Skip to main content
Erschienen in:

17.10.2023

Toward Computational Morse–Floer Homology: Forcing Results for Connecting Orbits by Computing Relative Indices of Critical Points

verfasst von: Jan Bouwe van den Berg, Marcio Gameiro, Jean-Philippe Lessard, Rob Van der Vorst

Erschienen in: Foundations of Computational Mathematics | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To make progress toward better computability of Morse–Floer homology and thus enhance the applicability of Floer theory, it is essential to have tools to determine the relative index of equilibria. Since even the existence of nontrivial stationary points is often difficult to accomplish, extracting their index information is usually out of reach. In this paper, we establish a computer-assisted proof approach to determining relative indices of stationary states. We introduce the general framework and then focus on three example problems described by partial differential equations to show how these ideas work in practice. Based on a rigorous implementation, with accompanying code made available, we determine the relative indices of many stationary points. Moreover, we show how forcing results can be then used to prove theorems about connecting orbits and traveling waves in partial differential equations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Angenent and R. Vandervorst. A superquadratic indefinite elliptic system and its Morse–Conley–Floer homology. Math. Z., 231(2):203–248, 1999.MathSciNetCrossRef S. Angenent and R. Vandervorst. A superquadratic indefinite elliptic system and its Morse–Conley–Floer homology. Math. Z., 231(2):203–248, 1999.MathSciNetCrossRef
2.
Zurück zum Zitat N. Aronszajn. A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. (9), 36:235–249, 1957.MathSciNet N. Aronszajn. A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. (9), 36:235–249, 1957.MathSciNet
3.
Zurück zum Zitat M. P. Bahiana. Cell dynamical system approach to block copolymers. ProQuest LLC, Ann Arbor, MI, 1990. Thesis (Ph.D.)–University of Illinois at Urbana-Champaign. M. P. Bahiana. Cell dynamical system approach to block copolymers. ProQuest LLC, Ann Arbor, MI, 1990. Thesis (Ph.D.)–University of Illinois at Urbana-Champaign.
4.
Zurück zum Zitat B. Bakker, J. B. van den Berg, and R. Vandervorst. A Floer homology approach to traveling waves in reaction–diffusion equations on cylinders. SIAM J. Appl. Dyn. Syst., 17(4):2634–2706, 2018.MathSciNetCrossRef B. Bakker, J. B. van den Berg, and R. Vandervorst. A Floer homology approach to traveling waves in reaction–diffusion equations on cylinders. SIAM J. Appl. Dyn. Syst., 17(4):2634–2706, 2018.MathSciNetCrossRef
5.
Zurück zum Zitat B. Breuer, J. Horák, P. J. McKenna, and M. Plum. A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam. J. Differential Equations, 224(1):60–97, 2006.MathSciNetCrossRef B. Breuer, J. Horák, P. J. McKenna, and M. Plum. A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam. J. Differential Equations, 224(1):60–97, 2006.MathSciNetCrossRef
6.
Zurück zum Zitat B. Breuer, P. J. McKenna, and M. Plum. Multiple solutions for a semilinear boundary value problem: a computational multiplicity proof. J. Differential Equations, 195(1):243–269, 2003.MathSciNetCrossRef B. Breuer, P. J. McKenna, and M. Plum. Multiple solutions for a semilinear boundary value problem: a computational multiplicity proof. J. Differential Equations, 195(1):243–269, 2003.MathSciNetCrossRef
7.
Zurück zum Zitat R. Castelli and J.-P. Lessard. A method to rigorously enclose eigenpairs of complex interval matrices. In Applications of mathematics 2013, pages 21–31. Acad. Sci. Czech Repub. Inst. Math., Prague, 2013. R. Castelli and J.-P. Lessard. A method to rigorously enclose eigenpairs of complex interval matrices. In Applications of mathematics 2013, pages 21–31. Acad. Sci. Czech Repub. Inst. Math., Prague, 2013.
8.
Zurück zum Zitat R. Choksi, M. A. Peletier, and J. F. Williams. On the phase diagram for microphase separation of diblock copolymers: an approach via a nonlocal Cahn–Hilliard functional. SIAM J. Appl. Math., 69(6):1712–1738, 2009.MathSciNetCrossRef R. Choksi, M. A. Peletier, and J. F. Williams. On the phase diagram for microphase separation of diblock copolymers: an approach via a nonlocal Cahn–Hilliard functional. SIAM J. Appl. Math., 69(6):1712–1738, 2009.MathSciNetCrossRef
9.
