Skip to main content
Erschienen in: Journal of Materials Science 5/2018

01.11.2017 | Metals

Toughening mechanisms of low transformation temperature deposited metals with martensite–austenite dual phases

verfasst von: Shipin Wu, Dongpo Wang, Xinjie Di, Zhi Zhang, Zhongyuan Feng, Xiaoqian Liu, Yezheng Li, Xianqun Meng

Erschienen in: Journal of Materials Science | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Four groups of low transformation temperature (LTT) deposited metals with different Ni contents were prepared, and their microstructures were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and electron backscattered diffraction techniques. The relationship between the microstructures of the mixed martensite–retained austenite (RA) phases and their impact toughness were investigated; it was found that the impact toughness of the LTT deposited metals increased with increasing volume fraction of RA. In particular, its magnitude was higher for the specimens containing the lath martensite, interlath RA, and intercellular RA phases than for those composed of the lath martensite and interlath RA. The toughness of the lath martensite–RA mixed microstructure was primarily determined by the presence of the soft RA phase (containing film interlath RA and stringer intercellular RA), while lath martensite phase characterized by a high density of tangled dislocations and relatively small amount of twinned substructures resulted in the embrittlement of the LTT deposited metals. The dislocation absorption by the retained austenite and transformation-induced plasticity (TRIP) effects of RA were found to be main reasons for the improvement in materials toughness during crack initiation stage. The subsequent crack propagation proceeds via the TRIP and the transformation-induced crack termination mechanisms; it is also significantly affected by the increased fraction of martensite/RA boundaries. The optimization of the RA fraction in the martensite–RA dual structure is a potentially effective method for the toughness enhancement of the LTT deposited metals containing martensite–RA dual phases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gadallah R, Tsutsumi S, Hiraoka K, Murakawa H (2015) Prediction of residual stresses induced by low transformation temperature weld wires and its validation using the contour method. Mar Struct 44:232–253CrossRef Gadallah R, Tsutsumi S, Hiraoka K, Murakawa H (2015) Prediction of residual stresses induced by low transformation temperature weld wires and its validation using the contour method. Mar Struct 44:232–253CrossRef
2.
Zurück zum Zitat Ooi SW, Garnham JE, Ramjaun TI (2014) Review: low transformation temperature weld filler for tensile residual stress reduction. Mater Des 56:773–781CrossRef Ooi SW, Garnham JE, Ramjaun TI (2014) Review: low transformation temperature weld filler for tensile residual stress reduction. Mater Des 56:773–781CrossRef
3.
Zurück zum Zitat Harati E, Karlsson L, Svensson L-E, Dalaei K (2017) Applicability of low transformation temperature welding consumables to increase fatigue strength of welded high strength steels. Int J Fatigue 97:39–47CrossRef Harati E, Karlsson L, Svensson L-E, Dalaei K (2017) Applicability of low transformation temperature welding consumables to increase fatigue strength of welded high strength steels. Int J Fatigue 97:39–47CrossRef
4.
Zurück zum Zitat Kromm A, van der Mee V, Kannengiesser T, Kalfsbeek B (2014) Properties and weldability of modified low transformation temperature filler wires. Weld World 59(3):413–425CrossRef Kromm A, van der Mee V, Kannengiesser T, Kalfsbeek B (2014) Properties and weldability of modified low transformation temperature filler wires. Weld World 59(3):413–425CrossRef
5.
Zurück zum Zitat Alghamdi T, Liu S (2014) Low transformation temperature welding consumables for residual stress management: a numerical model for the prediction of phase transformation-induced compressive residual stresses. Weld J 93(12):458–471 Alghamdi T, Liu S (2014) Low transformation temperature welding consumables for residual stress management: a numerical model for the prediction of phase transformation-induced compressive residual stresses. Weld J 93(12):458–471
6.
Zurück zum Zitat Kromm A, Dixneit J, Kannengiesser T (2014) Residual stress engineering by low transformation temperature alloys—state of the art and recent developments. Weld World 58(5):729–741CrossRef Kromm A, Dixneit J, Kannengiesser T (2014) Residual stress engineering by low transformation temperature alloys—state of the art and recent developments. Weld World 58(5):729–741CrossRef
7.
