Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 6/2019

11.01.2019 | Research Paper

Topology optimization of conductors in electrical circuit

verfasst von: Katsuya Nomura, Shintaro Yamasaki, Kentaro Yaji, Hiroki Bo, Atsuhiro Takahashi, Takashi Kojima, Kikuo Fujita

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study proposes a topology optimization method for realizing a free-form design of conductors in electrical circuits. Conductors in a circuit must connect components, such as voltage sources, resistors, capacitors, and inductors, according to the given circuit diagram. The shape of conductors has a strong effect on the high-frequency performance of a circuit due to parasitic circuit elements such as parasitic inductance and capacitance. In this study, we apply topology optimization to the design of such conductors to minimize parasitic effects with maximum flexibility of shape manipulation. However, when the distribution of conductors is repeatedly updated in topology optimization, disconnections and connections of conductors that cause open and short circuits, respectively, may occur. To prevent this, a method that uses fictitious electric current and electric field calculations is proposed. Disallowed disconnections are prevented by limiting the maximum value of the fictitious current density in conductors where a current is induced. This concept is based on the fact that an electric current becomes concentrated in a thin conductor before disconnection occurs. Disallowed connections are prevented by limiting the maximum value of the fictitious electric field strength around conductors where a voltage is applied. This is based on the fact that the electric field in a parallel plate capacitor is inversely proportional to the distance between the plates. These limitations are aggregated as a single constraint using the Kreisselmeier-Steinhauser function in the formulation of optimization problems. This constraint prevents only disallowed disconnections and connections, but does not prevent allowed topology changes. The effectiveness of the constraint is confirmed using simple examples, and an actual design problem involving conductors in electromagnetic interference filters is used to verify that the proposed constraint can be utilized for conductor optimization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aage N, Egede Johansen V (2017) Topology optimization of microwave waveguide filters. Int J Numer Methods Eng 112(3):283–300MathSciNetCrossRef Aage N, Egede Johansen V (2017) Topology optimization of microwave waveguide filters. Int J Numer Methods Eng 112(3):283–300MathSciNetCrossRef
Zurück zum Zitat Aage N, Mortensen N, Sigmund O (2010) Topology optimization of metallic devices for microwave applications. Int J Numer Methods Eng 83(2):228–248MathSciNetMATH Aage N, Mortensen N, Sigmund O (2010) Topology optimization of metallic devices for microwave applications. Int J Numer Methods Eng 83(2):228–248MathSciNetMATH
Zurück zum Zitat Allaire G, Dapogny C, Frey P (2011) Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh. Comptes Rendus Mathematique 349(17-18):999–1003MathSciNetCrossRefMATH Allaire G, Dapogny C, Frey P (2011) Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh. Comptes Rendus Mathematique 349(17-18):999–1003MathSciNetCrossRefMATH
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetCrossRefMATH Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetCrossRefMATH
Zurück zum Zitat Bendsøe MP, Sigmund O (2004) Topology optimization: theory, methods, and applications. Springer, BerlinCrossRefMATH Bendsøe MP, Sigmund O (2004) Topology optimization: theory, methods, and applications. Springer, BerlinCrossRefMATH
Zurück zum Zitat Chen S, Wang MY, Liu AQ (2008) Shape feature control in structural topology optimization. Comput Aided Des 40(9):951–962CrossRef Chen S, Wang MY, Liu AQ (2008) Shape feature control in structural topology optimization. Comput Aided Des 40(9):951–962CrossRef
Zurück zum Zitat Choi JS, Izui K, Nishiwaki S, Kawamoto A, Nomura T (2012) Rotor pole design of ipm motors for a sinusoidal air-gap flux density distribution. Struct Multidiscip Optim 46(3):445–455CrossRef Choi JS, Izui K, Nishiwaki S, Kawamoto A, Nomura T (2012) Rotor pole design of ipm motors for a sinusoidal air-gap flux density distribution. Struct Multidiscip Optim 46(3):445–455CrossRef