Zurück zum Zitat J. Cyranka and T. Wanner. Computer-assisted proof of heteroclinic connections in the one-dimensional Ohta–Kawasaki Model. SIAM J. Appl. Dyn. Syst., 17(1):694–731, 2018.MathSciNetCrossRef J. Cyranka and T. Wanner. Computer-assisted proof of heteroclinic connections in the one-dimensional Ohta–Kawasaki Model. SIAM J. Appl. Dyn. Syst., 17(1):694–731, 2018.MathSciNetCrossRef
10.
Zurück zum Zitat S. Day, Y. Hiraoka, K. Mischaikow, and T. Ogawa. Rigorous numerics for global dynamics: a study of the Swift-Hohenberg equation. SIAM J. Appl. Dyn. Syst., 4(1):1–31 (electronic), 2005.MathSciNetCrossRef S. Day, Y. Hiraoka, K. Mischaikow, and T. Ogawa. Rigorous numerics for global dynamics: a study of the Swift-Hohenberg equation. SIAM J. Appl. Dyn. Syst., 4(1):1–31 (electronic), 2005.MathSciNetCrossRef
11.
Zurück zum Zitat S. Day, J.-P. Lessard, and K. Mischaikow. Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal., 45(4):1398–1424 (electronic), 2007.MathSciNetCrossRef S. Day, J.-P. Lessard, and K. Mischaikow. Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal., 45(4):1398–1424 (electronic), 2007.MathSciNetCrossRef
12.
Zurück zum Zitat R. de la Llave and J. D. Mireles James. Connecting orbits for compact infinite dimensional maps: computer assisted proofs of existence. SIAM J. Appl. Dyn. Syst., 15(2):1268–1323, 2016.MathSciNetCrossRef R. de la Llave and J. D. Mireles James. Connecting orbits for compact infinite dimensional maps: computer assisted proofs of existence. SIAM J. Appl. Dyn. Syst., 15(2):1268–1323, 2016.MathSciNetCrossRef
13.
Zurück zum Zitat B. Fiedler, A. Scheel, and M. I. Vishik. Large patterns of elliptic systems in infinite cylinders. J. Math. Pures Appl. (9), 77(9):879–907, 1998.MathSciNetCrossRef B. Fiedler, A. Scheel, and M. I. Vishik. Large patterns of elliptic systems in infinite cylinders. J. Math. Pures Appl. (9), 77(9):879–907, 1998.MathSciNetCrossRef
14.
15.
16.
Zurück zum Zitat R. Gardner. Existence of multidimensional travelling wave solutions of an initial-boundary value problem. J. Differential Equations, 61(3):335–379, 1986.MathSciNetCrossRef R. Gardner. Existence of multidimensional travelling wave solutions of an initial-boundary value problem. J. Differential Equations, 61(3):335–379, 1986.MathSciNetCrossRef
18.
Zurück zum Zitat D. B. Henry. Some infinite-dimensional Morse–Smale systems defined by parabolic partial differential equations. J. Differential Equations, 59(2):165–205, 1985.MathSciNetCrossRef D. B. Henry. Some infinite-dimensional Morse–Smale systems defined by parabolic partial differential equations. J. Differential Equations, 59(2):165–205, 1985.MathSciNetCrossRef
19.
Zurück zum Zitat A. Hungria, J.-P. Lessard, and J. D. Mireles James. Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach. Math. Comp., 85(299):1427–1459, 2016.MathSciNetCrossRef A. Hungria, J.-P. Lessard, and J. D. Mireles James. Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach. Math. Comp., 85(299):1427–1459, 2016.MathSciNetCrossRef
20.
Zurück zum Zitat W. D. Kalies, K. Mischaikow, and R. C. A. M. Vandervorst. Lattice structures for attractors I. J. Comput. Dyn., 1(2):307–338, 2014.MathSciNetCrossRef W. D. Kalies, K. Mischaikow, and R. C. A. M. Vandervorst. Lattice structures for attractors I. J. Comput. Dyn., 1(2):307–338, 2014.MathSciNetCrossRef
21.
Zurück zum Zitat W. D. Kalies, K. Mischaikow, and R. C. A. M. Vandervorst. Lattice structures for attractors III. J. Dynam. Differential Equations, 2021. W. D. Kalies, K. Mischaikow, and R. C. A. M. Vandervorst. Lattice structures for attractors III. J. Dynam. Differential Equations, 2021.
22.
