Skip to main content
Erschienen in: Journal of Materials Science 9/2016

28.01.2016 | Original Paper

Toward the development of a quantitative tool for predicting dispersion of nanocomposites under non-equilibrium processing conditions

verfasst von: Irene Hassinger, Xiaolin Li, He Zhao, Hongyi Xu, Yanhui Huang, Aditya Prasad, Linda Schadler, Wei Chen, L. Catherine Brinson

Erschienen in: Journal of Materials Science | Ausgabe 9/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Developing process-structure relationships that predict the impact of the filler-matrix interfacial thermodynamics is crucial to nanocomposite design. This work focuses on developing quantitative relationships between the filler-matrix interfacial energy, the processing conditions, and the nanoparticle dispersion in polymer nanocomposites. We use a database of nanocomposites made of polypropylene, polystyrene, and poly(methyl methacrylate) with three different surface-modified silica nanoparticles under controlled processing conditions. The silica surface was modified with three different monofunctional silanes: octyldimethylmethoxysilane, chloropropyldimethylethoxysilane, and aminopropyldimethylethoxysilane. Three descriptors were used to establish the relationship between interfacial energy, processing conditions, and final nanoparticle dispersion. The ratio of the work of adhesion between filler and polymer to the work of adhesion between filler to filler (descriptor: \( W_{\text{PF}} /W_{\text{FF}} \)) and the mixing energy for the production of the nanocomposites (descriptor: E γ ) are used to determine the final dispersion state of the nanoparticles. The dispersion state is described using a descriptor that characterizes the amount of interfacial area from TEM images (descriptor: \( \bar{I}_{\text{filler}} \)). In order to capture the descriptors accurately, the TEM images of the nanocomposites are binarized using a pixel-wise neighbor-dependent Niblack thresholding algorithm. The significance of the microstructural descriptors was ranked using supervised learning and the interfacial area emerged as the most significant descriptor for describing the nanoparticle dispersion. Our results show a stronger dependence of the final dispersion on the interfacial energy than the processing conditions. Nevertheless, for the final dispersion state, both descriptors have to be taken into account. We also introduce a matrix-dependent term to establish a quantitatively non-linear relationship between the processing and microstructure descriptors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ramanathan T, Abdala AA, Stankovich S et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331CrossRef Ramanathan T, Abdala AA, Stankovich S et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331CrossRef
2.
Zurück zum Zitat Ramanathan T, Liu H, Brinson LC (2005) Functionalized SWNT/polymer nanocomposites for dramatic property improvement. J Polym Sci, Part B 43:2269–2279CrossRef Ramanathan T, Liu H, Brinson LC (2005) Functionalized SWNT/polymer nanocomposites for dramatic property improvement. J Polym Sci, Part B 43:2269–2279CrossRef
3.
Zurück zum Zitat Tyan HL, Liu YC, Wei KH (1999) Thermally and mechanically enhanced clay/polyimide nanocomposite via reactive organoclay. Chem Mater 11:1942–1947CrossRef Tyan HL, Liu YC, Wei KH (1999) Thermally and mechanically enhanced clay/polyimide nanocomposite via reactive organoclay. Chem Mater 11:1942–1947CrossRef
4.
Zurück zum Zitat Ash BJ, Siegel RW, Schadler LS (2004) Mechanical behavior of alumina/poly(methyl methacrylate) nanocomposites. Macromolecules 37:1358–1369CrossRef Ash BJ, Siegel RW, Schadler LS (2004) Mechanical behavior of alumina/poly(methyl methacrylate) nanocomposites. Macromolecules 37:1358–1369CrossRef
5.
Zurück zum Zitat Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575CrossRef Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575CrossRef
6.
Zurück zum Zitat Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Experimental trends in polymer nanocomposites—a review. Mater Sci Eng, A 393:1–11CrossRef Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Experimental trends in polymer nanocomposites—a review. Mater Sci Eng, A 393:1–11CrossRef
7.
