Skip to main content
Erschienen in: Microsystem Technologies 8/2018

22.01.2018 | Technical Paper

Torsional vibrations of restrained nanotubes using modified couple stress theory

verfasst von: Mustafa Özgür Yayli

Erschienen in: Microsystem Technologies | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the current study, torsional vibration analysis of carbon nano tubes with general elastic boundary conditions is presented via modified couple stress theory. The model developed based on modified couple stress theory gives us opportunity to interpret small size effect. Two torsional springs are attached to a single-walled carbon nanotube at both ends. The idea of the proposed work is to obtain a coefficient matrix for eigen-value analysis involving the torsional spring coefficients. Stoke transformation is employed to work out the Fourier sine series for the carbon nanotube with general elastic boundary conditions. The direct expressions of the vibrational responses with torsional spring coefficients are obtained by using the non classical boundary conditions. In order to demonstrate the validity of the proposed method, results obtained for rigid boundary cases are presented for a comparison with those given in the literature and the results agree with each other exactly. The influences of torsional spring coefficients and small scale parameter on torsional frequencies are investigated in terms of the numerical results for both rigid and restrained boundary conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akgoz B, Civalek O (2014) Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J Vib Control 20:606–616MathSciNetCrossRef Akgoz B, Civalek O (2014) Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J Vib Control 20:606–616MathSciNetCrossRef
Zurück zum Zitat Aydogdu M (2009) Axial vibration of the nanorods with the nonlocal continuum rod model. Phys E 41:861–864CrossRef Aydogdu M (2009) Axial vibration of the nanorods with the nonlocal continuum rod model. Phys E 41:861–864CrossRef
Zurück zum Zitat Aydogdu M, Elishakoff I (2014) On the vibration of nanorods restrained by a linear spring in-span. Mech Res Commun 57:90–96CrossRef Aydogdu M, Elishakoff I (2014) On the vibration of nanorods restrained by a linear spring in-span. Mech Res Commun 57:90–96CrossRef
Zurück zum Zitat Bachtold A, Hadley P, Nakanihi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320CrossRef Bachtold A, Hadley P, Nakanihi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320CrossRef
Zurück zum Zitat Bower C, Rosen R, Jin L, Han J, Zhou O (1999) Deformation of carbon nanotubes in nanotubepolymer composites. Appl Phys Lett 74:3317–3319CrossRef Bower C, Rosen R, Jin L, Han J, Zhou O (1999) Deformation of carbon nanotubes in nanotubepolymer composites. Appl Phys Lett 74:3317–3319CrossRef
Zurück zum Zitat Chang TP (2012) Small scale effect on axial vibration of non-uniform and non-homogeneous nanorods. Comput Mater Sci 54:23–27CrossRef Chang TP (2012) Small scale effect on axial vibration of non-uniform and non-homogeneous nanorods. Comput Mater Sci 54:23–27CrossRef
Zurück zum Zitat Chen Y, Lee JD, Eskandarian A (2004) Atomistic viewpoint of the applicability of microcontinuum theories. Int J Solids Struct 41:2085–2097CrossRefMATH Chen Y, Lee JD, Eskandarian A (2004) Atomistic viewpoint of the applicability of microcontinuum theories. Int J Solids Struct 41:2085–2097CrossRefMATH
Zurück zum Zitat Danesh M, Farajpour A, Mohammadi M (2012) Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method. Mech Res Commun 39:23–27CrossRefMATH Danesh M, Farajpour A, Mohammadi M (2012) Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method. Mech Res Commun 39:23–27CrossRefMATH
