Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Structural and Multidisciplinary Optimization 4/2018

19.11.2017 | RESEARCH PAPER

Topology optimization of three-phase interpolation models in Darcy-stokes flow

verfasst von: Chao Shen, Liang Hou, Enlai Zhang, Jiahe Lin

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

This paper extends the topology optimization (TO) methods of fluid flows to design the three-phase (i.e. solid, fluid and porous materials) interpolation scheme. In addition to numerous studies about the optimized layout of regions governed by Darcy-Stokes equations, this paper aims to minimize the pressure attenuation in multiple phase interpolation models. The optimized distribution is obtained by considering both the fluid permeability through the porous media and impenetrable inner walls (solid phase) and neglecting buoyancy and other external body forces. Each material phase is assigned with two design variables that are projected into the element space via the regularized interpolation functions. The solid isotropic material with penalization (SIMP) interpolation functions, which is initially developed for minimizing compliance of multiple structural materials, is applied to TO processes of Darcy–Stokes flow. The fields are divided into the design and non-design domains, and TO layouts are assembled to satisfy the given performance functions. The smoothed Heaviside projection filter and Helmholtz-type Partial Differential Equation (PDE) based filter are utilized to produce discrete solutions in the continuum TO processes. Numerical studies are carried out to verify the proposed interpolation scheme.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Andkjær J, Sigmund O (2013) Topology optimized cloak for airborne sound. J Vib Acoust 135(4):041011 CrossRef Andkjær J, Sigmund O (2013) Topology optimized cloak for airborne sound. J Vib Acoust 135(4):041011 CrossRef
Zurück zum Zitat Andreasen CS, Sigmund O (2013) Topology optimization of fluid–structure-interaction problems in poroelasticity. Comput Methods Appl Mech Eng 258:55–62 MathSciNetCrossRefMATH Andreasen CS, Sigmund O (2013) Topology optimization of fluid–structure-interaction problems in poroelasticity. Comput Methods Appl Mech Eng 258:55–62 MathSciNetCrossRefMATH
Zurück zum Zitat Bathe KJ, Zhang H (2004) Finite element developments for general fluid flows with structural interactions. Int J Numer Methods Eng 60(1):213–232 CrossRefMATH Bathe KJ, Zhang H (2004) Finite element developments for general fluid flows with structural interactions. Int J Numer Methods Eng 60(1):213–232 CrossRefMATH
Zurück zum Zitat Betchen L, Straatman AG, Thompson BE (2006) A nonequilibrium finite-volume model for conjugate fluid/porous/solid domains. Numerical Heat Transfer, Part A: Applications 49(6):543–565 CrossRef Betchen L, Straatman AG, Thompson BE (2006) A nonequilibrium finite-volume model for conjugate fluid/porous/solid domains. Numerical Heat Transfer, Part A: Applications 49(6):543–565 CrossRef
Zurück zum Zitat Cameron CJ et al (2014) On the balancing of structural and acoustic performance of a sandwich panel based on topology, property, and size optimization. J Sound Vib 333(13):2677–2698 CrossRef Cameron CJ et al (2014) On the balancing of structural and acoustic performance of a sandwich panel based on topology, property, and size optimization. J Sound Vib 333(13):2677–2698 CrossRef
Zurück zum Zitat Costa VAF, Oliveira LA, Baliga BR, Sousa ACM (2004) Simulation of coupled flows in adjacent porous and open domains using a controle-volume finite-element method. Numerical Heat Transfer, Part A: Applications 45(7):675–697 CrossRef Costa VAF, Oliveira LA, Baliga BR, Sousa ACM (2004) Simulation of coupled flows in adjacent porous and open domains using a controle-volume finite-element method. Numerical Heat Transfer, Part A: Applications 45(7):675–697 CrossRef