Zurück zum Zitat H. Koch, A. Schenkel, and P. Wittwer. Computer-assisted proofs in analysis and programming in logic: a case study. SIAM Rev., 38(4):565–604, 1996.MathSciNetCrossRef H. Koch, A. Schenkel, and P. Wittwer. Computer-assisted proofs in analysis and programming in logic: a case study. SIAM Rev., 38(4):565–604, 1996.MathSciNetCrossRef
23.
Zurück zum Zitat J.-P. Lessard and J. D. Mireles James. Computer assisted Fourier analysis in sequence spaces of varying regularity. SIAM J. Math. Anal., 49(1):530–561, 2017.MathSciNetCrossRef J.-P. Lessard and J. D. Mireles James. Computer assisted Fourier analysis in sequence spaces of varying regularity. SIAM J. Math. Anal., 49(1):530–561, 2017.MathSciNetCrossRef
24.
Zurück zum Zitat A. Mielke. Essential manifolds for an elliptic problem in an infinite strip. J. Differential Equations, 110(2):322–355, 1994.MathSciNetCrossRef A. Mielke. Essential manifolds for an elliptic problem in an infinite strip. J. Differential Equations, 110(2):322–355, 1994.MathSciNetCrossRef
25.
Zurück zum Zitat J. D. Mireles James and K. Mischaikow. Computational proofs in dynamics. In B. Engquist, editor, Encyclopedia of Applied and Computational Mathematics, pages 288–295. Springer, 2015. J. D. Mireles James and K. Mischaikow. Computational proofs in dynamics. In B. Engquist, editor, Encyclopedia of Applied and Computational Mathematics, pages 288–295. Springer, 2015.
26.
Zurück zum Zitat K. Mischaikow. Global asymptotic dynamics of gradient-like bistable equations. SIAM J. Math. Anal., 26(5):1199–1224, 1995.MathSciNetCrossRef K. Mischaikow. Global asymptotic dynamics of gradient-like bistable equations. SIAM J. Math. Anal., 26(5):1199–1224, 1995.MathSciNetCrossRef
27.
Zurück zum Zitat R. E. Moore. Interval analysis. Prentice-Hall Inc., Englewood Cliffs, N.J., 1966. R. E. Moore. Interval analysis. Prentice-Hall Inc., Englewood Cliffs, N.J., 1966.
28.
Zurück zum Zitat M. T. Nakao, M. Plum, and Y. Watanabe. Numerical verification methods and computer-assisted proofs for partial differential equations, volume 53 of Springer Series in Computational Mathematics. Springer, Singapore, 2019. M. T. Nakao, M. Plum, and Y. Watanabe. Numerical verification methods and computer-assisted proofs for partial differential equations, volume 53 of Springer Series in Computational Mathematics. Springer, Singapore, 2019.
29.
Zurück zum Zitat Y. Nishiura and I. Ohnishi. Some mathematical aspects of the micro-phase separation in diblock copolymers. Phys. D, 84(1-2):31–39, 1995.MathSciNetCrossRef Y. Nishiura and I. Ohnishi. Some mathematical aspects of the micro-phase separation in diblock copolymers. Phys. D, 84(1-2):31–39, 1995.MathSciNetCrossRef
30.
Zurück zum Zitat T. Ohta and K. Kawasaki. Equilibrium morphology of block copolymer melts. Macromolecules, 19:2621–2632, 1986.CrossRef T. Ohta and K. Kawasaki. Equilibrium morphology of block copolymer melts. Macromolecules, 19:2621–2632, 1986.CrossRef
31.
Zurück zum Zitat J. Robbin and D. Salamon. The spectral flow and the Maslov index. Bull. London Math. Soc., 27(1):1–33, 1995.MathSciNetCrossRef J. Robbin and D. Salamon. The spectral flow and the Maslov index. Bull. London Math. Soc., 27(1):1–33, 1995.MathSciNetCrossRef
33.
Zurück zum Zitat S. M. Rump. Verification methods: rigorous results using floating-point arithmetic. Acta Numer., 19:287–449, 2010.MathSciNetCrossRef S. M. Rump. Verification methods: rigorous results using floating-point arithmetic. Acta Numer., 19:287–449, 2010.MathSciNetCrossRef
34.
Zurück zum Zitat D. Salamon. Morse theory, the Conley index and Floer homology. Bull. London Math. Soc., 22(2):113–140, 1990.MathSciNetCrossRef D. Salamon. Morse theory, the Conley index and Floer homology. Bull. London Math. Soc., 22(2):113–140, 1990.MathSciNetCrossRef
35.
Zurück zum Zitat D. Salamon and E. Zehnder. Floer homology, the Maslov index and periodic orbits of Hamiltonian equations. pages 573–600, 1990. D. Salamon and E. Zehnder. Floer homology, the Maslov index and periodic orbits of Hamiltonian equations. pages 573–600, 1990.
