Skip to main content

2020 | OriginalPaper | Buchkapitel

4. Towards a Stable Graph Representation Learning Using Connection Subgraphs

verfasst von : Saba A. Al-Sayouri, Sarah S. Lam

Erschienen in: Women in Industrial and Systems Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter studies the problem of learning large-scale graph representations (a.k.a. embeddings) that encode the relationships among distinct nodes. The learned representations generalize over various tasks, such as node classification, link prediction, and recommendation. Learning node representations aims to map proximate nodes close to one another in a low-dimensional vector space. Thus, embedding algorithms pursue to preserve local and global network structure by identifying node neighborhoods. However, many existing algorithms generate embeddings that fail to preserve the network structure and are unstable. That is, the embeddings yield from multiple runs on the same graph are different. Therefore, on one side of the spectrum, such algorithms seem to be suitable for single graph-related tasks, like node classification; however, on the other side, these algorithms cannot fit multi-graph problems.
In this chapter, we propose a novel stable graph representation learning using connection subgraphs (GRCS) algorithmic framework, which aims to learn graph representations using connection subgraphs, where analogy with electrical circuits has been employed. The connection subgraphs are known to be very beneficial in different real-world networks, such as social networks, biological networks, citation networks, co-authorship networks, terrorism networks, and others, as they address the proximity among each two non-adjacent nodes, which are abundant in real-world networks, by maximizing the amount of flow between them. Although a subgraph captures proximity between two non-adjacent nodes, the formation of the subgraph accounts for connections with immediate neighbors as well. In addition, using connection subgraphs, we address the issues of high-degree nodes, and take advantage of weak ties and use the meta-data that have been neglected by embedding baseline algorithms.
We demonstrate the efficacy and robustness of GRCS over existing representation learning algorithms on a node classification task using data sets from various domains. GRCS is robust to noise; its performance is either as good as or better than that of the state-of-the-art algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmed A, Shervashidze N, Narayanamurthy S, Josifovski V, Smola AJ (2013) Distributed large-scale natural graph factorization. In: Proceedings of the 22nd international conference on world wide web. ACM, New York, pp. 37–48CrossRef Ahmed A, Shervashidze N, Narayanamurthy S, Josifovski V, Smola AJ (2013) Distributed large-scale natural graph factorization. In: Proceedings of the 22nd international conference on world wide web. ACM, New York, pp. 37–48CrossRef
Zurück zum Zitat Bayati M, Gerritsen M, Gleich DF, Saberi A, Wang Y (2009) Algorithms for large, sparse network alignment problems. In: Data mining, 2009. ICDM’09. Ninth IEEE international conference on. IEEE, Washington, pp. 705–710 Bayati M, Gerritsen M, Gleich DF, Saberi A, Wang Y (2009) Algorithms for large, sparse network alignment problems. In: Data mining, 2009. ICDM’09. Ninth IEEE international conference on. IEEE, Washington, pp. 705–710
Zurück zum Zitat Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in neural information processing systems. MIT Press, Cambridge, pp. 585–591 Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in neural information processing systems. MIT Press, Cambridge, pp. 585–591
Zurück zum Zitat Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828CrossRef Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828CrossRef
Zurück zum Zitat Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, Livstone M, Oughtred R, Lackner DH, Bähler J, Wood V et al (2007) The biogrid interaction database: 2008 update. Nucleic Acids Res 36(suppl 1):D637–D640CrossRef Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, Livstone M, Oughtred R, Lackner DH, Bähler J, Wood V et al (2007) The biogrid interaction database: 2008 update. Nucleic Acids Res 36(suppl 1):D637–D640CrossRef
Zurück zum Zitat Cao S, Lu W, Xu Q (2016) Deep neural networks for learning graph representations. In: Association for the advancement of artificial intelligence. AAAI Press, California, pp. 1145–1152 Cao S, Lu W, Xu Q (2016) Deep neural networks for learning graph representations. In: Association for the advancement of artificial intelligence. AAAI Press, California, pp. 1145–1152
Zurück zum Zitat Easley D, Kleinberg J (2010) Networks, crowds, and markets: reasoning about a highly connected world. Cambridge University Press, CambridgeCrossRef Easley D, Kleinberg J (2010) Networks, crowds, and markets: reasoning about a highly connected world. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Fallani FDV, Richiardi J, Chavez M, Achard S (2014) Graph analysis of functional brain networks: practical issues in translational neuroscience. Phil Trans R Soc B 369(1653):20130521CrossRef Fallani FDV, Richiardi J, Chavez M, Achard S (2014) Graph analysis of functional brain networks: practical issues in translational neuroscience. Phil Trans R Soc B 369(1653):20130521CrossRef