Zurück zum Zitat Christiansen AN, Nobel-jørgensen M, Aage N, Sigmund O, Bærentzen JA (2014) Topology optimization using an explicit interface representation. Struct Multidiscip Optim 49(3):387–399MathSciNetCrossRef Christiansen AN, Nobel-jørgensen M, Aage N, Sigmund O, Bærentzen JA (2014) Topology optimization using an explicit interface representation. Struct Multidiscip Optim 49(3):387–399MathSciNetCrossRef
Zurück zum Zitat Erentok A, Sigmund O (2008) Three-dimensional topology optimized electrically-small conformal antenna. In: 2008 IEEE antennas and propagation society international symposium. IEEE Erentok A, Sigmund O (2008) Three-dimensional topology optimized electrically-small conformal antenna. In: 2008 IEEE antennas and propagation society international symposium. IEEE
Zurück zum Zitat Erentok A, Sigmund O (2011) Topology optimization of sub-wavelength antennas. IEEE Trans Antennas Propag 59(1):58–69CrossRef Erentok A, Sigmund O (2011) Topology optimization of sub-wavelength antennas. IEEE Trans Antennas Propag 59(1):58–69CrossRef
Zurück zum Zitat Frickey DA (1994) Conversions between s, z, y, h, abcd, and t parameters which are valid for complex source and load impedances. IEEE Trans Microwave Theory Tech 42(2):205–211CrossRef Frickey DA (1994) Conversions between s, z, y, h, abcd, and t parameters which are valid for complex source and load impedances. IEEE Trans Microwave Theory Tech 42(2):205–211CrossRef
Zurück zum Zitat Guo X, Zhang W, Zhong W (2014) Explicit feature control in structural topology optimization via level set method. Comput Methods Appl Mech Eng 272:354–378MathSciNetCrossRefMATH Guo X, Zhang W, Zhong W (2014) Explicit feature control in structural topology optimization via level set method. Comput Methods Appl Mech Eng 272:354–378MathSciNetCrossRefMATH
Zurück zum Zitat Ha SH, Cho S (2008) Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh. Comput Struct 86(13-14):1447–1455CrossRef Ha SH, Cho S (2008) Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh. Comput Struct 86(13-14):1447–1455CrossRef
Zurück zum Zitat Haber RB, Jog CS, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Structural Optimization 11(1–2):1–12CrossRef Haber RB, Jog CS, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Structural Optimization 11(1–2):1–12CrossRef
Zurück zum Zitat Han X, Xu C, Prince JL (2003) A topology preserving level set method for geometric deformable models. IEEE Trans Pattern Anal Mach Intell 25(6):755–768CrossRef Han X, Xu C, Prince JL (2003) A topology preserving level set method for geometric deformable models. IEEE Trans Pattern Anal Mach Intell 25(6):755–768CrossRef
Zurück zum Zitat Hassan E, Wadbro E, Berggren M (2014) Topology optimization of metallic antennas. IEEE Trans Antennas Propag 62(5):2488–2500MathSciNetCrossRefMATH Hassan E, Wadbro E, Berggren M (2014) Topology optimization of metallic antennas. IEEE Trans Antennas Propag 62(5):2488–2500MathSciNetCrossRefMATH
Zurück zum Zitat Hayt WH, Kemmerly JE, Durbin SM (1986) Engineering circuit analysis. McGraw-Hill, New York Hayt WH, Kemmerly JE, Durbin SM (1986) Engineering circuit analysis. McGraw-Hill, New York
Zurück zum Zitat Jensen JS, Sigmund O (2004) Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends. Appl Phys Lett 84(12):2022–2024CrossRef Jensen JS, Sigmund O (2004) Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends. Appl Phys Lett 84(12):2022–2024CrossRef
Zurück zum Zitat Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2011) Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct Multidiscip Optim 44(1):19–24CrossRefMATH Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2011) Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct Multidiscip Optim 44(1):19–24CrossRefMATH
Zurück zum Zitat Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. IFAC Proceedings Volumes 12(7):113–117CrossRefMATH Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. IFAC Proceedings Volumes 12(7):113–117CrossRefMATH
Zurück zum Zitat Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46(3):311–326MathSciNetCrossRefMATH Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46(3):311–326MathSciNetCrossRefMATH
