Skip to main content
Erschienen in: Journal of Scientific Computing 3/2021

01.06.2021

Topology-Preserving 3D Image Segmentation Based on Hyperelastic Regularization

verfasst von: Daoping Zhang, Lok Ming Lui

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Image segmentation is to extract meaningful objects from a given image. For degraded images due to occlusions, obscurities or noises, the accuracy of the segmentation result can be severely affected. To alleviate this problem, prior information about the target object is usually introduced. In Chan et al. (J Math Imaging Vis 60(3):401–421, 2018), a topology-preserving registration-based segmentation model was proposed, which is restricted to segment 2D images only. In this paper, we propose a novel 3D topology-preserving registration-based segmentation model with the hyperelastic regularization, which can handle both 2D and 3D images. The existence of the solution of the proposed model is established. We also propose a converging iterative scheme to solve the proposed model. Numerical experiments have been carried out on the synthetic and real images, which demonstrate the effectiveness of our proposed model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Badshah, N., Chen, K.: Image selective segmentation under geometrical constraints using an active contour approach. Commun. Comput. Phys. 7(4), 759 (2010)MathSciNetMATHCrossRef Badshah, N., Chen, K.: Image selective segmentation under geometrical constraints using an active contour approach. Commun. Comput. Phys. 7(4), 759 (2010)MathSciNetMATHCrossRef
2.
Zurück zum Zitat Balafar, M.A., Ramli, A.R., Saripan, M.I., Mashohor, S.: Review of brain MRI image segmentation methods. Artif. Intell. Rev. 33(3), 261–274 (2010)CrossRef Balafar, M.A., Ramli, A.R., Saripan, M.I., Mashohor, S.: Review of brain MRI image segmentation methods. Artif. Intell. Rev. 33(3), 261–274 (2010)CrossRef
3.
Zurück zum Zitat Barrett, R., Berry, M.W., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the solution of linear systems: building blocks for iterative methods, vol. 43. SIAM (1994) Barrett, R., Berry, M.W., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the solution of linear systems: building blocks for iterative methods, vol. 43. SIAM (1994)
4.
Zurück zum Zitat Bers, L., et al.: Quasiconformal mappings, with applications to differential equations, function theory and topology. Bull. Am. Math. Soc. 83(6), 1083–1100 (1977)MathSciNetMATHCrossRef Bers, L., et al.: Quasiconformal mappings, with applications to differential equations, function theory and topology. Bull. Am. Math. Soc. 83(6), 1083–1100 (1977)MathSciNetMATHCrossRef
5.
Zurück zum Zitat Broit, C.: Optimal registration of deformed images. Ph.D. Thesis, University of Pennsylvania, USA (1981) Broit, C.: Optimal registration of deformed images. Ph.D. Thesis, University of Pennsylvania, USA (1981)
6.
Zurück zum Zitat Brown, E.S., Chan, T.F., Bresson, X.: Completely convex formulation of the Chan–Vese image segmentation model. Int. J. Comput. Vis. 98(1), 103–121 (2012)MathSciNetMATHCrossRef Brown, E.S., Chan, T.F., Bresson, X.: Completely convex formulation of the Chan–Vese image segmentation model. Int. J. Comput. Vis. 98(1), 103–121 (2012)MathSciNetMATHCrossRef
7.
Zurück zum Zitat Burger, M., Modersitzki, J., Ruthotto, L.: A hyperelastic regularization energy for image registration. SIAM J. Sci. Comput. 35(1), B132–B148 (2013)MathSciNetMATHCrossRef Burger, M., Modersitzki, J., Ruthotto, L.: A hyperelastic regularization energy for image registration. SIAM J. Sci. Comput. 35(1), B132–B148 (2013)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)MATHCrossRef Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)MATHCrossRef
9.
Zurück zum Zitat Chan, H.L., Yan, S., Lui, L.M., Tai, X.C.: Topology-preserving image segmentation by Beltrami representation of shapes. J. Math. Imaging Vis. 60(3), 401–421 (2018)MathSciNetMATHCrossRef Chan, H.L., Yan, S., Lui, L.M., Tai, X.C.: Topology-preserving image segmentation by Beltrami representation of shapes. J. Math. Imaging Vis. 60(3), 401–421 (2018)MathSciNetMATHCrossRef
10.
