Skip to main content
Erschienen in: Polymer Bulletin 10/2019

13.12.2018 | Original Paper

Toughening modification of polyester–urethane networks incorporating oligolactide and oligocaprolactone segments by utilizing castor oil as a core molecule

verfasst von: Shohei Matsuda, Ayaka Shibita, Toshiaki Shimasaki, Naozumi Teramoto, Mitsuhiro Shibata

Erschienen in: Polymer Bulletin | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ring-opening polymerizations of d-lactide, l-lactide and ɛ-caprolactone initiated from hydroxy groups of castor oil (CO) produced three kinds of branched oligomers (CODLAO, COLLAO and COCLO). The reactions of CODLAO, COLLAO and COCLO with hexamethylene diisocyanate (HDI) produced polyester–urethane networks (PUCO-scLAO/CLOs 100/0, 75/25, 50/50, 25/75 and 0/100) with different feed ratios of stereocomplex oligolactide (scLAO, that is a mixture of equal parts of COLLAO and CODLAO) and COCLO. Also, the similar reactions of COLLAO and COCLO with HDI produced homochiral networks (PUCO-LLAO/CLOs). X-ray diffraction and differential scanning calorimetry analyses revealed that stereocomplex crystallites were exclusively formed for all of the PUCO-scLAO/CLOs except for the 0/100 sample, whereas the oligo(l-lactide) segments of PUCO-LLAO/CLOs 100/0 and 75/25 did not homo-crystallize. Scanning electron microscopic analysis revealed that the compatibility for the PUCO-scLAO/CLO and PUCO-LLAO/CLO 75/25–25/75 conetworks slightly decreased with increasing CLO fraction. Dynamic mechanical analysis revealed that the lowering of storage modulus due to glassy-to-rubbery transition for PUCO-scLAO/CLOs 100/0–25/75 was much smaller than that for PUCO-LLAO/CLOs 100/0–25/75. Although the incorporation of CLO segments was effective to increase the elongation at break, the tensile strengths and moduli of the 75/25–25/75 conetworks were considerably lower than those of the 100/0 and 0/100 networks. Consequently, the 100/0 and 0/100 networks exhibited more balanced tensile properties than the 75/25–25/75 conetworks. It is noteworthy that the tensile toughnesses and elongations at break of the CO-modified 100/0 networks are much higher than those of the similar networks using glycerol instead of CO.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Cameron DJA, Shaver MP (2011) Aliphatic polyester polymer stars: synthesis, properties and applications in biomedicine and nanotechnology. Chem Soc Rev 40:1761–1776CrossRefPubMed Cameron DJA, Shaver MP (2011) Aliphatic polyester polymer stars: synthesis, properties and applications in biomedicine and nanotechnology. Chem Soc Rev 40:1761–1776CrossRefPubMed
2.
Zurück zum Zitat Wu W, Wang W, Li J (2015) Star polymers: advances in biomedical applications. Prog Polym Sci 46:55–85CrossRef Wu W, Wang W, Li J (2015) Star polymers: advances in biomedical applications. Prog Polym Sci 46:55–85CrossRef
3.
Zurück zum Zitat Jahandideh A, Muthukumarappan K (2017) Star-shaped lactic acid based systems and their thermosetting resins; Synthesis, characterization, potential opportunities and drawbacks. Eur Polym J 87:360–379CrossRef Jahandideh A, Muthukumarappan K (2017) Star-shaped lactic acid based systems and their thermosetting resins; Synthesis, characterization, potential opportunities and drawbacks. Eur Polym J 87:360–379CrossRef
4.
Zurück zum Zitat Lee JS, Choo DJ, Kim SH, Kim YH (1998) Synthesis and degradation property of star-shaped polylactide. Polymer (Korea) 6:880–889 Lee JS, Choo DJ, Kim SH, Kim YH (1998) Synthesis and degradation property of star-shaped polylactide. Polymer (Korea) 6:880–889
5.
Zurück zum Zitat Lee SH, Kim SH, Han YK, Kim YH (2001) Synthesis and degradation of end-group-functionalized polylactide. J Polym Sci, Part A: Polym Chem 39:973–985CrossRef Lee SH, Kim SH, Han YK, Kim YH (2001) Synthesis and degradation of end-group-functionalized polylactide. J Polym Sci, Part A: Polym Chem 39:973–985CrossRef
6.