Zurück zum Zitat Kurokawa K (1965) Power waves and the scattering matrix. IEEE Trans Microwave Theory Tech 13(2):194–202CrossRef Kurokawa K (1965) Power waves and the scattering matrix. IEEE Trans Microwave Theory Tech 13(2):194–202CrossRef
Zurück zum Zitat Liu S, Wang Q, Gao R (2014) A topology optimization method for design of small GPR antennas. Struct Multidiscip Optim 50(6):1165–1174CrossRef Liu S, Wang Q, Gao R (2014) A topology optimization method for design of small GPR antennas. Struct Multidiscip Optim 50(6):1165–1174CrossRef
Zurück zum Zitat Luo J, Luo Z, Chen S, Tong L, Wang MY (2008) A new level set method for systematic design of hinge-free compliant mechanisms. Comput Methods Appl Mech Eng 198(2):318–331CrossRefMATH Luo J, Luo Z, Chen S, Tong L, Wang MY (2008) A new level set method for systematic design of hinge-free compliant mechanisms. Comput Methods Appl Mech Eng 198(2):318–331CrossRefMATH
Zurück zum Zitat McRae DS (2000) r-refinement grid adaptation algorithms and issues. Comput Methods Appl Mech Eng 189 (4):1161–1182CrossRefMATH McRae DS (2000) r-refinement grid adaptation algorithms and issues. Comput Methods Appl Mech Eng 189 (4):1161–1182CrossRefMATH
Zurück zum Zitat Nomura T, Sato K, Taguchi K, Kashiwa T, Nishiwaki S (2007) Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique. Int J Numer Methods Eng 71(11):1261–1296CrossRefMATH Nomura T, Sato K, Taguchi K, Kashiwa T, Nishiwaki S (2007) Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique. Int J Numer Methods Eng 71(11):1261–1296CrossRefMATH
Zurück zum Zitat Paul CR (2006) Introduction to electromagnetic compatibility. Wiley, New York Paul CR (2006) Introduction to electromagnetic compatibility. Wiley, New York
Zurück zum Zitat Sato Y, Yamada T, Izui K, Nishiwaki S (2017) Manufacturability evaluation for molded parts using fictitious physical models, and its application in topology optimization. Int J Adv Manuf Technol 92(1–4):1391–1409CrossRef Sato Y, Yamada T, Izui K, Nishiwaki S (2017) Manufacturability evaluation for molded parts using fictitious physical models, and its application in topology optimization. Int J Adv Manuf Technol 92(1–4):1391–1409CrossRef
Zurück zum Zitat Tsuji Y, Hirayama K, Nomura T, Sato K, Nishiwaki S (2006) Design of optical circuit devices based on topology optimization. IEEE Photon Technol Lett 18(7):850–852CrossRef Tsuji Y, Hirayama K, Nomura T, Sato K, Nishiwaki S (2006) Design of optical circuit devices based on topology optimization. IEEE Photon Technol Lett 18(7):850–852CrossRef
Zurück zum Zitat Van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2d filets using X-FEM and level set description. Struct Multidiscip Optim 33(4-5):425–438CrossRef Van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2d filets using X-FEM and level set description. Struct Multidiscip Optim 33(4-5):425–438CrossRef
Zurück zum Zitat Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784CrossRefMATH Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784CrossRefMATH
Zurück zum Zitat Wang S, Wang MY (2006) A moving superimposed finite element method for structural topology optimization. Int J Numer Methods Eng 65(11):1892–1922MathSciNetCrossRefMATH Wang S, Wang MY (2006) A moving superimposed finite element method for structural topology optimization. Int J Numer Methods Eng 65(11):1892–1922MathSciNetCrossRefMATH
Zurück zum Zitat Wang S, Lee FC, Chen DY, Odendaal WG (2004) Effects of parasitic parameters on EMI filter performance. IEEE Trans on Power Electron 19(3):869–877CrossRef Wang S, Lee FC, Chen DY, Odendaal WG (2004) Effects of parasitic parameters on EMI filter performance. IEEE Trans on Power Electron 19(3):869–877CrossRef
Zurück zum Zitat Wei P, Wang MY, Xing X (2010) A study on X-FEM in continuum structural optimization using a level set model. Comput Aided Des 42(8):708–719CrossRef Wei P, Wang MY, Xing X (2010) A study on X-FEM in continuum structural optimization using a level set model. Comput Aided Des 42(8):708–719CrossRef
Zurück zum Zitat Wrenn GA (1989) An indirect method for numerical optimization using the Kreisselmeir-Steinhauser function. NASA Contractor Report (4220) Wrenn GA (1989) An indirect method for numerical optimization using the Kreisselmeir-Steinhauser function. NASA Contractor Report (4220)
