Skip to main content

2017 | OriginalPaper | Buchkapitel

Towards a Myoelectrically Controlled Virtual Reality Interface for Synergy-Based Stroke Rehabilitation

verfasst von : Denise J. Berger, Andrea d’Avella

Erschienen in: Converging Clinical and Engineering Research on Neurorehabilitation II

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent studies endorse the use of robotic and virtual reality (VR) systems for rehabilitation. Myoelectric (EMG) signals have been used for prosthetic control but their application to rehabilitation has been limited so far. Here we present a novel approach using an EMG controlled VR interface to test the synergistic organization of the neural control of arm movements in healthy subjects. EMG control offers the possibility to manipulate visual feedback according to the subject’s muscle activity and to test effects of simulated interventions on the human neuromuscular system that are either compatible or incompatible with the synergies. Such EMG controlled VR interface may open up new possibilities for rehabilitation as it offers the possibility to provide assistance tailored to the individual changes in synergistic organization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Chen, F.Z. Shaw, Progress in sensorimotor rehabilitative physical therapy programs for stroke patients. World J. Clin. Cases 2(8), 316–326 (2014)CrossRef C. Chen, F.Z. Shaw, Progress in sensorimotor rehabilitative physical therapy programs for stroke patients. World J. Clin. Cases 2(8), 316–326 (2014)CrossRef
2.
Zurück zum Zitat A. Turolla et al., Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J. Neuroeng. Rehabil. 10(85) (2013) A. Turolla et al., Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J. Neuroeng. Rehabil. 10(85) (2013)
3.
Zurück zum Zitat A.A. Timmermans, H.A. Seelen, R.D. Willmann, H. Kingma, Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J. Neuroeng. Rehabil. 6(1) 2009 A.A. Timmermans, H.A. Seelen, R.D. Willmann, H. Kingma, Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J. Neuroeng. Rehabil. 6(1) 2009
4.
Zurück zum Zitat L. Marchal-Crespo, D.J. Reinkensmeyer, Review of control strategies for robotic movement training after neurologic injury. J. Neuroeng. Rehabil. 6(20) (2009) L. Marchal-Crespo, D.J. Reinkensmeyer, Review of control strategies for robotic movement training after neurologic injury. J. Neuroeng. Rehabil. 6(20) (2009)
5.
Zurück zum Zitat R. Song, K.Y. Tong, X. Hu, W. Zhou, Myoelectrically controlled wrist robot for stroke rehabilitation. J. Neuroeng. Rehabil. 10(52) (2013) R. Song, K.Y. Tong, X. Hu, W. Zhou, Myoelectrically controlled wrist robot for stroke rehabilitation. J. Neuroeng. Rehabil. 10(52) (2013)
6.
Zurück zum Zitat L. Dipietro et al., Customized interactive robotic treatment for stroke: EMG-triggered therapy. IEEE Trans. Neural. Syst. Rehabil. Eng. 13, 325–334 (2005) L. Dipietro et al., Customized interactive robotic treatment for stroke: EMG-triggered therapy. IEEE Trans. Neural. Syst. Rehabil. Eng. 13, 325–334 (2005)
7.
Zurück zum Zitat C. Loconsole, S. Dettori, A. Frisoli, C.A. Avizzano, M. Bergamasco, An EMG-based approach for on-line predicted torque control in robotic-assisted rehabilitation, in IEEE Haptics Symposium (HAPTICS), 2014, pp. 181–186 C. Loconsole, S. Dettori, A. Frisoli, C.A. Avizzano, M. Bergamasco, An EMG-based approach for on-line predicted torque control in robotic-assisted rehabilitation, in IEEE Haptics Symposium (HAPTICS), 2014, pp. 181–186
8.
Zurück zum Zitat D. Farina et al., The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 797–809 (2014)CrossRef D. Farina et al., The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 797–809 (2014)CrossRef
9.
Zurück zum Zitat A. d’Avella, D.K. Pai, Modularity for sensorimotor control: evidence and a new prediction. J. Mot. Behav. 42, 361–369 (2010)CrossRef A. d’Avella, D.K. Pai, Modularity for sensorimotor control: evidence and a new prediction. J. Mot. Behav. 42, 361–369 (2010)CrossRef
10.
Zurück zum Zitat D.J. Berger, R. Gentner, T. Edmunds, D.K. Pai, A. d’Avella, Differences in adaptation rates after virtual surgeries provide direct evidence for modularity. J. Neurosci. 33(30), 12384–12394 (2013)CrossRef D.J. Berger, R. Gentner, T. Edmunds, D.K. Pai, A. d’Avella, Differences in adaptation rates after virtual surgeries provide direct evidence for modularity. J. Neurosci. 33(30), 12384–12394 (2013)CrossRef
11.
Zurück zum Zitat D.J. Berger, A. d’Avella, Effective force control by muscle synergies. Front. Comput. Neurosci. 8(46) (2014) D.J. Berger, A. d’Avella, Effective force control by muscle synergies. Front. Comput. Neurosci. 8(46) (2014)
12.
Zurück zum Zitat D.D. Lee, H.S. Seung, Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)CrossRef D.D. Lee, H.S. Seung, Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)CrossRef
13.
Zurück zum Zitat J. Roh, W.Z. Rymer, E.J. Perreault, S.B. Yoo, R.F. Beer, Alterations in upper limb muscle synergy structure in chronic stroke survivors. J. Neurophysiol. 109, 768–781 (2013)CrossRef J. Roh, W.Z. Rymer, E.J. Perreault, S.B. Yoo, R.F. Beer, Alterations in upper limb muscle synergy structure in chronic stroke survivors. J. Neurophysiol. 109, 768–781 (2013)CrossRef
14.
Zurück zum Zitat V.C. Cheung et al., Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc. Natl. Acad. Sci. USA 106(46), 19563–19568 (2009)CrossRef V.C. Cheung et al., Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc. Natl. Acad. Sci. USA 106(46), 19563–19568 (2009)CrossRef
15.
Zurück zum Zitat V.C. Cheung et al., Muscle synergy patterns as physiological markers of motor cortical damage. Proc. Natl. Acad. USA 109(36), 14652–14656 (2012)CrossRef V.C. Cheung et al., Muscle synergy patterns as physiological markers of motor cortical damage. Proc. Natl. Acad. USA 109(36), 14652–14656 (2012)CrossRef
Metadaten
Titel
Towards a Myoelectrically Controlled Virtual Reality Interface for Synergy-Based Stroke Rehabilitation
verfasst von
Denise J. Berger
Andrea d’Avella
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-46669-9_156

Neuer Inhalt