Implementation of the heartbeat biometric system consists of four main stages which are heartbeat data acquisition, pre-processing and feature extraction, modeling and classification. In this study a new approach for classification method based on Sparse Representation Classifier (SRC) is proposed. By introducing kernel trick into SRC, the classification performance of the classifier can be further improved by implicitly map features data into a high-dimensional kernel feature space. Based on heart sound data, experimental results have shown a promising performance of KSRC with 85.45 % of accuracy has been achieved and a better performance has been observed by this classifier compared to Support Vector Machines (SVM), SRC and K-Nearest Neighbor (KNN). This achievement has proved the possibility of heartbeat as a biometric trait for human authentication system. Due to this, an extension in term of heartbeat data acquisition toward real time implementation is then proposed in this paper. Here, a wrist-mounted heartbeat sensor to sense the heartbeat signal is designed. This developed sensor is an electrometer which is capable to measure the properties of electrocardiogram (ECG) signal. The developed hardware has also shown its viability toward execution of heartbeat data acquisition in real time.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Becker S, Bobin J, Candès EJ (2011) NESTA: a fast and accurate first-order method for sparse recovery. SIAM Journal on Imaging Sciences 4:1–39
CrossRefMATHMathSciNet
2.
Beritelli F, Serrano S (2007) Biometric identification based on frequency analysis of cardiac sounds. Information Forensics and Security, IEEE Transactions on 2:596–604
3.
Candès EJ, Romberg JK, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics 59:1207–1223
CrossRefMATHMathSciNet
4.
Candes EJ, Tao T (2006) Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? Information Theory, IEEE Transactions on 52:5406–5425
CrossRefMathSciNet
5.
Candès EJ, Wakin MB (2008) An introduction to compressive sampling. Signal Processing Magazine, IEEE 25:21–30
6.
Donoho DL (2006) For most large underdetermined systems of linear equations the minimal Communications on Pure and Applied Mathematics 59:797–829
CrossRefMATHMathSciNet
7.
El-Bendary N, Al-Qaheri H, Zawbaa HM et al. (2010) HSAS: Heart Sound Authentication System. In: Nature and Biologically Inspired Computing (NaBIC), 2010 Second World Congress on. p 351–356
8.
Figueiredo MaT, Nowak RD, Wright SJ (2007) Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems. Selected Topics in Signal Processing, IEEE Journal of 1:586–597
9.
Kim S, Eriksson T, Kang H-G et al. (2004) A pitch synchronous feature extraction method for speaker recognition. In: Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP’ 04). IEEE International Conference on. p I-405–408 vol. 401
10.
Li Z, Wei-Da Z, Pei-Chann C et al. (2012) Kernel Sparse Representation-Based Classifier. Signal Processing. IEEE Transactions on 60:1684–1695
11.
Memon S, Lech M, Ling H (2009) Using information theoretic vector quantization for inverted MFCC based speaker verification. In: Computer, Control and Communication, 2009. IC4 2009. 2nd International Conference on. p 1–5
12.
Phua K, Dat TH, Chen J et al. (2006) Human identification using heart sound. In: Second International Workshop on Multimodal User Authentication, Toulouse, France
13.
Spadaccini A, Beritelli F (2012) Performance Evaluation of Heart Sounds Biometric Systems on An Open Dataset. In: Proceedings of the 5th IAPR International Conference on Biometrics
14.
Wright J, Yang AY, Ganesh A et al. (2009) Robust Face Recognition via Sparse Representation. Pattern Analysis and Machine Intelligence. IEEE Transactions on 31:210–227
15.
Xiaoling Y, Baohua T, Jiehua D et al. (2010) Comparative Study on Voice Activity Detection Algorithm. In: Electrical and Control Engineering (ICECE), 2010 International Conference on. p 599–602
16.
Yu K, Ji L, Zhang X (2002) Kernel nearest-neighbor algorithm. Neural Processing Letters 15:147–156
CrossRefMATH
17.
Zhao Z, Shen Q, Ren F (2013) Heart Sound Biometric System Based on Marginal Spectrum Analysis. Sensors 13:2530–2551
CrossRef
Über dieses Kapitel
Titel
Towards Real Time Implementation of Sparse Representation Classifier (SRC) Based Heartbeat Biometric System
Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.
Lesen Sie in diesem ausgewählten Buchkapitel alles über den 3D-Druck im Hinblick auf Begriffe, Funktionsweise, Anwendungsbereiche sowie Nutzen und Grenzen additiver Fertigungsverfahren. Eigenschaften eines schlanken Produktionssystems sowie der Aspekt der „Schlankheit“ werden ebenso beleuchtet wie die Prinzipien und Methoden der Lean Production. Jetzt gratis downloaden!
Marktübersichten
Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.