhu, X. Zhang, N. Lei, Y. Zhang, Y. Zhou, and W. Zhao, “A compact skyrmionic leaky–integrate–fire spiking neuron device,” Nanoscale 10, No. 13, 6139–6146 (2018).CrossRef
156.
Zurück zum Zitat J. Zhou and J. Chen, “Prospect of spintronics in neuromorphic computing,” Adv. Electron. Mater. 7, 2100465 (2021).CrossRef J. Zhou and J. Chen, “Prospect of spintronics in neuromorphic computing,” Adv. Electron. Mater. 7, 2100465 (2021).CrossRef
157.
Zurück zum Zitat W. L. Yang, C. H. Wan, Z. R. Yan, X. Zhang, M. E. Stebliy, X. Wang, C. Fang, C. Y. Guo, Y. W. Xing, T. Y. Ma, A. V. Ognev, A. S. Samardak, M.-J. Tung, G. Q. Yu, and X. F. Han, “Chirality-Reversible multistate switching via two orthogonal spin-orbit torques in a perpendicularly magnetized system,” Phys. Rev. Appl. 13, No. 2, 024052 (2020).CrossRef W. L. Yang, C. H. Wan, Z. R. Yan, X. Zhang, M. E. Stebliy, X. Wang, C. Fang, C. Y. Guo, Y. W. Xing, T. Y. Ma, A. V. Ognev, A. S. Samardak, M.-J. Tung, G. Q. Yu, and X. F. Han, “Chirality-Reversible multistate switching via two orthogonal spin-orbit torques in a perpendicularly magnetized system,” Phys. Rev. Appl. 13, No. 2, 024052 (2020).CrossRef
158.
Zurück zum Zitat G. Bourianoff, D. Pinna, M. Sitte, and K. Everschor-Sitte, “Potential implementation of reservoir computing models based on magnetic skyrmions,” AIP Adv. 8, No. 5, 055602 (2018).CrossRef G. Bourianoff, D. Pinna, M. Sitte, and K. Everschor-Sitte, “Potential implementation of reservoir computing models based on magnetic skyrmions,” AIP Adv. 8, No. 5, 055602 (2018).CrossRef
159.
Zurück zum Zitat D. Pinna, G. Bourianoff, and K. Everschor-Sitte, “Reservoir computing with random skyrmion textures,” Phys. Rev. Appl. 14, No. 5, 054020 (2020).CrossRef D. Pinna, G. Bourianoff, and K. Everschor-Sitte, “Reservoir computing with random skyrmion textures,” Phys. Rev. Appl. 14, No. 5, 054020 (2020).CrossRef
160.
Zurück zum Zitat K.-J. Kim, S. K. Kim, Y. Hirata, S.-H. Oh, T. Tono, D.-H. Kim, T. Okuno, W. S. Ham, S. Kim, G. Go, Y. Tserkovnyak, A. Tsukamoto, T. Moriyama, K.‑J. Lee, and T. Ono, “Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets,” Nat. Mater. 16, No. 12, 1187–1192 (2017).CrossRef K.-J. Kim, S. K. Kim, Y. Hirata, S.-H. Oh, T. Tono, D.-H. Kim, T. Okuno, W. S. Ham, S. Kim, G. Go, Y. Tserkovnyak, A. Tsukamoto, T. Moriyama, K.‑J. Lee, and T. Ono, “Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets,” Nat. Mater. 16, No. 12, 1187–1192 (2017).CrossRef
161.
Zurück zum Zitat W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M. Benjamin Jungfleisch, E. Pearson John, X. Cheng, O. Heinonen, K. L. Wang, Y. Zhou, A. Hoffmann, and G. E. te Velthuis Suzanne, “Direct observation of the skyrmion Hall effect,” Nat. Phys. 13, No. 2, 162–169 (2017).CrossRef W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M. Benjamin Jungfleisch, E. Pearson John, X. Cheng, O. Heinonen, K. L. Wang, Y. Zhou, A. Hoffmann, and G. E. te Velthuis Suzanne, “Direct observation of the skyrmion Hall effect,” Nat. Phys. 13, No. 2, 162–169 (2017).CrossRef
162.
Zurück zum Zitat Y. Hirata, D.-H. Kim, S. K. Kim, D.-K. Lee, S.‑H. Oh, D.-Y. Kim, T. Nishimura, T. Okuno, Y. Futakawa, H. Yoshikawa, A. Tsukamoto, Y. Tserkovnyak, Y. Shiota, T. Moriyama, S.-B. Choe, K.-J. Lee, and T. Ono, “Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet,” Nat. Nanotechnol. 14, No. 3, 232–236 (2019).CrossRef Y. Hirata, D.-H. Kim, S. K. Kim, D.-K. Lee, S.‑H. Oh, D.-Y. Kim, T. Nishimura, T. Okuno, Y. Futakawa, H. Yoshikawa, A. Tsukamoto, Y. Tserkovnyak, Y. Shiota, T. Moriyama, S.-B. Choe, K.-J. Lee, and T. Ono, “Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet,” Nat. Nanotechnol. 14, No. 3, 232–236 (2019).CrossRef
163.