Zurück zum Zitat Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204CrossRef Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204CrossRef
8.
Zurück zum Zitat Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O (1993) Synthesis and properties of polyimide clay hybrid. J Polym Sci Polym Chem. 31:2493–2498CrossRef Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O (1993) Synthesis and properties of polyimide clay hybrid. J Polym Sci Polym Chem. 31:2493–2498CrossRef
9.
Zurück zum Zitat Zhu A, Cai A, Zhang J, Jia H, Wang J (2008) PMMA-grafted-silica/PVC nanocomposites: mechanical performance and barrier properties. J Appl Polym Sci 108:2189–2196CrossRef Zhu A, Cai A, Zhang J, Jia H, Wang J (2008) PMMA-grafted-silica/PVC nanocomposites: mechanical performance and barrier properties. J Appl Polym Sci 108:2189–2196CrossRef
10.
Zurück zum Zitat Ophir A, Dotan A, Belinsky I, Kenig S (2010) Barrier and mechanical properties of nanocomposites based on polymer blends and organoclays. J Appl Polym Sci 116:72–83CrossRef Ophir A, Dotan A, Belinsky I, Kenig S (2010) Barrier and mechanical properties of nanocomposites based on polymer blends and organoclays. J Appl Polym Sci 116:72–83CrossRef
11.
Zurück zum Zitat Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials. 3:3468–3517CrossRef Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials. 3:3468–3517CrossRef
12.
Zurück zum Zitat Villmow T, Kretzschmar B, Pötschke P (2010) Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites. Compos Sci Technol. 70:2045–2055CrossRef Villmow T, Kretzschmar B, Pötschke P (2010) Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites. Compos Sci Technol. 70:2045–2055CrossRef
13.
Zurück zum Zitat Villmow T, Pötschke P, Pegel S, Häussler L, Kretzschmar B (2008) Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly (lactic acid) matrix. Polymer 49:3500–3509CrossRef Villmow T, Pötschke P, Pegel S, Häussler L, Kretzschmar B (2008) Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly (lactic acid) matrix. Polymer 49:3500–3509CrossRef
14.
Zurück zum Zitat Kasaliwal G (2011) Analysis of multiwalled carbon nanotube agglomerate dispersion in polymer melts. PhD dissertation, University of Dresden Kasaliwal G (2011) Analysis of multiwalled carbon nanotube agglomerate dispersion in polymer melts. PhD dissertation, University of Dresden
15.
Zurück zum Zitat Natarajan B, Li Y, Deng H, Brinson LC, Schadler LS (2013) Effect of interfacial energetics on dispersion and glass transition temperature in polymer nanocomposites. Macromolecules 46:2833–2841CrossRef Natarajan B, Li Y, Deng H, Brinson LC, Schadler LS (2013) Effect of interfacial energetics on dispersion and glass transition temperature in polymer nanocomposites. Macromolecules 46:2833–2841CrossRef
17.
Zurück zum Zitat Gacitua W, Ballerini A, Zhang J (2005) Polymer nanocomposites: synthetic and natural fillers a review. Maderas Ciencia y tecnol 7:159–178CrossRef Gacitua W, Ballerini A, Zhang J (2005) Polymer nanocomposites: synthetic and natural fillers a review. Maderas Ciencia y tecnol 7:159–178CrossRef
18.
Zurück zum Zitat Wang M (2003) Developing bioactive composite materials for tissue replacement. Biomaterials 24:2133–2151CrossRef Wang M (2003) Developing bioactive composite materials for tissue replacement. Biomaterials 24:2133–2151CrossRef
19.
Zurück zum Zitat Ahmed M (1979) Coloring of plastics: theory and practice. Van Nostrand Reinhold, New York Ahmed M (1979) Coloring of plastics: theory and practice. Van Nostrand Reinhold, New York
20.