Zurück zum Zitat Kim ES, Kim BC, Kim SH (2004) Structural effect of linear and star-shaped poly(l-lactic acid) on physical properties. J Polym Sci, Part B: Polym Phys 42:939–946CrossRef Kim ES, Kim BC, Kim SH (2004) Structural effect of linear and star-shaped poly(l-lactic acid) on physical properties. J Polym Sci, Part B: Polym Phys 42:939–946CrossRef
7.
Zurück zum Zitat Wang L, Dong CM (2006) Synthesis, crystallization kinetics, and spherulitic growth of linear and star-shaped poly(l-lactide)s with different numbers of arms. J Polym Sci, Part A: Polym Chem 44:2226–2236CrossRef Wang L, Dong CM (2006) Synthesis, crystallization kinetics, and spherulitic growth of linear and star-shaped poly(l-lactide)s with different numbers of arms. J Polym Sci, Part A: Polym Chem 44:2226–2236CrossRef
8.
Zurück zum Zitat Lang M, Wong RP, Chu CC (2002) Synthesis and structural analysis of functionalized poly(ɛ-caprolactone)-based three-arm star polymers. J Polym Sci, Part A: Polym Chem 40:1127–1141CrossRef Lang M, Wong RP, Chu CC (2002) Synthesis and structural analysis of functionalized poly(ɛ-caprolactone)-based three-arm star polymers. J Polym Sci, Part A: Polym Chem 40:1127–1141CrossRef
9.
Zurück zum Zitat Shi M, Zhang H, Chen J, Wan X, Zhou Q (2004) Synthesis and characterization of a novel star shapes rod-coil block copolymer. Polym Bull 52:401–408CrossRef Shi M, Zhang H, Chen J, Wan X, Zhou Q (2004) Synthesis and characterization of a novel star shapes rod-coil block copolymer. Polym Bull 52:401–408CrossRef
10.
Zurück zum Zitat Wang JL, Wang L, Dong CM (2005) Synthesis, crystallization, and morphology of star-shaped poly (ɛ-caprolactone). J Polym Sci, Part A: Polym Chem 43:5449–5457CrossRef Wang JL, Wang L, Dong CM (2005) Synthesis, crystallization, and morphology of star-shaped poly (ɛ-caprolactone). J Polym Sci, Part A: Polym Chem 43:5449–5457CrossRef
11.
Zurück zum Zitat Choi J, Kim IK, Kwak SY (2005) Synthesis and characterization of a series of star-branched poly(ɛ-caprolactone)s with the variation in arm numbers and lengths. Polymer 46:9725–9735CrossRef Choi J, Kim IK, Kwak SY (2005) Synthesis and characterization of a series of star-branched poly(ɛ-caprolactone)s with the variation in arm numbers and lengths. Polymer 46:9725–9735CrossRef
12.
Zurück zum Zitat Wang JL, Dong CM (2006) Physical properties, crystallization kinetics, and spherulitic growth of well-defined poly(ɛ-caprolactone)s with different arms. Polymer 47:3218–3228CrossRef Wang JL, Dong CM (2006) Physical properties, crystallization kinetics, and spherulitic growth of well-defined poly(ɛ-caprolactone)s with different arms. Polymer 47:3218–3228CrossRef
13.
Zurück zum Zitat Kricheldorf HR, Lee SR (1996) Polylactones. 40. Nanopretzels by macrocyclic polymerization of lactones via a spirocyclic tin initiator derived from pentaerythritol. Macromolecules 29:8689–8695CrossRef Kricheldorf HR, Lee SR (1996) Polylactones. 40. Nanopretzels by macrocyclic polymerization of lactones via a spirocyclic tin initiator derived from pentaerythritol. Macromolecules 29:8689–8695CrossRef
14.
Zurück zum Zitat Kricheldorf HR, Fechner B (2002) Polylactones. LVIII. Star-shaped polylactones with functional end groups via ring-expansion polymerization with a spiroinitiator. J Polym Sci, Part A: Polym Chem 43:1047–1057CrossRef Kricheldorf HR, Fechner B (2002) Polylactones. LVIII. Star-shaped polylactones with functional end groups via ring-expansion polymerization with a spiroinitiator. J Polym Sci, Part A: Polym Chem 43:1047–1057CrossRef
15.