Zurück zum Zitat B. Ding, Z. Li, G. Xu, H. Li, Z. Hou, E. Liu, X. Xi, F. Xu, Y. Yao, and W. Wang, “Observation of magnetic skyrmion bubbles in a van der waals ferromagnet Fe3GeTe2,” Nano Lett. 20, No. 2, 868–873 (2020).CrossRef B. Ding, Z. Li, G. Xu, H. Li, Z. Hou, E. Liu, X. Xi, F. Xu, Y. Yao, and W. Wang, “Observation of magnetic skyrmion bubbles in a van der waals ferromagnet Fe3GeTe2,” Nano Lett. 20, No. 2, 868–873 (2020).CrossRef
164.
Zurück zum Zitat J. F. Sierra, J. Fabian, R. K. Kawakami, S. Roche, and S. O. Valenzuela, “Van der Waals heterostructures for spintronics and opto-spintronics,” Nat. Nanotechnol. 16, No. 8, 856–868 (2021).CrossRef J. F. Sierra, J. Fabian, R. K. Kawakami, S. Roche, and S. O. Valenzuela, “Van der Waals heterostructures for spintronics and opto-spintronics,” Nat. Nanotechnol. 16, No. 8, 856–868 (2021).CrossRef
165.
Zurück zum Zitat Y. Wu, S. Zhang, J. Zhang, W. Wang, Y. L. Zhu, J. Hu, G. Yin, K. Wong, C. Fang, C. Wan, X. Han, Q. Shao, T. Taniguchi, K. Watanabe, J. Zang, Z. Mao, X. Zhang, and K. L. Wang, “Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure,” Nat. Commun. 11, No. 1, 3860 (2020). Y. Wu, S. Zhang, J. Zhang, W. Wang, Y. L. Zhu, J. Hu, G. Yin, K. Wong, C. Fang, C. Wan, X. Han, Q. Shao, T. Taniguchi, K. Watanabe, J. Zang, Z. Mao, X. Zhang, and K. L. Wang, “Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure,” Nat. Commun. 11, No. 1, 3860 (2020).
166.
Zurück zum Zitat T. -E. Park, L. Peng, J. Liang, A. Hallal, F. S. Yasin, X. Zhang, K. M. Song, S. J. Kim, K. Kim, M. Weigand, G. Schutz, S. Finizio, J. Raabe, K. Garcia, J. Xia, Y. Zhou, M. Ezawa, X. Liu, J. Chang, H. C. Koo, Y. D. Kim, M. Chshiev, A. Fert, H. Yang, X. Yu, and S. Woo, “Néel-type skyrmions and their current-induced motion in van der Waals ferromagnet-based heterostructures,” Phys. Rev. B 103, No. 10, 104410 (2021).CrossRef T. -E. Park, L. Peng, J. Liang, A. Hallal, F. S. Yasin, X. Zhang, K. M. Song, S. J. Kim, K. Kim, M. Weigand, G. Schutz, S. Finizio, J. Raabe, K. Garcia, J. Xia, Y. Zhou, M. Ezawa, X. Liu, J. Chang, H. C. Koo, Y. D. Kim, M. Chshiev, A. Fert, H. Yang, X. Yu, and S. Woo, “Néel-type skyrmions and their current-induced motion in van der Waals ferromagnet-based heterostructures,” Phys. Rev. B 103, No. 10, 104410 (2021).CrossRef
167.
Zurück zum Zitat L. Peng, F. S. Yasin, T.-E. Park, S. J. Kim, X. Zhang, T. Nagai, K. Kimoto, S. Woo, and X. Yu, “Tunable Néel–Bloch magnetic twists in Fe3GeTe2 with van der Waals structure,” Adv. Funct. Mater. 31, 2103583 (2021). L. Peng, F. S. Yasin, T.-E. Park, S. J. Kim, X. Zhang, T. Nagai, K. Kimoto, S. Woo, and X. Yu, “Tunable Néel–Bloch magnetic twists in Fe3GeTe2 with van der Waals structure,” Adv. Funct. Mater. 31, 2103583 (2021).
Metadaten
Titel
Topologically Nontrivial Spin Textures in Thin Magnetic Films
verfasst von
A. S. Samardak
A. G. Kolesnikov
A. V. Davydenko
M. E. Steblii
A. V. Ognev
Publikationsdatum
01.03.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 3/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22030097

Weitere Artikel der Ausgabe 3/2022

Physics of Metals and Metallography 3/2022 Zur Ausgabe