Zurück zum Zitat Parfitt GD (1969) Fundamental aspects of dispersion, dispersion of solids in liquids: with special reference to pigments, chap 3. Elsevier, Amsterdam, pp 81–121 Parfitt GD (1969) Fundamental aspects of dispersion, dispersion of solids in liquids: with special reference to pigments, chap 3. Elsevier, Amsterdam, pp 81–121
21.
Zurück zum Zitat Hartley PA, Parfitt GD (1985) Dispersion of powders in liquids. 1. The contribution of the van der Waals force to the cohesiveness of carbon black powders. Langmuir 1:651–657CrossRef Hartley PA, Parfitt GD (1985) Dispersion of powders in liquids. 1. The contribution of the van der Waals force to the cohesiveness of carbon black powders. Langmuir 1:651–657CrossRef
22.
Zurück zum Zitat Wang Y, Lee WC (2004) Interfacial interactions in calcium carbonate–polypropylene composites. 2: effect of compounding on the dispersion and the impact properties of surface-modified composites. Polym Compos 25:451–460CrossRef Wang Y, Lee WC (2004) Interfacial interactions in calcium carbonate–polypropylene composites. 2: effect of compounding on the dispersion and the impact properties of surface-modified composites. Polym Compos 25:451–460CrossRef
23.
Zurück zum Zitat Socher R, Krause B, Müller MT, Boldt R, Pötschke P (2012) The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites. Polymer 53:495–504CrossRef Socher R, Krause B, Müller MT, Boldt R, Pötschke P (2012) The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites. Polymer 53:495–504CrossRef
24.
Zurück zum Zitat Alig I, Pötschke P, Lellinger D et al (2012) Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer 53:4–28CrossRef Alig I, Pötschke P, Lellinger D et al (2012) Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer 53:4–28CrossRef
25.
Zurück zum Zitat Yamada H, Manas-Zloczower I, Feke DL (1998) Observation and analysis of the infiltration of polymer liquids into carbon black agglomerates. Chem Eng Sci 53:1963–1972CrossRef Yamada H, Manas-Zloczower I, Feke DL (1998) Observation and analysis of the infiltration of polymer liquids into carbon black agglomerates. Chem Eng Sci 53:1963–1972CrossRef
26.
Zurück zum Zitat Levresse P, Manas-Zloczower I, Feke DL, Bomal Y, Bortzmeyer D (1999) Observation and analysis of the infiltration of liquid polymers into calcium carbonate agglomerates. Powder Technol 106:62–70CrossRef Levresse P, Manas-Zloczower I, Feke DL, Bomal Y, Bortzmeyer D (1999) Observation and analysis of the infiltration of liquid polymers into calcium carbonate agglomerates. Powder Technol 106:62–70CrossRef
27.
Zurück zum Zitat Vaia RA, Jandt KD, Kramer EJ, Giannelis EP (1995) Kinetics of polymer melt intercalation. Macromolecules 28:8080–8085CrossRef Vaia RA, Jandt KD, Kramer EJ, Giannelis EP (1995) Kinetics of polymer melt intercalation. Macromolecules 28:8080–8085CrossRef
28.
Zurück zum Zitat Washburn EW (1921) The dynamics of capillary flow. Phys Rev Lett 17:273–283 Washburn EW (1921) The dynamics of capillary flow. Phys Rev Lett 17:273–283
29.
Zurück zum Zitat Lozano T, Lafleur PG, Grmela M, Thibodeau C (2004) Effect of filler dispersion on polypropylene morphology. Polym Eng Sci 44:880–890CrossRef Lozano T, Lafleur PG, Grmela M, Thibodeau C (2004) Effect of filler dispersion on polypropylene morphology. Polym Eng Sci 44:880–890CrossRef
30.
Zurück zum Zitat Atkins P, de Paula J (2010) Physical chemistry. Oxford University Press, New York Atkins P, de Paula J (2010) Physical chemistry. Oxford University Press, New York
31.
Zurück zum Zitat Gendron R, Binet D (1998) State of dispersion: polypropylene filled with calcium carbonate. J Vinyl Addit Technol 4:54–59CrossRef Gendron R, Binet D (1998) State of dispersion: polypropylene filled with calcium carbonate. J Vinyl Addit Technol 4:54–59CrossRef
32.