Zurück zum Zitat Pilhagen J, Sandström R (2014) Influence of nickel on the toughness of lean duplex stainless steel welds. Mater Sci Eng A 602:49–57CrossRef Pilhagen J, Sandström R (2014) Influence of nickel on the toughness of lean duplex stainless steel welds. Mater Sci Eng A 602:49–57CrossRef
8.
Zurück zum Zitat Chen X, Fang Y, Li P, Yu Z, Wu X, Li D (2015) Microstructure, residual stress and mechanical properties of a high strength steel weld using low transformation temperature welding wires. Mater Des 1980–2015(65):1214–1221CrossRef Chen X, Fang Y, Li P, Yu Z, Wu X, Li D (2015) Microstructure, residual stress and mechanical properties of a high strength steel weld using low transformation temperature welding wires. Mater Des 1980–2015(65):1214–1221CrossRef
9.
Zurück zum Zitat Zenitani S, Hayakawa N, Yamamoto J, Hiraoka K, Morikage Y, Kubo T, Yasuda K, Amano K (2013) Development of new low transformation temperature welding consumable to prevent cold cracking in high strength steel welds. Sci Technol Weld Join 12(6):516–522CrossRef Zenitani S, Hayakawa N, Yamamoto J, Hiraoka K, Morikage Y, Kubo T, Yasuda K, Amano K (2013) Development of new low transformation temperature welding consumable to prevent cold cracking in high strength steel welds. Sci Technol Weld Join 12(6):516–522CrossRef
10.
Zurück zum Zitat Altenkirch J, Gibmeier J, Kromm A, Kannengiesser T, Nitschke-Pagel T, Hofmann M (2011) In situ study of structural integrity of low transformation temperature (LTT)-welds. Mater Sci Eng A 528(16–17):5566–5575CrossRef Altenkirch J, Gibmeier J, Kromm A, Kannengiesser T, Nitschke-Pagel T, Hofmann M (2011) In situ study of structural integrity of low transformation temperature (LTT)-welds. Mater Sci Eng A 528(16–17):5566–5575CrossRef
11.
Zurück zum Zitat Qiu H, Wang LN, Zuo H, Arakane G, Hiraoka K (2013) Optimization of the content of retained austenite in Fe–(0.01–0.045)C–14Cr–(4–9)Ni weld metals for strength–ductility balance. Mater Sci Eng A 565:102–111CrossRef Qiu H, Wang LN, Zuo H, Arakane G, Hiraoka K (2013) Optimization of the content of retained austenite in Fe–(0.01–0.045)C–14Cr–(4–9)Ni weld metals for strength–ductility balance. Mater Sci Eng A 565:102–111CrossRef
13.
Zurück zum Zitat Wang MM, Tasan CC, Ponge D, Kostka A, Raabe D (2014) Smaller is less stable: size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels. Acta Mater 79:268–281CrossRef Wang MM, Tasan CC, Ponge D, Kostka A, Raabe D (2014) Smaller is less stable: size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels. Acta Mater 79:268–281CrossRef
14.
Zurück zum Zitat Peng LG, Liu WJ, Liu XH, Zhi Y (2015) Experimental study on the effect of retained austenite on the impact toughness of a low-carbon martensite steel. Adv Mater Res 1095:119–123CrossRef Peng LG, Liu WJ, Liu XH, Zhi Y (2015) Experimental study on the effect of retained austenite on the impact toughness of a low-carbon martensite steel. Adv Mater Res 1095:119–123CrossRef
15.
Zurück zum Zitat Koyama M, Zhang Z, Wang M, Ponge D, Raabe D, Tsuzaki K, Noguchi H, Tasan CC (2017) Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science 355(6329):1055–1057CrossRef Koyama M, Zhang Z, Wang M, Ponge D, Raabe D, Tsuzaki K, Noguchi H, Tasan CC (2017) Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science 355(6329):1055–1057CrossRef
16.
Zurück zum Zitat Kobayashi J, Ina D, Nakajima Y, Sugimoto KI (2013) Effects of microalloying on the impact toughness of ultrahigh-strength TRIP-aided martensitic steels. Metall Mater Trans A 44(11):5006–5017CrossRef Kobayashi J, Ina D, Nakajima Y, Sugimoto KI (2013) Effects of microalloying on the impact toughness of ultrahigh-strength TRIP-aided martensitic steels. Metall Mater Trans A 44(11):5006–5017CrossRef
17.