Zurück zum Zitat Chan, T., Sandberg, B., Vese, L.: Active contours without edges for textured images. CAM report pp. 02–28 (2002) Chan, T., Sandberg, B., Vese, L.: Active contours without edges for textured images. CAM report pp. 02–28 (2002)
11.
Zurück zum Zitat Chan, T., Zhu, W.: Level set based shape prior segmentation. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 1164–1170. IEEE (2005) Chan, T., Zhu, W.: Level set based shape prior segmentation. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 1164–1170. IEEE (2005)
12.
Zurück zum Zitat Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)MathSciNetMATHCrossRef Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Chan, T.F., Sandberg, B.Y., Vese, L.A.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11(2), 130–141 (2000)CrossRef Chan, T.F., Sandberg, B.Y., Vese, L.A.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11(2), 130–141 (2000)CrossRef
14.
Zurück zum Zitat Chan, T.F., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia (2005)MATHCrossRef Chan, T.F., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia (2005)MATHCrossRef
15.
Zurück zum Zitat Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)MATHCrossRef Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)MATHCrossRef
16.
Zurück zum Zitat Chen, K., Grapiglia, G.N., Yuan, J., Zhang, D.: Improved optimization methods for image registration problems. Numer. Algorithms 80(2), 305–336 (2019)MathSciNetMATHCrossRef Chen, K., Grapiglia, G.N., Yuan, J., Zhang, D.: Improved optimization methods for image registration problems. Numer. Algorithms 80(2), 305–336 (2019)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Christensen, G.E., Rabbitt, R.D., Miller, M.I., et al.: Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 5(10), 1435–1447 (1996)CrossRef Christensen, G.E., Rabbitt, R.D., Miller, M.I., et al.: Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 5(10), 1435–1447 (1996)CrossRef
18.
Zurück zum Zitat Chumchob, N., Chen, K., Brito, C.: A fourth-order variational image registration model and its fast multigrid algorithm. Multisc. Model. Simul. 9(1), 89–128 (2011)MathSciNetMATHCrossRef Chumchob, N., Chen, K., Brito, C.: A fourth-order variational image registration model and its fast multigrid algorithm. Multisc. Model. Simul. 9(1), 89–128 (2011)MathSciNetMATHCrossRef
19.
Zurück zum Zitat Cremers, D., Sochen, N., Schnörr, C.: Towards recognition-based variational segmentation using shape priors and dynamic labeling. In: International Conference on Scale-Space Theories in Computer Vision, pp. 388–400. Springer (2003) Cremers, D., Sochen, N., Schnörr, C.: Towards recognition-based variational segmentation using shape priors and dynamic labeling. In: International Conference on Scale-Space Theories in Computer Vision, pp. 388–400. Springer (2003)
20.
Zurück zum Zitat Diehl, M., Messerer, F.: Local convergence of generalized Gauss–Newton and sequential convex programming. In: 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 3942–3947. IEEE (2019) Diehl, M., Messerer, F.: Local convergence of generalized Gauss–Newton and sequential convex programming. In: 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 3942–3947. IEEE (2019)
21.
Zurück zum Zitat Droske, M., Rumpf, M.: A variational approach to nonrigid morphological image registration. SIAM J. Appl. Math. 64(2), 668–687 (2004)MathSciNetMATHCrossRef Droske, M., Rumpf, M.: A variational approach to nonrigid morphological image registration. SIAM J. Appl. Math. 64(2), 668–687 (2004)MathSciNetMATHCrossRef
24.
Zurück zum Zitat Fischer, B., Modersitzki, J.: A unified approach to fast image registration and a new curvature based registration technique. Linear Algebra Appl. 380, 107–124 (2004)MathSciNetMATHCrossRef Fischer, B., Modersitzki, J.: A unified approach to fast image registration and a new curvature based registration technique. Linear Algebra Appl. 380, 107–124 (2004)MathSciNetMATHCrossRef
25.