36.
Zurück zum Zitat D. Salamon and E. Zehnder. Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Comm. Pure Appl. Math., 45(10):1303–1360, 1992.MathSciNetCrossRef D. Salamon and E. Zehnder. Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Comm. Pure Appl. Math., 45(10):1303–1360, 1992.MathSciNetCrossRef
37.
38.
Zurück zum Zitat M. Schwarz. Morse homology, volume 111 of Progress in Mathematics. Birkhäuser Verlag, Basel, 1993. M. Schwarz. Morse homology, volume 111 of Progress in Mathematics. Birkhäuser Verlag, Basel, 1993.
40.
Zurück zum Zitat R. Thom. Sur une partition en cellules associée à une fonction sur une variété. C. R. Acad. Sci. Paris, 228:973–975, 1949.MathSciNet R. Thom. Sur une partition en cellules associée à une fonction sur une variété. C. R. Acad. Sci. Paris, 228:973–975, 1949.MathSciNet
41.
Zurück zum Zitat W. Tucker. Validated numerics. Princeton University Press, Princeton, NJ, 2011. A short introduction to rigorous computations. W. Tucker. Validated numerics. Princeton University Press, Princeton, NJ, 2011. A short introduction to rigorous computations.
43.
Zurück zum Zitat J. B. van den Berg, R. Ghrist, R. C. Vandervorst, and W. Wójcik. Braid Floer homology. J. Differential Equations, 259(5):1663–1721, 2015.MathSciNetCrossRef J. B. van den Berg, R. Ghrist, R. C. Vandervorst, and W. Wójcik. Braid Floer homology. J. Differential Equations, 259(5):1663–1721, 2015.MathSciNetCrossRef
44.
Zurück zum Zitat J. B. van den Berg and J.-P. Lessard. Chaotic braided solutions via rigorous numerics: chaos in the Swift-Hohenberg equation. SIAM J. Appl. Dyn. Syst., 7(3):988–1031, 2008.MathSciNetCrossRef J. B. van den Berg and J.-P. Lessard. Chaotic braided solutions via rigorous numerics: chaos in the Swift-Hohenberg equation. SIAM J. Appl. Dyn. Syst., 7(3):988–1031, 2008.MathSciNetCrossRef
45.
Zurück zum Zitat J. B. van den Berg and J.-P. Lessard. Rigorous numerics in dynamics. Notices of the American Mathematical Society, 62(9):1057–1061, 2015.MathSciNetCrossRef J. B. van den Berg and J.-P. Lessard. Rigorous numerics in dynamics. Notices of the American Mathematical Society, 62(9):1057–1061, 2015.MathSciNetCrossRef
46.
Zurück zum Zitat J. B. van den Berg and J. F. Williams. Validation of the bifurcation diagram in the 2D Ohta–Kawasaki problem. Nonlinearity, 30(4):1584–1638, 2017.MathSciNetCrossRef J. B. van den Berg and J. F. Williams. Validation of the bifurcation diagram in the 2D Ohta–Kawasaki problem. Nonlinearity, 30(4):1584–1638, 2017.MathSciNetCrossRef
47.
Zurück zum Zitat J. B. van den Berg and J. F. Williams. Optimal periodic structures with general space group symmetries in the Ohta–Kawasaki problem. Phys. D, 415:Paper No. 132732, 23, 2021. J. B. van den Berg and J. F. Williams. Optimal periodic structures with general space group symmetries in the Ohta–Kawasaki problem. Phys. D, 415:Paper No. 132732, 23, 2021.
48.
Zurück zum Zitat Y. Watanabe, M. Plum, and M. T. Nakao. A computer-assisted instability proof for the Orr–Sommerfeld problem with Poiseuille flow. ZAMM Z. Angew. Math. Mech., 89(1):5–18, 2009.MathSciNetCrossRef Y. Watanabe, M. Plum, and M. T. Nakao. A computer-assisted instability proof for the Orr–Sommerfeld problem with Poiseuille flow. ZAMM Z. Angew. Math. Mech., 89(1):5–18, 2009.MathSciNetCrossRef
Metadaten
Titel
Toward Computational Morse–Floer Homology: Forcing Results for Connecting Orbits by Computing Relative Indices of Critical Points
verfasst von
Jan Bouwe van den Berg
Marcio Gameiro
Jean-Philippe Lessard
Rob Van der Vorst
Publikationsdatum
17.10.2023
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 5/2024
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-023-09623-w