Zurück zum Zitat Faloutsos C, McCurley KS, Tomkins A (2004) Fast discovery of connection subgraphs. In: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp. 118–127 Faloutsos C, McCurley KS, Tomkins A (2004) Fast discovery of connection subgraphs. In: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp. 118–127
Zurück zum Zitat Fouss F, Pirotte A, Renders JM, Saerens M (2007) Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans Knowl Data Eng 19(3):355–369CrossRef Fouss F, Pirotte A, Renders JM, Saerens M (2007) Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans Knowl Data Eng 19(3):355–369CrossRef
Zurück zum Zitat Goyal P, Ferrara E (2017) Graph embedding techniques, applications, and performance: a survey. arXiv preprint arXiv:1705.02801 Goyal P, Ferrara E (2017) Graph embedding techniques, applications, and performance: a survey. arXiv preprint arXiv:1705.02801
Zurück zum Zitat Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp. 855–864CrossRef Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp. 855–864CrossRef
Zurück zum Zitat Heimann M, Koutra D (2017) On generalizing neural node embedding methods to multi-network problems. ACM, New York Heimann M, Koutra D (2017) On generalizing neural node embedding methods to multi-network problems. ACM, New York
Zurück zum Zitat Koutra D, Vogelstein JT, Faloutsos C (2013) Deltacon: a principled massive-graph similarity function. In: Proceedings of the 2013 SIAM international conference on data mining. SIAM, Philadelphia, pp. 162–170CrossRef Koutra D, Vogelstein JT, Faloutsos C (2013) Deltacon: a principled massive-graph similarity function. In: Proceedings of the 2013 SIAM international conference on data mining. SIAM, Philadelphia, pp. 162–170CrossRef
Zurück zum Zitat Le Q, Mikolov T (2014) Distributed representations of sentences and documents. In: Proceedings of the 31st international conference on machine learning (ICML-14). Beijing, pp. 1188–1196 Le Q, Mikolov T (2014) Distributed representations of sentences and documents. In: Proceedings of the 31st international conference on machine learning (ICML-14). Beijing, pp. 1188–1196
Zurück zum Zitat Mahoney M (2011) Large text compression benchmark Mahoney M (2011) Large text compression benchmark
Zurück zum Zitat Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
Zurück zum Zitat Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Advances in neural information processing systems. Curran Associates Inc., New York, pp. 3111–3119 Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Advances in neural information processing systems. Curran Associates Inc., New York, pp. 3111–3119
Zurück zum Zitat Newman ME (2005) A measure of betweenness centrality based on random walks. Soc Networks 27(1):39–54CrossRef Newman ME (2005) A measure of betweenness centrality based on random walks. Soc Networks 27(1):39–54CrossRef
Zurück zum Zitat Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp. 701–710 Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp. 701–710
Zurück zum Zitat Perozzi B, Kulkarni V, Skiena S (2016) Walklets: multiscale graph embeddings for interpretable network classification. arXiv preprint arXiv:1605.02115 Perozzi B, Kulkarni V, Skiena S (2016) Walklets: multiscale graph embeddings for interpretable network classification. arXiv preprint arXiv:1605.02115
Zurück zum Zitat Rossi RA, Zhou R, Ahmed NK (2017) Deep feature learning for graphs. arXiv preprint arXiv:1704.08829 Rossi RA, Zhou R, Ahmed NK (2017) Deep feature learning for graphs. arXiv preprint arXiv:1704.08829
Zurück zum Zitat Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRef Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRef
Zurück zum Zitat Sen P, Namata G, Bilgic M, Getoor L, Galligher B, Eliassi-Rad T (2008) Collective classification in network data. Artif. Intell. Mag. 29(3):93 Sen P, Namata G, Bilgic M, Getoor L, Galligher B, Eliassi-Rad T (2008) Collective classification in network data. Artif. Intell. Mag. 29(3):93
Zurück zum Zitat Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line: large-scale information network embedding. In: Proceedings of the 24th international conference on world wide web. ACM, New York, pp. 1067–1077CrossRef Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line: large-scale information network embedding. In: Proceedings of the 24th international conference on world wide web. ACM, New York, pp. 1067–1077CrossRef
Zurück zum Zitat Tang L, Wang X, Liu H (2012) Scalable learning of collective behavior. IEEE Trans Knowl Data Eng 24(6):1080–1091CrossRef Tang L, Wang X, Liu H (2012) Scalable learning of collective behavior. IEEE Trans Knowl Data Eng 24(6):1080–1091CrossRef
Zurück zum Zitat Wang D, Cui P, Zhu W (2016) Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp. 1225–1234CrossRef Wang D, Cui P, Zhu W (2016) Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp. 1225–1234CrossRef
Metadaten
Titel
Towards a Stable Graph Representation Learning Using Connection Subgraphs
verfasst von
Saba A. Al-Sayouri
Sarah S. Lam
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-11866-2_4

Neuer Inhalt