Zurück zum Zitat Gardiner, F.P., Lakic, N.: Quasiconformal Teichmuller Theory, vol. 76. American Mathematical Society, Providence (2000)MATH Gardiner, F.P., Lakic, N.: Quasiconformal Teichmuller Theory, vol. 76. American Mathematical Society, Providence (2000)MATH
26.
Zurück zum Zitat Getreuer, P.: Chan–Vese segmentation. Image Process. On Line 2, 214–224 (2012)CrossRef Getreuer, P.: Chan–Vese segmentation. Image Process. On Line 2, 214–224 (2012)CrossRef
27.
Zurück zum Zitat Gout, C., Le Guyader, C., Vese, L.: Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods. Numer. algorithms 39(1–3), 155–173 (2005)MathSciNetMATHCrossRef Gout, C., Le Guyader, C., Vese, L.: Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods. Numer. algorithms 39(1–3), 155–173 (2005)MathSciNetMATHCrossRef
28.
29.
Zurück zum Zitat Haber, E., Modersitzki, J.: Intensity gradient based registration and fusion of multi-modal images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 726–733. Springer (2006) Haber, E., Modersitzki, J.: Intensity gradient based registration and fusion of multi-modal images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 726–733. Springer (2006)
30.
31.
Zurück zum Zitat Haber, E., Modersitzki, J.: Image registration with guaranteed displacement regularity. Int. J. Comput. Vis. 71(3), 361–372 (2007)CrossRef Haber, E., Modersitzki, J.: Image registration with guaranteed displacement regularity. Int. J. Comput. Vis. 71(3), 361–372 (2007)CrossRef
32.
Zurück zum Zitat Haber, E., Modersitzki, J.: Intensity gradient based registration and fusion of multi-modal images. Methods Inf. Med. 46(03), 292–299 (2007)CrossRef Haber, E., Modersitzki, J.: Intensity gradient based registration and fusion of multi-modal images. Methods Inf. Med. 46(03), 292–299 (2007)CrossRef
33.
Zurück zum Zitat Heimann, T., Meinzer, H.P.: Statistical shape models for 3d medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)CrossRef Heimann, T., Meinzer, H.P.: Statistical shape models for 3d medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)CrossRef
34.
Zurück zum Zitat Heldmann, S.: Multimodal registration of MR images with a novel least-squares distance measure. In: Medical Imaging 2010: Image Processing, vol. 7623, p. 76230A. International Society for Optics and Photonics (2010) Heldmann, S.: Multimodal registration of MR images with a novel least-squares distance measure. In: Medical Imaging 2010: Image Processing, vol. 7623, p. 76230A. International Society for Optics and Photonics (2010)
35.
Zurück zum Zitat Ibrahim, M., Chen, K., Brito-Loeza, C.: A novel variational model for image registration using Gaussian curvature. Geom. Imaging Comput. 1(4), 417–446 (2014)MathSciNetMATHCrossRef Ibrahim, M., Chen, K., Brito-Loeza, C.: A novel variational model for image registration using Gaussian curvature. Geom. Imaging Comput. 1(4), 417–446 (2014)MathSciNetMATHCrossRef
36.
Zurück zum Zitat Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)MATHCrossRef Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)MATHCrossRef
37.
Zurück zum Zitat Li, B., Acton, S.T.: Active contour external force using vector field convolution for image segmentation. IEEE Trans. Image Process. 16(8), 2096–2106 (2007)MathSciNetCrossRef Li, B., Acton, S.T.: Active contour external force using vector field convolution for image segmentation. IEEE Trans. Image Process. 16(8), 2096–2106 (2007)MathSciNetCrossRef
38.
Zurück zum Zitat Lie, J., Lysaker, M., Tai, X.C.: A variant of the level set method and applications to image segmentation. Math. Comput. 75(255), 1155–1174 (2006)MathSciNetMATHCrossRef Lie, J., Lysaker, M., Tai, X.C.: A variant of the level set method and applications to image segmentation. Math. Comput. 75(255), 1155–1174 (2006)MathSciNetMATHCrossRef
39.
Zurück zum Zitat Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16(2), 187–198 (1997)CrossRef Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16(2), 187–198 (1997)CrossRef
40.
Zurück zum Zitat Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press on Demand, Oxford (2004)MATH Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press on Demand, Oxford (2004)MATH
41.