Zurück zum Zitat Hao Q, Li F, Li Q, Li Y, Jia L, Yang J, Fang Q, Cao A (2005) Preparation and crystallization kinetics of new structurally well-defined star-shaped biodegradable poly(l-lactide) initiated with diverse natural sugar alcohols. Biomacromol 6:2236–2247CrossRef Hao Q, Li F, Li Q, Li Y, Jia L, Yang J, Fang Q, Cao A (2005) Preparation and crystallization kinetics of new structurally well-defined star-shaped biodegradable poly(l-lactide) initiated with diverse natural sugar alcohols. Biomacromol 6:2236–2247CrossRef
16.
Zurück zum Zitat Kunduru KR, Basu A, Zada MH, Domb AJ (2015) Castor oil-based biodegradable polyesters. Biomacromol 16:2572–2587CrossRef Kunduru KR, Basu A, Zada MH, Domb AJ (2015) Castor oil-based biodegradable polyesters. Biomacromol 16:2572–2587CrossRef
17.
Zurück zum Zitat Shibata M, Teramoto N, Kaneko K (2010) Molecular composites composed of castor oil-modified poly(ɛ-caprolactone) and self-assembled hydroxystearic acid fibers. J Polym Sci, Part B: Polym Phys 48:1281–1289CrossRef Shibata M, Teramoto N, Kaneko K (2010) Molecular composites composed of castor oil-modified poly(ɛ-caprolactone) and self-assembled hydroxystearic acid fibers. J Polym Sci, Part B: Polym Phys 48:1281–1289CrossRef
18.
Zurück zum Zitat Tsujimoto T, Haza Y, Yin Y, Uyama H (2011) Synthesis of branched poly(lactic acid) bearing a castor oil core and its plasticization effect on poly(lactic acid). Polym J 43:425–430CrossRef Tsujimoto T, Haza Y, Yin Y, Uyama H (2011) Synthesis of branched poly(lactic acid) bearing a castor oil core and its plasticization effect on poly(lactic acid). Polym J 43:425–430CrossRef
19.
Zurück zum Zitat Hosoda N, Lee EH, Tsujimoto T, Uyama H (2013) Phase separation-induced crystallization of poly(3-hydroxybutyrate-co-hydroxyvalerate) by branched poly(lactic acid). Ind Eng Chem Res 52:1548–1553CrossRef Hosoda N, Lee EH, Tsujimoto T, Uyama H (2013) Phase separation-induced crystallization of poly(3-hydroxybutyrate-co-hydroxyvalerate) by branched poly(lactic acid). Ind Eng Chem Res 52:1548–1553CrossRef
20.
Zurück zum Zitat Ristić IS, Marinović-Cincović M, Cakić SM, Tanasić LM, Budinski-Simendic JK (2013) Synthesis and properties of novel star-shaped polyesters based on l-lactide and castor oil. Polym Bull 70:1723–1738CrossRef Ristić IS, Marinović-Cincović M, Cakić SM, Tanasić LM, Budinski-Simendic JK (2013) Synthesis and properties of novel star-shaped polyesters based on l-lactide and castor oil. Polym Bull 70:1723–1738CrossRef
21.
Zurück zum Zitat Huang S, Sun H, Sun J, Li G, Chen X (2014) Biodegradable tough blends of poly(l-lactide) and poly(castor oil)–poly(l-lactide) copolymer. Mater Lett 133:87–90CrossRef Huang S, Sun H, Sun J, Li G, Chen X (2014) Biodegradable tough blends of poly(l-lactide) and poly(castor oil)–poly(l-lactide) copolymer. Mater Lett 133:87–90CrossRef
22.
Zurück zum Zitat Xie WY, Jiang N, Gan ZH (2008) Effects of multi-arm structure on crystallization and biodegradation of star-shaped poly(ɛ-caprolactone). Macromol Biosci 8:775–784CrossRefPubMed Xie WY, Jiang N, Gan ZH (2008) Effects of multi-arm structure on crystallization and biodegradation of star-shaped poly(ɛ-caprolactone). Macromol Biosci 8:775–784CrossRefPubMed
23.
