Skip to main content
Erschienen in: Journal of Computational Electronics 2/2016

03.11.2015

Towards the design of hybrid QCA tiles targeting high fault tolerance

verfasst von: Bibhash Sen, Manojit Dutta, Rijoy Mukherjee, Rajdeep Kumar Nath, Amar Prakash Sinha, Biplab K. Sikdar

Erschienen in: Journal of Computational Electronics | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The increasing fabrication cost of CMOS-based computing devices and the ever-approaching limits of their fabrication have led to the search for feasible options with high device density and low power waste. Quantum-dot cellular automata (QCA) is an emerging technology with such potential to match the design target beyond the limits of state-of-the-art CMOS. But nanotechnologies, like QCA are extremely susceptible to various forms of flaws and variations during fabrication at nano scale. Thus, the exploration of ingenious fault tolerant structure around QCA is gaining high importance. This work targets a new robust QCA tile structure hybridizing rotated and non-rotated cell together resulting lesser kink energy. Different QCA logic primitives (majority/minority logic, fanout tiles, etc.) are made using such hybrid cell structure. The functional characterization using the kink energy and the polarization level of such QCA structures under different cell defects have been thoroughly investigated. The results suggest that the proposed QCA logic primitives have achieved high fault tolerance of 97.43 %. Also, 100 % fault tolerance can be ascertained if the proposed logic circuit drives the correct output with the application of \(\langle \)001, 011\(\rangle \) as a primitive test vector only. A comparative performance of the proposed logic over existing structure makes it more reliable.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Gautier, J.: Beyond cmos: quantum devices. Microelectron. Eng. 39(14), 263–272 (1997)CrossRef Gautier, J.: Beyond cmos: quantum devices. Microelectron. Eng. 39(14), 263–272 (1997)CrossRef
3.
Zurück zum Zitat Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)CrossRef Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)CrossRef
4.
Zurück zum Zitat Lent, C., Tougaw, P.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)CrossRef Lent, C., Tougaw, P.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)CrossRef
5.
Zurück zum Zitat Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L.: Realization of a functional cell for quantum-dot cellular automata. Science 277, 928–930 (1997)CrossRef Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L.: Realization of a functional cell for quantum-dot cellular automata. Science 277, 928–930 (1997)CrossRef
6.
Zurück zum Zitat Tougaw, P.D., Lent, C.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)CrossRef Tougaw, P.D., Lent, C.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)CrossRef
7.
Zurück zum Zitat Lent, C.S.: Personal communication on cell placement with different rotation and its fabrication issues. University of Notre Dame (2015) Lent, C.S.: Personal communication on cell placement with different rotation and its fabrication issues. University of Notre Dame (2015)
8.
Zurück zum Zitat Pudi, V., Sridharan, K.: Low complexity design of ripple carry and brent kung adders in QCA. IEEE Trans. Nanotechnol. 11(1), 105–119 (2012)CrossRef Pudi, V., Sridharan, K.: Low complexity design of ripple carry and brent kung adders in QCA. IEEE Trans. Nanotechnol. 11(1), 105–119 (2012)CrossRef
10.
Zurück zum Zitat Cocorullo, G., Corsonello, P., Frustaci, F., Perri, S.: Design of efficient QCA multiplexers. Int. J. Circuit Theory Appl. (2015). doi:10.1002/cta.2096 Cocorullo, G., Corsonello, P., Frustaci, F., Perri, S.: Design of efficient QCA multiplexers. Int. J. Circuit Theory Appl. (2015). doi:10.​1002/​cta.​2096