Zurück zum Zitat Challis VJ, Guest JK (2009) Level set topology optimization of fluids in stokes flow. Int J Numer Methods Eng 79(10):1284–1308 MathSciNetCrossRefMATH Challis VJ, Guest JK (2009) Level set topology optimization of fluids in stokes flow. Int J Numer Methods Eng 79(10):1284–1308 MathSciNetCrossRefMATH
Zurück zum Zitat Chandesris M, Jamet D (2006) Boundary conditions at a planar fluid-porous interface for a Poiseuille flow. Int J Heat Mass Transf 49(13–14):2137–2150 CrossRefMATH Chandesris M, Jamet D (2006) Boundary conditions at a planar fluid-porous interface for a Poiseuille flow. Int J Heat Mass Transf 49(13–14):2137–2150 CrossRefMATH
Zurück zum Zitat Deaton JD, Grandhi RV (2013) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38 MathSciNetCrossRef Deaton JD, Grandhi RV (2013) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38 MathSciNetCrossRef
Zurück zum Zitat Dedè L et al (2012) Isogeometric analysis for topology optimization with a phase field model. Archives of Computational Methods in Engineering 19(3):427–465 MathSciNetCrossRefMATH Dedè L et al (2012) Isogeometric analysis for topology optimization with a phase field model. Archives of Computational Methods in Engineering 19(3):427–465 MathSciNetCrossRefMATH
Zurück zum Zitat Deng Y et al (2013) Topology optimization of steady Navier–stokes flow with body force. Comput Methods Appl Mech Eng 255:306–321 MathSciNetCrossRefMATH Deng Y et al (2013) Topology optimization of steady Navier–stokes flow with body force. Comput Methods Appl Mech Eng 255:306–321 MathSciNetCrossRefMATH
Zurück zum Zitat Deng Y et al (2012) Topology optimization of steady and unsteady incompressible Navier–stokes flows driven by body forces. Struct Multidiscip Optim 47(4):555–570 MathSciNetCrossRefMATH Deng Y et al (2012) Topology optimization of steady and unsteady incompressible Navier–stokes flows driven by body forces. Struct Multidiscip Optim 47(4):555–570 MathSciNetCrossRefMATH
Zurück zum Zitat Deng Y et al (2011) Topology optimization of unsteady incompressible Navier–stokes flows. J Comput Phys 230(17):6688–6708 MathSciNetCrossRefMATH Deng Y et al (2011) Topology optimization of unsteady incompressible Navier–stokes flows. J Comput Phys 230(17):6688–6708 MathSciNetCrossRefMATH
Zurück zum Zitat Dong H-W et al (2014) Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm. Struct Multidiscip Optim 50(4):593–604 MathSciNetCrossRef Dong H-W et al (2014) Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm. Struct Multidiscip Optim 50(4):593–604 MathSciNetCrossRef
Zurück zum Zitat Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331 CrossRef Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331 CrossRef
Zurück zum Zitat Evgrafov A (2005) The limits of porous materials in the topology optimization of stokes flows. Appl Math Optim 52(3):263–277 MathSciNetCrossRefMATH Evgrafov A (2005) The limits of porous materials in the topology optimization of stokes flows. Appl Math Optim 52(3):263–277 MathSciNetCrossRefMATH
Zurück zum Zitat Guest JK, Prévost JH (2006a) Optimizing multifunctional materials. Design of microstructures for maximized stiffness and fluid permeability International Journal of Solids and Structures 43(22–23):7028–7047 CrossRefMATH Guest JK, Prévost JH (2006a) Optimizing multifunctional materials. Design of microstructures for maximized stiffness and fluid permeability International Journal of Solids and Structures 43(22–23):7028–7047 CrossRefMATH
Zurück zum Zitat Guest JK, Prévost JH (2006b) Topology optimization of creeping fluid flows using a Darcy–stokes finite element. Int J Numer Methods Eng 66(3):461–484 MathSciNetCrossRefMATH Guest JK, Prévost JH (2006b) Topology optimization of creeping fluid flows using a Darcy–stokes finite element. Int J Numer Methods Eng 66(3):461–484 MathSciNetCrossRefMATH