Zurück zum Zitat Khan J, Harton SE, Akcora P, Benicewicz BC, Kumar SK (2009) Polymer crystallization in nanocomposites: spatial reorganization of nanoparticles. Macromolecules 42:5741–5744CrossRef Khan J, Harton SE, Akcora P, Benicewicz BC, Kumar SK (2009) Polymer crystallization in nanocomposites: spatial reorganization of nanoparticles. Macromolecules 42:5741–5744CrossRef
33.
Zurück zum Zitat Kitazaki Y, Hata T (1972) Extension of Fowkes’ equation and estimation of surface tension of polymer solids. Nippon Setchaku Kyokaishi. 8:131 Kitazaki Y, Hata T (1972) Extension of Fowkes’ equation and estimation of surface tension of polymer solids. Nippon Setchaku Kyokaishi. 8:131
34.
Zurück zum Zitat Wu S (1971) Calculation of interfacial tension in polymer systems. J Polym Sci Polym Symp 34:19–30CrossRef Wu S (1971) Calculation of interfacial tension in polymer systems. J Polym Sci Polym Symp 34:19–30CrossRef
35.
Zurück zum Zitat Khoshkava V, Kamal MR (2013) Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites. Biomacromolecules 14:3155–3163CrossRef Khoshkava V, Kamal MR (2013) Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites. Biomacromolecules 14:3155–3163CrossRef
36.
Zurück zum Zitat Dee GT, Sauer BB (1992) The molecular weight and temperature dependence of polymer surface tension: comparison of experiment with interface gradient theory. J Colloid Interface Sci 152:85–103CrossRef Dee GT, Sauer BB (1992) The molecular weight and temperature dependence of polymer surface tension: comparison of experiment with interface gradient theory. J Colloid Interface Sci 152:85–103CrossRef
37.
Zurück zum Zitat Chung CI (2000) Extrusion of polymers. Hanser, Munich Chung CI (2000) Extrusion of polymers. Hanser, Munich
38.
Zurück zum Zitat Starr FW, Douglas JF, Glotzer SC (2003) Origin of particle clustering in a simulated polymer nanocomposite and its impact on rheology. J Chem Phys. 119:1777–1788CrossRef Starr FW, Douglas JF, Glotzer SC (2003) Origin of particle clustering in a simulated polymer nanocomposite and its impact on rheology. J Chem Phys. 119:1777–1788CrossRef
39.
Zurück zum Zitat Stöckelhuber KW, Das A, Jurk R, Heinrich G (2010) Contribution of physico-chemical properties of interfaces on dispersibility, adhesion and flocculation of filler particles in rubber. Polymer 51:1954–1963CrossRef Stöckelhuber KW, Das A, Jurk R, Heinrich G (2010) Contribution of physico-chemical properties of interfaces on dispersibility, adhesion and flocculation of filler particles in rubber. Polymer 51:1954–1963CrossRef
40.
Zurück zum Zitat Wang M-J (1998) Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates. Rubber Chem Technol 71:520–589CrossRef Wang M-J (1998) Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates. Rubber Chem Technol 71:520–589CrossRef
41.
Zurück zum Zitat Good RJ, Girifalco LA (1960) A theory for estimation of surface and interfacial energies. III. Estimation of surface energies of solids from contact angle data. J Phys Chem 64:561–565CrossRef Good RJ, Girifalco LA (1960) A theory for estimation of surface and interfacial energies. III. Estimation of surface energies of solids from contact angle data. J Phys Chem 64:561–565CrossRef
42.
Zurück zum Zitat Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747CrossRef Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747CrossRef
43.
Zurück zum Zitat Fowkes FM (1964) Attractive forces at interfaces. Ind Eng Chem 56:40–52CrossRef Fowkes FM (1964) Attractive forces at interfaces. Ind Eng Chem 56:40–52CrossRef
44.
