Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

31.10.2017 | Article | Ausgabe 4/2017 Open Access

International Journal of Disaster Risk Science 4/2017

Towards Quantitatively Understanding the Complexity of Social-Ecological Systems—From Connection to Consilience

Zeitschrift:
International Journal of Disaster Risk Science > Ausgabe 4/2017
Autoren:
Xiao-Bing Hu, Peijun Shi, Ming Wang, Tao Ye, Mark S. Leeson, Sander E. van der Leeuw, Jianguo Wu, Ortwin Renn, Carlo Jaeger
Wichtige Hinweise
A correction to this article is available online at https://​doi.​org/​10.​1007/​s13753-017-0147-4.

Abstract

The complexity of social-ecological systems (SES) is rooted in the outcomes of node activities connected by network topology. Thus far, in network dynamics research, the connectivity degree (CND), indicating how many nodes are connected to a given node, has been the dominant concept. However, connectivity focuses only on network topology, neglecting the crucial relation to node activities, and thereby leaving system outcomes largely unexplained. Inspired by the phenomenon of “consensus of wills and coordination of activities” often observed in disaster risk management, we propose a new concept of network characteristic, the consilience degree (CSD), aiming to measure the way in which network topology and node activities together contribute to system outcomes. The CSD captures the fact that nodes may assume different states that make their activities more or less compatible. Connecting two nodes with in/compatible states will lead to outcomes that are un/desirable from the perspective of the SES in question. We mathematically prove that the CSD is a generalized CND, and the CND is a special case of CSD. As a general, fundamental concept, the CSD can facilitate the development of a new framework of network properties, models, and theories that allows us to understand patterns of network behavior that cannot be explained in terms of connectivity alone. We further demonstrate that a co-evolutionary mechanism can naturally improve the CSD. Given the generality of co-evolution in SES, we argue that the CSD is an inherent attribute rather than an artificial concept, which underpins the fundamental importance of the CSD to the study of SES.

Unsere Produktempfehlungen

Premium-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf alle acht Fachgebiete von Springer Professional und damit auf über 45.000 Fachbücher und ca. 300 Fachzeitschriften.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2017

International Journal of Disaster Risk Science 4/2017 Zur Ausgabe