Zum Inhalt
Erschienen in:

01.12.2016 | Original Article

Toward early and order-of-magnitude cascade prediction in social networks

verfasst von: Ruocheng Guo, Elham Shaabani, Abhinav Bhatnagar, Paulo Shakarian

Erschienen in: Social Network Analysis and Mining | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

When a piece of information (microblog, photograph, video, link, etc.) starts to spread in a social network, an important question arises: will it spread to “viral” proportions—where “viral” can be defined as an order-of-magnitude increase. However, several previous studies have established that cascade size and frequency are related through a power law—which leads to a severe imbalance in this classification problem. In this paper, we devise a suite of measurements based on “structural diversity”—the variety of social contexts (communities) in which individuals partaking in a given cascade engage. We demonstrate these measures are able to distinguish viral from non-viral cascades, despite the severe imbalance of the data for this problem. Further, we leverage these measurements as features in a classification approach, successfully predicting microblogs that grow from 50 to 500 reposts with precision of 0.69 and recall of 0.52 for the viral class—despite this class comprising under 2 % of samples. This significantly outperforms our baseline approach as well as the current state of the art. We also show this approach also performs well for identifying whether cascades observed for 60 min will grow to 500 reposts as well as demonstrate how we can trade-off between precision and recall.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Dieser Inhalt ist nur sichtbar, wenn du eingeloggt bist und die entsprechende Berechtigung hast.
Fußnoten
Dieser Inhalt ist nur sichtbar, wenn du eingeloggt bist und die entsprechende Berechtigung hast.
Literatur
Dieser Inhalt ist nur sichtbar, wenn du eingeloggt bist und die entsprechende Berechtigung hast.
Metadaten
Titel
Toward early and order-of-magnitude cascade prediction in social networks
verfasst von
Ruocheng Guo
Elham Shaabani
Abhinav Bhatnagar
Paulo Shakarian
Publikationsdatum
01.12.2016
Verlag
Springer Vienna
Erschienen in
Social Network Analysis and Mining / Ausgabe 1/2016
Print ISSN: 1869-5450
Elektronische ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0372-7