Zurück zum Zitat Zhang K, Zhang M, Guo Z, Chen N, Rong Y (2011) A new effect of retained austenite on ductility enhancement in high-strength quenching–partitioning–tempering martensitic steel. Mater Sci Eng A 528(29):8486–8491CrossRef Zhang K, Zhang M, Guo Z, Chen N, Rong Y (2011) A new effect of retained austenite on ductility enhancement in high-strength quenching–partitioning–tempering martensitic steel. Mater Sci Eng A 528(29):8486–8491CrossRef
18.
Zurück zum Zitat Zhang S, Wang P, Li D, Li Y (2015) Investigation of the evolution of retained austenite in Fe–13%Cr–4%Ni martensitic stainless steel during intercritical tempering. Mater Des 84:385–394CrossRef Zhang S, Wang P, Li D, Li Y (2015) Investigation of the evolution of retained austenite in Fe–13%Cr–4%Ni martensitic stainless steel during intercritical tempering. Mater Des 84:385–394CrossRef
19.
Zurück zum Zitat Takebayashi S, Kunieda T, Yoshinaga N, Ushioda K, Ogata S (2010) Comparison of the dislocation density in martensitic steels evaluated by some X-ray diffraction methods. ISIJ Int 50(6):875–882CrossRef Takebayashi S, Kunieda T, Yoshinaga N, Ushioda K, Ogata S (2010) Comparison of the dislocation density in martensitic steels evaluated by some X-ray diffraction methods. ISIJ Int 50(6):875–882CrossRef
20.
Zurück zum Zitat Nedjad SH, Gharabagh MRM (2013) Dislocation structure and crystallite size distribution in lath marten. Int J Mater Res 99(11):1248–1255CrossRef Nedjad SH, Gharabagh MRM (2013) Dislocation structure and crystallite size distribution in lath marten. Int J Mater Res 99(11):1248–1255CrossRef
21.
Zurück zum Zitat Kennett SC (2014) Strengthening and toughening mechanisms in low-c microalloyed martensitic steel as influenced by austenite conditioning. Dissertations & Theses—Gradworks Kennett SC (2014) Strengthening and toughening mechanisms in low-c microalloyed martensitic steel as influenced by austenite conditioning. Dissertations & Theses—Gradworks
22.
Zurück zum Zitat Ungár T, Borbély A (1996) The effect of dislocation contrast on x-ray line broadening: a new approach to line profile analysis. Appl Phys Lett 69(21):3173–3175CrossRef Ungár T, Borbély A (1996) The effect of dislocation contrast on x-ray line broadening: a new approach to line profile analysis. Appl Phys Lett 69(21):3173–3175CrossRef
23.
Zurück zum Zitat Koistinen DP, Marburger RE (1959) A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall 7(1):59–60CrossRef Koistinen DP, Marburger RE (1959) A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall 7(1):59–60CrossRef
25.
Zurück zum Zitat Suutala N (1982) Effect of manganese and nitrogen on the solidification mode in austenitic stainless steel welds. Metall Trans A 13(12):2121–2130CrossRef Suutala N (1982) Effect of manganese and nitrogen on the solidification mode in austenitic stainless steel welds. Metall Trans A 13(12):2121–2130CrossRef
26.
Zurück zum Zitat Song YY, Ping DH, Yin FX, Li XY, Li YY (2010) Microstructural evolution and low temperature impact toughness of a Fe–13%Cr–4%Ni–Mo martensitic stainless steel. Mater Sci Eng A 527(3):614–618CrossRef Song YY, Ping DH, Yin FX, Li XY, Li YY (2010) Microstructural evolution and low temperature impact toughness of a Fe–13%Cr–4%Ni–Mo martensitic stainless steel. Mater Sci Eng A 527(3):614–618CrossRef
27.
Zurück zum Zitat Kinney CC, Pytlewski KR, Khachaturyan AG, Morris JW Jr (2014) The microstructure of lath martensite in quenched 9Ni steel. Acta Mater 69(5):372–385CrossRef Kinney CC, Pytlewski KR, Khachaturyan AG, Morris JW Jr (2014) The microstructure of lath martensite in quenched 9Ni steel. Acta Mater 69(5):372–385CrossRef
28.