Zurück zum Zitat Xy Z, Niu Y, Yang L, Xie W, Li H, Gan Z, Wang Z (2010) Morphology, rheology and crystallization behavior of polylactide composites prepared through addition of five-armed star polylactide grafted multiwalled carbon nanotubes. Polymer 51:730–737CrossRef Xy Z, Niu Y, Yang L, Xie W, Li H, Gan Z, Wang Z (2010) Morphology, rheology and crystallization behavior of polylactide composites prepared through addition of five-armed star polylactide grafted multiwalled carbon nanotubes. Polymer 51:730–737CrossRef
26.
Zurück zum Zitat Goddard AR, Pérez-Nieto S, Passos TM, Quilty B, Caemichael K, Irvine DJ, Howdle SM (2016) Controlled polymerisation and purification of branched poly(lactic acid) surfactants in supercritical carbon dioxide. Green Chem 18:4772–4786CrossRef Goddard AR, Pérez-Nieto S, Passos TM, Quilty B, Caemichael K, Irvine DJ, Howdle SM (2016) Controlled polymerisation and purification of branched poly(lactic acid) surfactants in supercritical carbon dioxide. Green Chem 18:4772–4786CrossRef
27.
Zurück zum Zitat Amsden BG (2007) Curable, biodegradable elastomers: emerging biomaterials for drug delivery and tissue engineering. Soft Matter 3:1335–1348CrossRef Amsden BG (2007) Curable, biodegradable elastomers: emerging biomaterials for drug delivery and tissue engineering. Soft Matter 3:1335–1348CrossRef
28.
Zurück zum Zitat Storey RF, Wiggins JS, Puckett AD (1994) Hydrolyzable poly(ester-urethane) networks from l-lysine diisocyante and d, l-lactide/ε-caprolactone homo- and copolyester triols. J Polym Sci, Part A: Polym Chem 32:2345–2363CrossRef Storey RF, Wiggins JS, Puckett AD (1994) Hydrolyzable poly(ester-urethane) networks from l-lysine diisocyante and d, l-lactide/ε-caprolactone homo- and copolyester triols. J Polym Sci, Part A: Polym Chem 32:2345–2363CrossRef
29.
Zurück zum Zitat Amsden BG, Misra G, Gu F, Younes M (2004) Synthesis and characterization of a photo-cross-linked biodegradable elastomer. Biomacromol 5:2479–2486CrossRef Amsden BG, Misra G, Gu F, Younes M (2004) Synthesis and characterization of a photo-cross-linked biodegradable elastomer. Biomacromol 5:2479–2486CrossRef
30.
Zurück zum Zitat Karikari A, Edwards WF, Mecham JB, Long TE (2005) Influence of peripheral hydrogen bonding on the mechanical properties of photo-cross-linked star-shaped poly(d, l-lactide) networks. Biomacromol 6:2866–2874CrossRef Karikari A, Edwards WF, Mecham JB, Long TE (2005) Influence of peripheral hydrogen bonding on the mechanical properties of photo-cross-linked star-shaped poly(d, l-lactide) networks. Biomacromol 6:2866–2874CrossRef
31.
Zurück zum Zitat Nagata M, Sato Y (2005) Synthesis and properties of photocurable biodegradable multiblock copolymers based on pol(ε-caprolactone) and pol(l-lactide) segments. J Polym Sci, Part A: Polym Chem 43:2426–2439CrossRef Nagata M, Sato Y (2005) Synthesis and properties of photocurable biodegradable multiblock copolymers based on pol(ε-caprolactone) and pol(l-lactide) segments. J Polym Sci, Part A: Polym Chem 43:2426–2439CrossRef
32.
Zurück zum Zitat Chang SK, Zeng C, Li J, Ren J (2012) Synthesis of polylactide-based thermoset resin and its curing kinetics. Polym Int 61:1492–1502CrossRef Chang SK, Zeng C, Li J, Ren J (2012) Synthesis of polylactide-based thermoset resin and its curing kinetics. Polym Int 61:1492–1502CrossRef
34.
Zurück zum Zitat Jahandideh A, Esmaeili N, Muthukumarappan K (2017) Effect of lactic acid chain length on thermomechanical properties of star-LA-Xylitol resins and jute reinforced biocompoistes. Polym Int 66:1021–1030CrossRef Jahandideh A, Esmaeili N, Muthukumarappan K (2017) Effect of lactic acid chain length on thermomechanical properties of star-LA-Xylitol resins and jute reinforced biocompoistes. Polym Int 66:1021–1030CrossRef
36.