Zurück zum Zitat Delfani MR (2017) Extended theory of elastica for free torsional, longitudinal, and radial breathing vibrations of single-walled carbon nanotubes. J Sound Vib 403:104–128CrossRef Delfani MR (2017) Extended theory of elastica for free torsional, longitudinal, and radial breathing vibrations of single-walled carbon nanotubes. J Sound Vib 403:104–128CrossRef
Zurück zum Zitat Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710CrossRef Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710CrossRef
Zurück zum Zitat Gheshlaghi B, Hasheminejad SM (2010) Size dependent torsional vibration of nanotubes. Phys E Low Dimens Syst Nanostruct 43:45–48CrossRef Gheshlaghi B, Hasheminejad SM (2010) Size dependent torsional vibration of nanotubes. Phys E Low Dimens Syst Nanostruct 43:45–48CrossRef
Zurück zum Zitat Gorman DJ (1975) Free Vibration Analysis of Beams and Shafts. Wiley, New York Gorman DJ (1975) Free Vibration Analysis of Beams and Shafts. Wiley, New York
Zurück zum Zitat Guo S, He Y, Liu D, Lei J, Shen L, Li Z (2016) Torsional vibration of carbon nanotube with axial velocity and velocity gradient effect. Int J Mech Sci 119:88–96CrossRef Guo S, He Y, Liu D, Lei J, Shen L, Li Z (2016) Torsional vibration of carbon nanotube with axial velocity and velocity gradient effect. Int J Mech Sci 119:88–96CrossRef
Zurück zum Zitat Huang Z (2012) Nonlocal effects of longitudinal vibration in nanorod with internal long-range interactions. Int J Solids Struct 49:2150–2154CrossRef Huang Z (2012) Nonlocal effects of longitudinal vibration in nanorod with internal long-range interactions. Int J Solids Struct 49:2150–2154CrossRef
Zurück zum Zitat Khademolhosseini F, Rajapakse RKND, Nojeh A (2010) Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models. Comput Mater Sci 48:736–742CrossRef Khademolhosseini F, Rajapakse RKND, Nojeh A (2010) Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models. Comput Mater Sci 48:736–742CrossRef
Zurück zum Zitat Kiani K (2013) Longitudinal, transverse, and torsional vibrations and stabilities of axially moving single-walled carbon nanotubes. Curr Appl Phys 13:1651–60CrossRef Kiani K (2013) Longitudinal, transverse, and torsional vibrations and stabilities of axially moving single-walled carbon nanotubes. Curr Appl Phys 13:1651–60CrossRef
Zurück zum Zitat Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286:2148–2150CrossRef Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286:2148–2150CrossRef
Zurück zum Zitat Lam DC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508CrossRefMATH Lam DC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508CrossRefMATH
Zurück zum Zitat Lei J, He Y, Guo S, Li Z, Liu D (2016) Size-dependent vibration of nickel cantilever microbeams: experiment and gradient elasticity. AIP Adv 6(10):105202CrossRef Lei J, He Y, Guo S, Li Z, Liu D (2016) Size-dependent vibration of nickel cantilever microbeams: experiment and gradient elasticity. AIP Adv 6(10):105202CrossRef
Zurück zum Zitat Li C (2014) Torsional vibration of carbon nanotubes: comparison of two nonlocal models and a semi-continuum model. Int J Mech Sci 82:25–31CrossRef Li C (2014) Torsional vibration of carbon nanotubes: comparison of two nonlocal models and a semi-continuum model. Int J Mech Sci 82:25–31CrossRef
Zurück zum Zitat Liebold C, Mller WH (2016) Comparison of gradient elasticity models for the bending of micromaterials. Comput Mater Sci 116:52–61CrossRef Liebold C, Mller WH (2016) Comparison of gradient elasticity models for the bending of micromaterials. Comput Mater Sci 116:52–61CrossRef
Zurück zum Zitat Lim CW, Li C, Yu JL (2012) Free torsional vibration of nanotubes based on nonlocal stress theory. J Sound Vib 331(12):2798–2808CrossRef Lim CW, Li C, Yu JL (2012) Free torsional vibration of nanotubes based on nonlocal stress theory. J Sound Vib 331(12):2798–2808CrossRef