Zurück zum Zitat Ma XP, Wang LJ, Liu CM, Subramanian SV (2012) Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel. Mater Sci Eng A 539(9):271–279CrossRef Ma XP, Wang LJ, Liu CM, Subramanian SV (2012) Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel. Mater Sci Eng A 539(9):271–279CrossRef
29.
Zurück zum Zitat Karlsen M, Hjelen J, Grong Ø, Rørvik G, Chiron R, Schubert U, Nilsen E (2008) SEM/EBSD based in situ studies of deformation induced phase transformations in supermartensitic stainless steels. Mater Sci Technol 24(1):64–72CrossRef Karlsen M, Hjelen J, Grong Ø, Rørvik G, Chiron R, Schubert U, Nilsen E (2008) SEM/EBSD based in situ studies of deformation induced phase transformations in supermartensitic stainless steels. Mater Sci Technol 24(1):64–72CrossRef
30.
Zurück zum Zitat Chae D, Koss DA (2004) Damage accumulation and failure of HSLA-100 steel. Mater Sci Eng A 366(2):299–309CrossRef Chae D, Koss DA (2004) Damage accumulation and failure of HSLA-100 steel. Mater Sci Eng A 366(2):299–309CrossRef
31.
Zurück zum Zitat Das A, Tarafder S (2009) Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel. Int J Plast 25(11):2222–2247CrossRef Das A, Tarafder S (2009) Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel. Int J Plast 25(11):2222–2247CrossRef
32.
Zurück zum Zitat Ma XP, Wang LJ, Liu CM, Subramanian SV (2012) Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel. Mater Sci Eng A 539:271–279CrossRef Ma XP, Wang LJ, Liu CM, Subramanian SV (2012) Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel. Mater Sci Eng A 539:271–279CrossRef
33.
Zurück zum Zitat Morsdorf L, Jeannin O, Barbier D, Mitsuhara M, Raabe D, Tasan CC (2016) Multiple mechanisms of lath martensite plasticity. Acta Mater 121:202–214CrossRef Morsdorf L, Jeannin O, Barbier D, Mitsuhara M, Raabe D, Tasan CC (2016) Multiple mechanisms of lath martensite plasticity. Acta Mater 121:202–214CrossRef
34.
Zurück zum Zitat Krauss G (1999) Martensite in steel: strength and structure. Mater Sci Eng A s 273–275(99):40–57CrossRef Krauss G (1999) Martensite in steel: strength and structure. Mater Sci Eng A s 273–275(99):40–57CrossRef
35.
Zurück zum Zitat Wang C, Wang M, Shi J, Hui W, Dong H (2008) Effect of microstructural refinement on the toughness of low carbon martensitic steel. Scr Mater 58(6):492–495CrossRef Wang C, Wang M, Shi J, Hui W, Dong H (2008) Effect of microstructural refinement on the toughness of low carbon martensitic steel. Scr Mater 58(6):492–495CrossRef
36.
Zurück zum Zitat Pineau AG, Pelloux RM (1974) Influence of strain-induced martensitic transformations on fatigue crack growth rates in stainless steels. Metall Trans 5(5):1103–1112CrossRef Pineau AG, Pelloux RM (1974) Influence of strain-induced martensitic transformations on fatigue crack growth rates in stainless steels. Metall Trans 5(5):1103–1112CrossRef
38.
Zurück zum Zitat Macek K, Lukáš P, Janovec J, Mikula P, Strunz P, Vrána M, Zaffagnini M (1996) Austenite content and dislocation density in electron-beam welds of a stainless maraging steel. Mater Sci Eng A 208(1):131–138CrossRef Macek K, Lukáš P, Janovec J, Mikula P, Strunz P, Vrána M, Zaffagnini M (1996) Austenite content and dislocation density in electron-beam welds of a stainless maraging steel. Mater Sci Eng A 208(1):131–138CrossRef
39.
Zurück zum Zitat Zikry MA (2009) Dislocation density crystalline plasticity modeling of lath martensitic microstructures in steel alloys. Philos Mag 89(33):3087–3109CrossRef Zikry MA (2009) Dislocation density crystalline plasticity modeling of lath martensitic microstructures in steel alloys. Philos Mag 89(33):3087–3109CrossRef
40.