Zurück zum Zitat Mezger TG (2006) The rheology handbook: for users of rotational and oscillatory rheometers. Vincentz Network GmbH & Co KG, Hannover Mezger TG (2006) The rheology handbook: for users of rotational and oscillatory rheometers. Vincentz Network GmbH & Co KG, Hannover
45.
Zurück zum Zitat Edmondson IR, Fenner RT (1975) Melting of thermoplastics in single screw extruders. Polymer 16:49–56CrossRef Edmondson IR, Fenner RT (1975) Melting of thermoplastics in single screw extruders. Polymer 16:49–56CrossRef
46.
Zurück zum Zitat Tadmor Z, Duvdevani I, Klein I (1967) Melting in plasticating extuders theory and experiments. Polym Eng Sci 7:198–217CrossRef Tadmor Z, Duvdevani I, Klein I (1967) Melting in plasticating extuders theory and experiments. Polym Eng Sci 7:198–217CrossRef
47.
Zurück zum Zitat Fukase H, Kunio T, Shinya S, Nomura A (1982) A plasticating model for single-screw extruders. Polym Eng Sci 22:578–586CrossRef Fukase H, Kunio T, Shinya S, Nomura A (1982) A plasticating model for single-screw extruders. Polym Eng Sci 22:578–586CrossRef
48.
Zurück zum Zitat Donovan RC (1971) A theoretical melting model for plasticating extruders. Polym Eng Sci 11:247–257CrossRef Donovan RC (1971) A theoretical melting model for plasticating extruders. Polym Eng Sci 11:247–257CrossRef
49.
Zurück zum Zitat Abeykoon C, Kelly AL, Brown EC et al (2014) Investigation of the process energy demand in polymer extrusion: a brief review and an experimental study. Appl Energy 136:726–737CrossRef Abeykoon C, Kelly AL, Brown EC et al (2014) Investigation of the process energy demand in polymer extrusion: a brief review and an experimental study. Appl Energy 136:726–737CrossRef
50.
Zurück zum Zitat Abeykoon C, Li K, McAfee M, Martin PJ, Deng J, Kelly AL (2010) Modelling the effects of operating conditions on die melt temperature homogeneity in single screw extrusion. In: UKACC International Conference on CONTROL 2010, pp 42–47 Abeykoon C, Li K, McAfee M, Martin PJ, Deng J, Kelly AL (2010) Modelling the effects of operating conditions on die melt temperature homogeneity in single screw extrusion. In: UKACC International Conference on CONTROL 2010, pp 42–47
51.
Zurück zum Zitat Lai E, Yu DW (2000) Modeling of the plasticating process in a single-screw extruder: a fast-track approach. Polym Eng Sci 40:1074–1084CrossRef Lai E, Yu DW (2000) Modeling of the plasticating process in a single-screw extruder: a fast-track approach. Polym Eng Sci 40:1074–1084CrossRef
52.
Zurück zum Zitat Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vision Graph 29:273–285CrossRef Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vision Graph 29:273–285CrossRef
53.
Zurück zum Zitat Otsu N (1975) A threshold selection method from gray-level histograms. Automatica. 11:23–27 Otsu N (1975) A threshold selection method from gray-level histograms. Automatica. 11:23–27
54.
Zurück zum Zitat Kittler J, Illingworth J (1986) Minimum error thresholding. Pattern Recogn 19:41–47CrossRef Kittler J, Illingworth J (1986) Minimum error thresholding. Pattern Recogn 19:41–47CrossRef
55.
Zurück zum Zitat Weszka JS, Nagel RN, Rosenfeld A (1974) A threshold selection technique. IEEE Trans Comput 100:1322–1326CrossRef Weszka JS, Nagel RN, Rosenfeld A (1974) A threshold selection technique. IEEE Trans Comput 100:1322–1326CrossRef
56.