Zurück zum Zitat Shibita A, Kawasaki S, Shimasaki T, Teramoto N, Shibata M (2016) Stereocomplexation in copolymer networks incorporating enantiomeric glycerol-based 3-armed lactide oligomers and a 2-armed ɛ-caprolactone oligomer. Materials 9:519. https://doi.org/10.3390/ma9070591 CrossRef Shibita A, Kawasaki S, Shimasaki T, Teramoto N, Shibata M (2016) Stereocomplexation in copolymer networks incorporating enantiomeric glycerol-based 3-armed lactide oligomers and a 2-armed ɛ-caprolactone oligomer. Materials 9:519. https://​doi.​org/​10.​3390/​ma9070591 CrossRef
37.
Zurück zum Zitat Isono T, Kondo Y, Otsuka I, Nishiyama Y, Borsali R, Kakuchi T, Satoh T (2013) Synthesis and stereocomplex formation of star-shaped stereoblock polylactides consisting of poly(l-lactide) and poly(d-lactide) arm. Macromolecules 46:8509–8518CrossRef Isono T, Kondo Y, Otsuka I, Nishiyama Y, Borsali R, Kakuchi T, Satoh T (2013) Synthesis and stereocomplex formation of star-shaped stereoblock polylactides consisting of poly(l-lactide) and poly(d-lactide) arm. Macromolecules 46:8509–8518CrossRef
38.
Zurück zum Zitat Patrício T, Bártolo B (2013) Thermal stability of PCL/PLA blends produced by physical blending process. Procedia Eng 59:292–297CrossRef Patrício T, Bártolo B (2013) Thermal stability of PCL/PLA blends produced by physical blending process. Procedia Eng 59:292–297CrossRef
39.
Zurück zum Zitat Dusek K, Spirkova M, Havlicek I (1990) Network formation of polyurethanes due to side reactions. Macromolecules 23:1774–1781CrossRef Dusek K, Spirkova M, Havlicek I (1990) Network formation of polyurethanes due to side reactions. Macromolecules 23:1774–1781CrossRef
40.
Zurück zum Zitat Pant HR, Neupane MP, Pant B, Panthia G, Oh HJ, Lee MH, Kim HY (2011) Fabrication of highly porous poly (ɛ-caprolactone) fibers for novel tissue scaffold via water-bath electrospinning. Colloids Surf B 88:587–592CrossRef Pant HR, Neupane MP, Pant B, Panthia G, Oh HJ, Lee MH, Kim HY (2011) Fabrication of highly porous poly (ɛ-caprolactone) fibers for novel tissue scaffold via water-bath electrospinning. Colloids Surf B 88:587–592CrossRef
41.
Zurück zum Zitat Woo EM, Chang L (2011) Crystallization and morphology of stereocomplexes in nonequimolar mixtures of poly(l-lactic acid) with excess poly(d-lactic acid). Polymer 52:6080–6089CrossRef Woo EM, Chang L (2011) Crystallization and morphology of stereocomplexes in nonequimolar mixtures of poly(l-lactic acid) with excess poly(d-lactic acid). Polymer 52:6080–6089CrossRef
42.
Zurück zum Zitat Shibita A, Takase H, Shibata M (2014) Semi-interpenetrating polymer networks composed of poly(l-lactide) and diisocyanate-bridged 4-arm star-shaped ɛ-caprolactone oligomers. Polymer 55:5407–5416CrossRef Shibita A, Takase H, Shibata M (2014) Semi-interpenetrating polymer networks composed of poly(l-lactide) and diisocyanate-bridged 4-arm star-shaped ɛ-caprolactone oligomers. Polymer 55:5407–5416CrossRef
Metadaten
Titel
Toughening modification of polyester–urethane networks incorporating oligolactide and oligocaprolactone segments by utilizing castor oil as a core molecule
verfasst von
Shohei Matsuda
Ayaka Shibita
Toshiaki Shimasaki
Naozumi Teramoto
Mitsuhiro Shibata
Publikationsdatum
13.12.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 10/2019
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-018-2656-8

Weitere Artikel der Ausgabe 10/2019

Polymer Bulletin 10/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.