Zurück zum Zitat Kennett SC, Krauss G, Findley KO (2015) Prior austenite grain size and tempering effects on the dislocation density of low-C Nb–Ti microalloyed lath martensite. Scr Mater 107:123–126CrossRef Kennett SC, Krauss G, Findley KO (2015) Prior austenite grain size and tempering effects on the dislocation density of low-C Nb–Ti microalloyed lath martensite. Scr Mater 107:123–126CrossRef
41.
Zurück zum Zitat Nedjad SH, Gharabagh MRM (2008) Dislocation structure and crystallite size distribution in lath martensite determined by X-ray diffraction peak profile analysis. Int J Mater Res 99(11):1248–1255CrossRef Nedjad SH, Gharabagh MRM (2008) Dislocation structure and crystallite size distribution in lath martensite determined by X-ray diffraction peak profile analysis. Int J Mater Res 99(11):1248–1255CrossRef
42.
Zurück zum Zitat Michiuchi M, Nambu S, Ishimoto Y, Inoue J, Koseki T (2009) Relationship between local deformation behavior and crystallographic features of as-quenched lath martensite during uniaxial tensile deformation. Acta Mater 57(18):5283–5291CrossRef Michiuchi M, Nambu S, Ishimoto Y, Inoue J, Koseki T (2009) Relationship between local deformation behavior and crystallographic features of as-quenched lath martensite during uniaxial tensile deformation. Acta Mater 57(18):5283–5291CrossRef
43.
Zurück zum Zitat Zhou T, Yu H, Wang S (2016) Effect of microstructural types on toughness and microstructural optimization of ultra-heavy steel plate: EBSD analysis and microscopic fracture mechanism. Mater Sci Eng A 658:150–158CrossRef Zhou T, Yu H, Wang S (2016) Effect of microstructural types on toughness and microstructural optimization of ultra-heavy steel plate: EBSD analysis and microscopic fracture mechanism. Mater Sci Eng A 658:150–158CrossRef
44.
Zurück zum Zitat Furuhara T (2010) Key factors in grain refinement of martensite and bainite. Mater Sci Forum 638:3044–3049CrossRef Furuhara T (2010) Key factors in grain refinement of martensite and bainite. Mater Sci Forum 638:3044–3049CrossRef
45.
Zurück zum Zitat Hwang B, Chang GL, Kim SJ (2011) Low-temperature toughening mechanism in thermomechanically processed high-strength low-alloy steels. Metall Mater Trans A 42(3):717–728CrossRef Hwang B, Chang GL, Kim SJ (2011) Low-temperature toughening mechanism in thermomechanically processed high-strength low-alloy steels. Metall Mater Trans A 42(3):717–728CrossRef
46.
Zurück zum Zitat Morito S, Yoshida H, Maki T, Huang X (2006) Effect of block size on the strength of lath martensite in low carbon steels. Mater Sci Eng A 438–440(1):237–240CrossRef Morito S, Yoshida H, Maki T, Huang X (2006) Effect of block size on the strength of lath martensite in low carbon steels. Mater Sci Eng A 438–440(1):237–240CrossRef
47.
Zurück zum Zitat Shibata A, Nagoshi T, Sone M, Morito S, Higo Y (2010) Evaluation of the block boundary and sub-block boundary strengths of ferrous lath martensite using a micro-bending test. Mater Sci Eng A 527(29–30):7538–7544CrossRef Shibata A, Nagoshi T, Sone M, Morito S, Higo Y (2010) Evaluation of the block boundary and sub-block boundary strengths of ferrous lath martensite using a micro-bending test. Mater Sci Eng A 527(29–30):7538–7544CrossRef
48.
Zurück zum Zitat Morris JW Jr, Kinney CC, Pytlewski KR, Adachi Y (2013) Microstructure and cleavage in lath martensitic steels. Sci Technol Adv Mater 14(1):014208CrossRef Morris JW Jr, Kinney CC, Pytlewski KR, Adachi Y (2013) Microstructure and cleavage in lath martensitic steels. Sci Technol Adv Mater 14(1):014208CrossRef
Metadaten
Titel
Toughening mechanisms of low transformation temperature deposited metals with martensite–austenite dual phases
verfasst von
Shipin Wu
Dongpo Wang
Xinjie Di
Zhi Zhang
Zhongyuan Feng
Xiaoqian Liu
Yezheng Li
Xianqun Meng
Publikationsdatum
01.11.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1766-2

Weitere Artikel der Ausgabe 5/2018

Journal of Materials Science 5/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.