Zurück zum Zitat Xu H, Dikin DA, Burkhart C, Chen W (2014) Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials. Comput Mater Sci 85:206–216CrossRef Xu H, Dikin DA, Burkhart C, Chen W (2014) Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials. Comput Mater Sci 85:206–216CrossRef
57.
Zurück zum Zitat Khurshid K, Siddiqi I, Faure C, Vincent N (2009) Comparison of Niblack inspired binarization methods for ancient documents. In: IS&T/SPIE Electronic imaging, vol 7247, pp 72470U–72470U-9 Khurshid K, Siddiqi I, Faure C, Vincent N (2009) Comparison of Niblack inspired binarization methods for ancient documents. In: IS&T/SPIE Electronic imaging, vol 7247, pp 72470U–72470U-9
58.
Zurück zum Zitat Niblack W (1985) An introduction to digital image processing. Strandberg Publishing Company, Birkeroed Niblack W (1985) An introduction to digital image processing. Strandberg Publishing Company, Birkeroed
59.
Zurück zum Zitat Zhao H, Li X, Huang Y, Schadler L, Chen W, Brinson LC NanoMine—a material data resource for polymer nanocomposites: database, data analytics and predictive tools (manuscript under review) Zhao H, Li X, Huang Y, Schadler L, Chen W, Brinson LC NanoMine—a material data resource for polymer nanocomposites: database, data analytics and predictive tools (manuscript under review)
60.
Zurück zum Zitat Borbely A, Csikor FF, Zabler S, Cloetens P, Biermann H (2004) Three-dimensional characterization of the microstructure of a metal–matrix composite by holotomography. Mater Sci Eng, A 367:40–50CrossRef Borbely A, Csikor FF, Zabler S, Cloetens P, Biermann H (2004) Three-dimensional characterization of the microstructure of a metal–matrix composite by holotomography. Mater Sci Eng, A 367:40–50CrossRef
61.
Zurück zum Zitat Rollett AD, Lee SB, Campman R, Rohrer GS (2007) Three-dimensional characterization of microstructure by electron back-scatter diffraction. Ann Rev Mater Res. 37:627–658CrossRef Rollett AD, Lee SB, Campman R, Rohrer GS (2007) Three-dimensional characterization of microstructure by electron back-scatter diffraction. Ann Rev Mater Res. 37:627–658CrossRef
62.
Zurück zum Zitat Tewari A, Gokhale AM (2004) Nearest-neighbor distances between particles of finite size in three-dimensional uniform random microstructures, Mater Sci Eng. A. 385:332–341 Tewari A, Gokhale AM (2004) Nearest-neighbor distances between particles of finite size in three-dimensional uniform random microstructures, Mater Sci Eng. A. 385:332–341
63.
Zurück zum Zitat Pytz R (2004) Microstructure description of composites, statistical methods, mechanics of microstructure materials, CISM courses and lectures. Springer, New York Pytz R (2004) Microstructure description of composites, statistical methods, mechanics of microstructure materials, CISM courses and lectures. Springer, New York
64.
Zurück zum Zitat Scalon JD, Fieller NRJ, Stillman EC, Atkinson HV (2003) Spatial pattern analysis of second-phase particles in composite materials. Mater Sci Eng, A 356:245–257CrossRef Scalon JD, Fieller NRJ, Stillman EC, Atkinson HV (2003) Spatial pattern analysis of second-phase particles in composite materials. Mater Sci Eng, A 356:245–257CrossRef
65.
Zurück zum Zitat Xu H, Li Y, Brinson C, Chen W (2014) A Descriptor-Based Design Methodology for Developing Heterogeneous Microstructural Materials System. J Mech Design. 136:051007CrossRef Xu H, Li Y, Brinson C, Chen W (2014) A Descriptor-Based Design Methodology for Developing Heterogeneous Microstructural Materials System. J Mech Design. 136:051007CrossRef
66.
Zurück zum Zitat Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New YorkCrossRef Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New YorkCrossRef
67.