Zurück zum Zitat Guest JK, Prévost JH (2007) Design of maximum permeability material structures. Comput Methods Appl Mech Eng 196(4–6):1006–1017 MathSciNetCrossRefMATH Guest JK, Prévost JH (2007) Design of maximum permeability material structures. Comput Methods Appl Mech Eng 196(4–6):1006–1017 MathSciNetCrossRefMATH
Zurück zum Zitat Kim KH, Yoon GH (2015) Optimal rigid and porous material distributions for noise barrier by acoustic topology optimization. J Sound Vib 339:123–142 CrossRef Kim KH, Yoon GH (2015) Optimal rigid and porous material distributions for noise barrier by acoustic topology optimization. J Sound Vib 339:123–142 CrossRef
Zurück zum Zitat Kreissl S et al (2011) Topology optimization for unsteady flow. Int J Numer Methods Eng 87:1229–1253 MathSciNetMATH Kreissl S et al (2011) Topology optimization for unsteady flow. Int J Numer Methods Eng 87:1229–1253 MathSciNetMATH
Zurück zum Zitat Lee JS et al (2015) Topology optimization for three-phase materials distribution in a dissipative expansion chamber by unified multiphase modeling approach. Comput Methods Appl Mech Eng 287:191–211 MathSciNetCrossRef Lee JS et al (2015) Topology optimization for three-phase materials distribution in a dissipative expansion chamber by unified multiphase modeling approach. Comput Methods Appl Mech Eng 287:191–211 MathSciNetCrossRef
Zurück zum Zitat Lee JS et al (2008) Two-dimensional poroelastic acoustical foam shape design for absorption coefficient maximization by topology optimization method. J Acoust Soc Am 123(4):2094–2106 CrossRef Lee JS et al (2008) Two-dimensional poroelastic acoustical foam shape design for absorption coefficient maximization by topology optimization method. J Acoust Soc Am 123(4):2094–2106 CrossRef
Zurück zum Zitat Lee JW (2015) Optimal topology of reactive muffler achieving target transmission loss values: design and experiment. Appl Acoust 88:104–113 CrossRef Lee JW (2015) Optimal topology of reactive muffler achieving target transmission loss values: design and experiment. Appl Acoust 88:104–113 CrossRef
Zurück zum Zitat Lee JW, Kim YY (2009) Topology optimization of muffler internal partitions for improving acoustical attenuation performance. Int J Numer Methods Eng 80(4):455–477 CrossRefMATH Lee JW, Kim YY (2009) Topology optimization of muffler internal partitions for improving acoustical attenuation performance. Int J Numer Methods Eng 80(4):455–477 CrossRefMATH
Zurück zum Zitat Lin S et al (2015) Topology optimization of fixed-geometry fluid diodes. J Mech Des 137(8):081402 CrossRef Lin S et al (2015) Topology optimization of fixed-geometry fluid diodes. J Mech Des 137(8):081402 CrossRef
Zurück zum Zitat Liu Z et al (2012) Optimization of micro Venturi diode in steady flow at low Reynolds number. Eng Optim 44(11):1389–1404 CrossRef Liu Z et al (2012) Optimization of micro Venturi diode in steady flow at low Reynolds number. Eng Optim 44(11):1389–1404 CrossRef
Zurück zum Zitat Liu Z et al (2005) Structure topology optimization: fully coupled level set method via FEMLAB. Struct Multidiscip Optim 29(6):407–417 MathSciNetCrossRefMATH Liu Z et al (2005) Structure topology optimization: fully coupled level set method via FEMLAB. Struct Multidiscip Optim 29(6):407–417 MathSciNetCrossRefMATH
Zurück zum Zitat Marck G et al (2013) Topology optimization of heat and mass transfer problems: laminar flow. Numerical Heat Transfer, Part B: Fundamentals 63(6):508–539 CrossRef Marck G et al (2013) Topology optimization of heat and mass transfer problems: laminar flow. Numerical Heat Transfer, Part B: Fundamentals 63(6):508–539 CrossRef
Zurück zum Zitat Nield DA (2009) The beavers-Joseph boundary condition and related matters: a historical and critical note. Transp Porous Media 78(3):537–540 MathSciNetCrossRef Nield DA (2009) The beavers-Joseph boundary condition and related matters: a historical and critical note. Transp Porous Media 78(3):537–540 MathSciNetCrossRef