Zurück zum Zitat Lim C, Zhang G, Reddy J (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313MathSciNetCrossRefMATH Lim C, Zhang G, Reddy J (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313MathSciNetCrossRefMATH
Zurück zum Zitat Loya JA, Aranda-Ruiz J, Fernandez-Saez J (2014) Torsion of cracked nanorods using a nonlocal elasticity model. J Phys D Appl Phys 47(3):115304CrossRef Loya JA, Aranda-Ruiz J, Fernandez-Saez J (2014) Torsion of cracked nanorods using a nonlocal elasticity model. J Phys D Appl Phys 47(3):115304CrossRef
Zurück zum Zitat Lu P, Lee HP, Lu C, Zhang PQ (2007) Application of nonlocal beam models for carbon nanotubes. Int J Solids Struct 44:5289–5300CrossRefMATH Lu P, Lee HP, Lu C, Zhang PQ (2007) Application of nonlocal beam models for carbon nanotubes. Int J Solids Struct 44:5289–5300CrossRefMATH
Zurück zum Zitat Ma HM, Gao XL, Reddy JN (2008) A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J Mech Phys Solids 56(12):3379–3391MathSciNetCrossRefMATH Ma HM, Gao XL, Reddy JN (2008) A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J Mech Phys Solids 56(12):3379–3391MathSciNetCrossRefMATH
Zurück zum Zitat Murmu T, Adhikari S, Wang C (2011) Torsional vibration of carbon nanotubebuckyball systems based on nonlocal elasticity theory. Phys E Low Dimens Syst Nanostruct 43:1276–80CrossRef Murmu T, Adhikari S, Wang C (2011) Torsional vibration of carbon nanotubebuckyball systems based on nonlocal elasticity theory. Phys E Low Dimens Syst Nanostruct 43:1276–80CrossRef
Zurück zum Zitat Murmu T, Adhikari S, McCarthy MA (2014) Axial vibration of embedded nanorods under transverse magnetic field effects via nonlocal elastic continuum theory. J Comput Theor Nanosci 11:1230–1236CrossRef Murmu T, Adhikari S, McCarthy MA (2014) Axial vibration of embedded nanorods under transverse magnetic field effects via nonlocal elastic continuum theory. J Comput Theor Nanosci 11:1230–1236CrossRef
Zurück zum Zitat Park SK, Gao XL (2006) Bernoulli–Euler beam model based on a modified couple stress theory. J Micromech Microeng 16(11):2355–2359CrossRef Park SK, Gao XL (2006) Bernoulli–Euler beam model based on a modified couple stress theory. J Micromech Microeng 16(11):2355–2359CrossRef
Zurück zum Zitat Pradhan SC, Phadikar JK (2009) Bending, buckling and vibration analyses of nonhomogeneous nanotubes using GDQ and nonlocal elasticity theory. Struct Eng Mech 33:193–213CrossRef Pradhan SC, Phadikar JK (2009) Bending, buckling and vibration analyses of nonhomogeneous nanotubes using GDQ and nonlocal elasticity theory. Struct Eng Mech 33:193–213CrossRef
Zurück zum Zitat Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870CrossRef Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870CrossRef
Zurück zum Zitat Ramezani S, Naghdabadi R, Sohrabpour S (2009) Analysis of micropolar elastic beams. Eur J Mech-A/Solids 28(2):202–208CrossRefMATH Ramezani S, Naghdabadi R, Sohrabpour S (2009) Analysis of micropolar elastic beams. Eur J Mech-A/Solids 28(2):202–208CrossRefMATH
Zurück zum Zitat Reddy JN, Pang SD (2008) Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J Appl Phys 103:023511–023526CrossRef Reddy JN, Pang SD (2008) Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J Appl Phys 103:023511–023526CrossRef
Zurück zum Zitat Roostai H, Haghpanahi M (2014) Vibration of nanobeams of different boundary conditions with multiple cracks based on nonlocal elasticity theory. Appl Math Model 38(3):1159–1169MathSciNetCrossRef Roostai H, Haghpanahi M (2014) Vibration of nanobeams of different boundary conditions with multiple cracks based on nonlocal elasticity theory. Appl Math Model 38(3):1159–1169MathSciNetCrossRef
Zurück zum Zitat Ru CQ (2001) Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium. J Mech Phys Solids 49:1265–1279CrossRefMATH Ru CQ (2001) Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium. J Mech Phys Solids 49:1265–1279CrossRefMATH
