Skip to main content

2019 | OriginalPaper | Buchkapitel

Towards Moving Virtual Arms Using Brain-Computer Interface

verfasst von : Jaime Riascos, Steeven Villa, Anderson Maciel, Luciana Nedel, Dante Barone

Erschienen in: Advances in Computer Graphics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Motor imagery Brain-Computer Interface (MI-BCI) is a paradigm widely used for controlling external devices by imagining bodily movements. This technology has inspired researchers to use it in several applications such as robotic prostheses, games, and virtual reality (VR) scenarios. We study the inclusion of an imaginary third arm as a part of the control commands for BCI. To this end, we analyze a set of open-close hand tasks (including a third arm that comes out from the chest) performed in two VR scenarios: the classical BCI Graz, with arrows as feedback; and a first-person view of a human-like avatar performing the corresponding tasks. This study purpose is to explore the influence of both time window of the trials and the frequency bands on the accuracy of the classifiers. Accordingly, we used a Filter Bank Common Spatial Patterns (FBCSP) algorithm for several time windows (100, 200, 400, 600, 800, 1000 and 2000 ms) for extracting features and evaluating the classification accuracy. The offline classification results show that a third arm can be effectively used as a control command (accuracy > 0.62%). Likewise, the human-like avatar condition (\(67\%\)) outperforms the Graz condition (\(63\%\)) significantly, suggesting that the realistic scenario can reduce the abstractness of the third arm. This study, thus, motivates the further inclusion of non-embodied motor imagery task in BCI systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ang, K.K., Chin, Z.Y., Zhang, H., Guan, C.: Filter bank common spatial pattern (FBCSP) in brain-computer interface. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 2390–2397 (2008). https://doi.org/10.1109/IJCNN.2008.4634130 Ang, K.K., Chin, Z.Y., Zhang, H., Guan, C.: Filter bank common spatial pattern (FBCSP) in brain-computer interface. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 2390–2397 (2008). https://​doi.​org/​10.​1109/​IJCNN.​2008.​4634130
5.
Zurück zum Zitat Gert, P., Leeb, R., Faller, J., Neuper, C.: Brain-computer interface systems used for virtual reality control. In: Kim, J.J. (ed.) Virtual Reality, Chap. 7, pp. 1–19. InTech (2011) Gert, P., Leeb, R., Faller, J., Neuper, C.: Brain-computer interface systems used for virtual reality control. In: Kim, J.J. (ed.) Virtual Reality, Chap. 7, pp. 1–19. InTech (2011)
7.
Zurück zum Zitat Lotte, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)CrossRef Lotte, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)CrossRef
12.
Zurück zum Zitat Pfurtscheller, G.: Quantification of ERD and ERS in the Time Domain, pp. 89–105, 6th edn. Elsevier B.V., Netherlands (1999). Revised edition Pfurtscheller, G.: Quantification of ERD and ERS in the Time Domain, pp. 89–105, 6th edn. Elsevier B.V., Netherlands (1999). Revised edition
Metadaten
Titel
Towards Moving Virtual Arms Using Brain-Computer Interface
verfasst von
Jaime Riascos
Steeven Villa
Anderson Maciel
Luciana Nedel
Dante Barone
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-22514-8_43