Zurück zum Zitat Sundararaghavan V, Zabaras N (2005) Classification and reconstruction of three-dimensional microstructures using support vector machines. Comput Mater Sci 32:223–239CrossRef Sundararaghavan V, Zabaras N (2005) Classification and reconstruction of three-dimensional microstructures using support vector machines. Comput Mater Sci 32:223–239CrossRef
68.
Zurück zum Zitat Basanta D, Miodownik MA, Holm EA, Bentley PJ (2005) Using genetic algorithms to evolve three-dimensional microstructures from two-dimensional micrographs. Metall Mater Trans A 36:1643–1652CrossRef Basanta D, Miodownik MA, Holm EA, Bentley PJ (2005) Using genetic algorithms to evolve three-dimensional microstructures from two-dimensional micrographs. Metall Mater Trans A 36:1643–1652CrossRef
69.
Zurück zum Zitat Quiblier JA (1984) A new three-dimensional modeling technique for studying porous media. J Colloid Interf Sci. 98:84–102CrossRef Quiblier JA (1984) A new three-dimensional modeling technique for studying porous media. J Colloid Interf Sci. 98:84–102CrossRef
70.
Zurück zum Zitat Jiang Z, Chen W, Burkhart C (2012) A Hybrid Optimization Approach to 3D Porous Microstructure Reconstruction via Gaussian Random Field. In: ASME 2012 international design engineering technical conferences & computers and information in engineering conference (Chicago), IDETC2012-71173 Jiang Z, Chen W, Burkhart C (2012) A Hybrid Optimization Approach to 3D Porous Microstructure Reconstruction via Gaussian Random Field. In: ASME 2012 international design engineering technical conferences & computers and information in engineering conference (Chicago), IDETC2012-71173
71.
Zurück zum Zitat Grigoriu M (2003) Random field models for two-phase microstructures. J Appl Phys 94:3762–3770CrossRef Grigoriu M (2003) Random field models for two-phase microstructures. J Appl Phys 94:3762–3770CrossRef
72.
Zurück zum Zitat Ganesh VV, Chawla N (2005) Effect of particle orientation anisotropy on the tensile behavior of metal matrix composites: experiments and microstructure-based simulation. Mater Sci Eng, A 391:342–353CrossRef Ganesh VV, Chawla N (2005) Effect of particle orientation anisotropy on the tensile behavior of metal matrix composites: experiments and microstructure-based simulation. Mater Sci Eng, A 391:342–353CrossRef
73.
Zurück zum Zitat Thomas M, Boyard N, Perez L, Jarny Y, Delaunay D (2008) Representative volume element of anisotropic unidirectional carbon–epoxy composite with high-fibre volume fraction. Compos Sci Technol. 68:3184–3192CrossRef Thomas M, Boyard N, Perez L, Jarny Y, Delaunay D (2008) Representative volume element of anisotropic unidirectional carbon–epoxy composite with high-fibre volume fraction. Compos Sci Technol. 68:3184–3192CrossRef
74.
Zurück zum Zitat Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372CrossRef Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372CrossRef
75.
Zurück zum Zitat Xu H, Liu R, Choudhary A, Chen W (2014) A machine learning-based design representation method for designing heterogeneous microstructures. In: ASME 2014 international design engineering technical conferences and computers and information in engineering conference, V02BT03A009-V02BT03A009 Xu H, Liu R, Choudhary A, Chen W (2014) A machine learning-based design representation method for designing heterogeneous microstructures. In: ASME 2014 international design engineering technical conferences and computers and information in engineering conference, V02BT03A009-V02BT03A009
Metadaten
Titel
Toward the development of a quantitative tool for predicting dispersion of nanocomposites under non-equilibrium processing conditions
verfasst von
Irene Hassinger
Xiaolin Li
He Zhao
Hongyi Xu
Yanhui Huang
Aditya Prasad
Linda Schadler
Wei Chen
L. Catherine Brinson
Publikationsdatum
28.01.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 9/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9698-1

Weitere Artikel der Ausgabe 9/2016

Journal of Materials Science 9/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.