Zurück zum Zitat Schadler LS, Giannaris SC, Ajayan PM (1998) load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73:3842–3844CrossRef Schadler LS, Giannaris SC, Ajayan PM (1998) load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73:3842–3844CrossRef
Zurück zum Zitat Simsek M (2012) Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods. Comput Mater Sci 61:257–265CrossRef Simsek M (2012) Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods. Comput Mater Sci 61:257–265CrossRef
Zurück zum Zitat Swadener JG, George EP, Pharr GM (2002) The correlation of the indentation size effect measured with indenters of various shapes. J Mech Phys Solids 50(4):681–694CrossRefMATH Swadener JG, George EP, Pharr GM (2002) The correlation of the indentation size effect measured with indenters of various shapes. J Mech Phys Solids 50(4):681–694CrossRefMATH
Zurück zum Zitat Tabassian R (2013) Torsional vibration analysis of shafts based on adomian decomposition method. Appl Comput Mech 7:205–222 Tabassian R (2013) Torsional vibration analysis of shafts based on adomian decomposition method. Appl Comput Mech 7:205–222
Zurück zum Zitat Wagner HD, Lourie O, Feldman Y, Tenne R (1998) Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl Phys Lett 72:188–190CrossRef Wagner HD, Lourie O, Feldman Y, Tenne R (1998) Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl Phys Lett 72:188–190CrossRef
Zurück zum Zitat Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98:124301CrossRef Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98:124301CrossRef
Zurück zum Zitat Wang Q, Wang C (2007) The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18:075702CrossRef Wang Q, Wang C (2007) The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18:075702CrossRef
Zurück zum Zitat Wang L, Ni Q, Li M, Qian Q (2008) The thermal effect on vibration and instability of carbon nanotubes conveying fluid. Phys E 40:3179–3182CrossRef Wang L, Ni Q, Li M, Qian Q (2008) The thermal effect on vibration and instability of carbon nanotubes conveying fluid. Phys E 40:3179–3182CrossRef
Zurück zum Zitat Yang J, Ke LL, Kitipornchai S (2010) Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Phys E 42:1727–1735CrossRef Yang J, Ke LL, Kitipornchai S (2010) Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Phys E 42:1727–1735CrossRef
Zurück zum Zitat Yayli MO (2011) Stability analysis of a gradient elastic beam using finite element method. Int J Phys Sci 6(12):2844–2851 Yayli MO (2011) Stability analysis of a gradient elastic beam using finite element method. Int J Phys Sci 6(12):2844–2851
Zurück zum Zitat Yayli MO (2016) A compact analytical method for vibration analysis of single-walled carbon nanotubes with restrained boundary conditions. J Vib Control 22(10):2542–2555MathSciNetCrossRef Yayli MO (2016) A compact analytical method for vibration analysis of single-walled carbon nanotubes with restrained boundary conditions. J Vib Control 22(10):2542–2555MathSciNetCrossRef
Zurück zum Zitat Yayli MO (2017) A compact analytical method for vibration of micro-sized beams with different boundary conditions. Mech Adv Mater Struct 24(6):496–508CrossRef Yayli MO (2017) A compact analytical method for vibration of micro-sized beams with different boundary conditions. Mech Adv Mater Struct 24(6):496–508CrossRef
Metadaten
Titel
Torsional vibrations of restrained nanotubes using modified couple stress theory
verfasst von
Mustafa Özgür Yayli
Publikationsdatum
22.01.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 8/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3735-3

Weitere Artikel der Ausgabe 8/2018

Microsystem Technologies 8/2018 Zur Ausgabe

Neuer Inhalt