Zurück zum Zitat Olesen LH et al (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier-stokes flow. Int J Numer Methods Eng 65(7):975–1001 MathSciNetCrossRefMATH Olesen LH et al (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier-stokes flow. Int J Numer Methods Eng 65(7):975–1001 MathSciNetCrossRefMATH
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373 MathSciNetCrossRefMATH Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373 MathSciNetCrossRefMATH
Zurück zum Zitat Svanberg K (1995) A globally convergent version of MMA without linesearch. In: Rozvany GIN, Olhoff N (eds) Proceedings of the first world congress of structural and multidisciplinary optimization. Pergamon, Goslar, pp 9–16 Svanberg K (1995) A globally convergent version of MMA without linesearch. In: Rozvany GIN, Olhoff N (eds) Proceedings of the first world congress of structural and multidisciplinary optimization. Pergamon, Goslar, pp 9–16
Zurück zum Zitat Svanberg K, Svärd H (2013) Density filters for topology optimization based on the Pythagorean means. Struct Multidiscip Optim 48(5):859–875 MathSciNetCrossRef Svanberg K, Svärd H (2013) Density filters for topology optimization based on the Pythagorean means. Struct Multidiscip Optim 48(5):859–875 MathSciNetCrossRef
Zurück zum Zitat Yoon GH (2010) Topology optimization for stationary fluid-structure interaction problems using a new monolithic formulation. Int J Numer Methods Eng 82(5):591–616 CrossRefMATH Yoon GH (2010) Topology optimization for stationary fluid-structure interaction problems using a new monolithic formulation. Int J Numer Methods Eng 82(5):591–616 CrossRefMATH
Zurück zum Zitat Yoon GH (2013) Acoustic topology optimization of fibrous material with Delany–Bazley empirical material formulation. J Sound Vib 332(5):1172–1187 CrossRef Yoon GH (2013) Acoustic topology optimization of fibrous material with Delany–Bazley empirical material formulation. J Sound Vib 332(5):1172–1187 CrossRef
Zurück zum Zitat Zhou S, Li Q (2007) The relation of constant mean curvature surfaces to multiphase composites with extremal thermal conductivity. J Phys D Appl Phys 40(19):6083–6093 CrossRef Zhou S, Li Q (2007) The relation of constant mean curvature surfaces to multiphase composites with extremal thermal conductivity. J Phys D Appl Phys 40(19):6083–6093 CrossRef
Zurück zum Zitat Zhou S, Li Q (2008a) Computational Design of Microstructural Composites with tailored thermal conductivity. Numerical Heat Transfer, Part A: Applications 54(7):686–708 CrossRef Zhou S, Li Q (2008a) Computational Design of Microstructural Composites with tailored thermal conductivity. Numerical Heat Transfer, Part A: Applications 54(7):686–708 CrossRef
Zurück zum Zitat Zhou S, Li Q (2008b) Computational design of multi-phase microstructural materials for extremal conductivity. Comput Mater Sci 43(3):549–564 CrossRef Zhou S, Li Q (2008b) Computational design of multi-phase microstructural materials for extremal conductivity. Comput Mater Sci 43(3):549–564 CrossRef
Zurück zum Zitat Zhou S, Li Q (2008c) A variational level set method for the topology optimization of steady-state Navier–stokes flow. J Comput Phys 227(24):10178–10195 MathSciNetCrossRefMATH Zhou S, Li Q (2008c) A variational level set method for the topology optimization of steady-state Navier–stokes flow. J Comput Phys 227(24):10178–10195 MathSciNetCrossRefMATH
Metadaten
Titel
Topology optimization of three-phase interpolation models in Darcy-stokes flow
verfasst von
Chao Shen
Liang Hou
Enlai Zhang
Jiahe Lin
Publikationsdatum
19.11.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2018
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-017-1836-8

Weitere Artikel der Ausgabe 4/2018

Structural and Multidisciplinary Optimization 4/2018 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.