Zurück zum Zitat Modersitzki, J.: FAIR: Flexible Algorithms for Image Registration, vol. 6. SIAM, Providence (2009)MATHCrossRef Modersitzki, J.: FAIR: Flexible Algorithms for Image Registration, vol. 6. SIAM, Providence (2009)MATHCrossRef
42.
Zurück zum Zitat Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)MathSciNetMATHCrossRef Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)MathSciNetMATHCrossRef
43.
Zurück zum Zitat Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (2006)MATH Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (2006)MATH
44.
Zurück zum Zitat Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12(4), 617–629 (1975)MathSciNetMATHCrossRef Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12(4), 617–629 (1975)MathSciNetMATHCrossRef
45.
Zurück zum Zitat Roberts, M., Chen, K., Irion, K.L.: A convex geodesic selective model for image segmentation. J. Math. Imaging and Vis. 61(4), 482–503 (2019)MathSciNetMATHCrossRef Roberts, M., Chen, K., Irion, K.L.: A convex geodesic selective model for image segmentation. J. Math. Imaging and Vis. 61(4), 482–503 (2019)MathSciNetMATHCrossRef
46.
Zurück zum Zitat Ruthotto, L.: Hyperelastic image registration: theory, numerical methods, and applications. Ph.D. Thesis, Verlag nicht ermittelbar (2012) Ruthotto, L.: Hyperelastic image registration: theory, numerical methods, and applications. Ph.D. Thesis, Verlag nicht ermittelbar (2012)
47.
Zurück zum Zitat Thiruvenkadam, S.R., Chan, T.F., Hong, B.W.: Segmentation under occlusions using selective shape prior. In: International Conference on Scale Space and Variational Methods in Computer Vision, pp. 191–202. Springer (2007) Thiruvenkadam, S.R., Chan, T.F., Hong, B.W.: Segmentation under occlusions using selective shape prior. In: International Conference on Scale Space and Variational Methods in Computer Vision, pp. 191–202. Springer (2007)
48.
Zurück zum Zitat Zhang, D., Chen, K.: A novel diffeomorphic model for image registration and its algorithm. J. Math. Imaging Vis. 60(8), 1261–1283 (2018)MathSciNetMATHCrossRef Zhang, D., Chen, K.: A novel diffeomorphic model for image registration and its algorithm. J. Math. Imaging Vis. 60(8), 1261–1283 (2018)MathSciNetMATHCrossRef
49.
Zurück zum Zitat Zhang, J., Chen, K.: Variational image registration by a total fractional-order variation model. J. Comput. Phys. 293, 442–461 (2015)MathSciNetMATHCrossRef Zhang, J., Chen, K.: Variational image registration by a total fractional-order variation model. J. Comput. Phys. 293, 442–461 (2015)MathSciNetMATHCrossRef
50.
Zurück zum Zitat Zhang, J., Chen, K., Gould, D.A.: A fast algorithm for automatic segmentation and extraction of a single object by active surfaces. Int. J. Comput. Math. 92(6), 1251–1274 (2015)MathSciNetMATHCrossRef Zhang, J., Chen, K., Gould, D.A.: A fast algorithm for automatic segmentation and extraction of a single object by active surfaces. Int. J. Comput. Math. 92(6), 1251–1274 (2015)MathSciNetMATHCrossRef
51.
Zurück zum Zitat Zhang, J., Chen, K., Yu, B., Gould, D.A.: A local information based variational model for selective image segmentation. Inverse Probl. Imaging 8(1), 293 (2014)MathSciNetMATHCrossRef Zhang, J., Chen, K., Yu, B., Gould, D.A.: A local information based variational model for selective image segmentation. Inverse Probl. Imaging 8(1), 293 (2014)MathSciNetMATHCrossRef
Metadaten
Titel
Topology-Preserving 3D Image Segmentation Based on Hyperelastic Regularization
verfasst von
Daoping Zhang
Lok Ming Lui
Publikationsdatum
01.06.2021
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2021
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-021-01433-y

Weitere Artikel der Ausgabe 3/2021

Journal of Scientific Computing 3/2021 Zur Ausgabe