Zurück zum Zitat Xia Q, Shi T, Liu S, Wang MY (2012) A level set solution to the stress-based structural shape and topology optimization. Comput Struct 90:55–64CrossRef Xia Q, Shi T, Liu S, Wang MY (2012) A level set solution to the stress-based structural shape and topology optimization. Comput Struct 90:55–64CrossRef
Zurück zum Zitat Yamada T, Watanabe H, Fujii G, Matsumoto T (2013) Topology optimization for a dielectric optical cloak based on an exact level set approach. IEEE Trans Magn 49(5):2073–2076CrossRef Yamada T, Watanabe H, Fujii G, Matsumoto T (2013) Topology optimization for a dielectric optical cloak based on an exact level set approach. IEEE Trans Magn 49(5):2073–2076CrossRef
Zurück zum Zitat Yamasaki S, Nomura T, Kawamoto A, Sato K, Nishiwaki S (2011) A level set-based topology optimization method targeting metallic waveguide design problems. Int J Numer Methods Eng 87(9):844–868MathSciNetCrossRefMATH Yamasaki S, Nomura T, Kawamoto A, Sato K, Nishiwaki S (2011) A level set-based topology optimization method targeting metallic waveguide design problems. Int J Numer Methods Eng 87(9):844–868MathSciNetCrossRefMATH
Zurück zum Zitat Yamasaki S, Yamada T, Matsumoto T (2013) An immersed boundary element method for level-set based topology optimization. Int J Numer Methods Eng 93(9):960–988MathSciNetCrossRefMATH Yamasaki S, Yamada T, Matsumoto T (2013) An immersed boundary element method for level-set based topology optimization. Int J Numer Methods Eng 93(9):960–988MathSciNetCrossRefMATH
Zurück zum Zitat Yamasaki S, Kawamoto A, Nomura T, Fujita K (2015) A consistent grayscale-free topology optimization method using the level-set method and zero-level boundary tracking mesh. Int J Numer Methods Eng 101(10):744–773MathSciNetCrossRefMATH Yamasaki S, Kawamoto A, Nomura T, Fujita K (2015) A consistent grayscale-free topology optimization method using the level-set method and zero-level boundary tracking mesh. Int J Numer Methods Eng 101(10):744–773MathSciNetCrossRefMATH
Zurück zum Zitat Yamasaki S, Kawamoto A, Saito A, Kuroishi M, Fujita K (2017a) Grayscale-free topology optimization for electromagnetic design problem of in-vehicle reactor. Struct Multidiscip Optim 55(3):1079–1090MathSciNetCrossRef Yamasaki S, Kawamoto A, Saito A, Kuroishi M, Fujita K (2017a) Grayscale-free topology optimization for electromagnetic design problem of in-vehicle reactor. Struct Multidiscip Optim 55(3):1079–1090MathSciNetCrossRef
Zurück zum Zitat Yamasaki S, Yamanaka S, Fujita K (2017b) Three-dimensional grayscale-free topology optimization using a level-set based r-refinement method. Int J Numer Methods Eng 112(10):1402–1438MathSciNetCrossRef Yamasaki S, Yamanaka S, Fujita K (2017b) Three-dimensional grayscale-free topology optimization using a level-set based r-refinement method. Int J Numer Methods Eng 112(10):1402–1438MathSciNetCrossRef
Zurück zum Zitat Yoo J, Kikuchi N, Volakis JL (2000) Structural optimization in magnetic devices by the homogenization design method. IEEE Trans Magn 36(3):574–580CrossRef Yoo J, Kikuchi N, Volakis JL (2000) Structural optimization in magnetic devices by the homogenization design method. IEEE Trans Magn 36(3):574–580CrossRef
Zurück zum Zitat Zhang W, Zhong W, Guo X (2014) An explicit length scale control approach in SIMP-based topology optimization. Comput Methods Appl Mech Eng 282:71–86MathSciNetCrossRefMATH Zhang W, Zhong W, Guo X (2014) An explicit length scale control approach in SIMP-based topology optimization. Comput Methods Appl Mech Eng 282:71–86MathSciNetCrossRefMATH
Zurück zum Zitat Zhou S, Li W, Li Q (2010) Level-set based topology optimization for electromagnetic dipole antenna design. J Comput Phys 229(19):6915–6930MathSciNetCrossRefMATH Zhou S, Li W, Li Q (2010) Level-set based topology optimization for electromagnetic dipole antenna design. J Comput Phys 229(19):6915–6930MathSciNetCrossRefMATH
Metadaten
Titel
Topology optimization of conductors in electrical circuit
verfasst von
Katsuya Nomura
Shintaro Yamasaki
Kentaro Yaji
Hiroki Bo
Atsuhiro Takahashi
Takashi Kojima
Kikuo Fujita
Publikationsdatum
11.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 6/2019
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-018-02187-2

Weitere Artikel der Ausgabe 6/2019

Structural and Multidisciplinary Optimization 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.