11.
Zurück zum Zitat Patel, K.N., Markov, I.L., Hayes, J.P.: Evaluating circuit reliability under probabilistic gate-level fault models. In: In International Workshop on Logic Synthesis (IWLS, 2003), pp. 59–64 (2003) Patel, K.N., Markov, I.L., Hayes, J.P.: Evaluating circuit reliability under probabilistic gate-level fault models. In: In International Workshop on Logic Synthesis (IWLS, 2003), pp. 59–64 (2003)
12.
Zurück zum Zitat Bahar, R.I., Hammerstrom, D., Harlow, J., Joyner Jr, W.H., Lau, C., Marculescu, D., Orailoglu, A., Pedram, M.: Architectures for silicon nanoelectronics and beyond. Computer 40(1), 25–33 (2007). doi:10.1109/MC.2007.7 CrossRef Bahar, R.I., Hammerstrom, D., Harlow, J., Joyner Jr, W.H., Lau, C., Marculescu, D., Orailoglu, A., Pedram, M.: Architectures for silicon nanoelectronics and beyond. Computer 40(1), 25–33 (2007). doi:10.​1109/​MC.​2007.​7 CrossRef
14.
Zurück zum Zitat Heath, J.R., Kuekes, P.J., Snider, G.S., Williams, R.S.: A defect-tolerant computer architecture: opportunities for nanotechnology. Science 280, 1716–1721 (1998)CrossRef Heath, J.R., Kuekes, P.J., Snider, G.S., Williams, R.S.: A defect-tolerant computer architecture: opportunities for nanotechnology. Science 280, 1716–1721 (1998)CrossRef
15.
Zurück zum Zitat Mahmoodi, Y., Tehrani, M.: Novel fault tolerant QCA circuits. In: 22nd Iranian Conference on Electrical Engineering (ICEE), pp. 959–964 (2014) Mahmoodi, Y., Tehrani, M.: Novel fault tolerant QCA circuits. In: 22nd Iranian Conference on Electrical Engineering (ICEE), pp. 959–964 (2014)
16.
Zurück zum Zitat Momenzadeh, M., Ottavi, M., Lombardi, F.: Modeling QCA defects at molecular-level in combinational circuits. In: Proceedings of the 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, ser. DFT ’05, pp. 208–216 (2005) Momenzadeh, M., Ottavi, M., Lombardi, F.: Modeling QCA defects at molecular-level in combinational circuits. In: Proceedings of the 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, ser. DFT ’05, pp. 208–216 (2005)
17.
Zurück zum Zitat Tahoori, M.B., Huang, J., Momenzadeh, M., Lombardi, F.: Testing of quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 432–442 (2004)CrossRef Tahoori, M.B., Huang, J., Momenzadeh, M., Lombardi, F.: Testing of quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 432–442 (2004)CrossRef
18.
Zurück zum Zitat Lent, C.S., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125, 1056–1063 (2003)CrossRef Lent, C.S., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125, 1056–1063 (2003)CrossRef
19.
Zurück zum Zitat Das, K., De, D.: A study on diverse nanostructure for implementing logic gate design for QCA. Int. J. Nanosci. 10(01n02), 263–269 (2011)CrossRef Das, K., De, D.: A study on diverse nanostructure for implementing logic gate design for QCA. Int. J. Nanosci. 10(01n02), 263–269 (2011)CrossRef
20.
Zurück zum Zitat Wei, T., Wu, K., Karri, R., Orailoglu, A.: Fault tolerant quantum cellular array (QCA) design using triple modular redundancy with shifted operands. In: Design Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and South Pacific, vol. 2, pp. 1192–1195 (2005) Wei, T., Wu, K., Karri, R., Orailoglu, A.: Fault tolerant quantum cellular array (QCA) design using triple modular redundancy with shifted operands. In: Design Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and South Pacific, vol. 2, pp. 1192–1195 (2005)
21.
Zurück zum Zitat Ma, X., Lombardi, F.: Fault tolerant schemes for QCA systems. In: IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems, 2008 (DFTVS ’08), pp. 236–244 (2008) Ma, X., Lombardi, F.: Fault tolerant schemes for QCA systems. In: IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems, 2008 (DFTVS ’08), pp. 236–244 (2008)
23.
Zurück zum Zitat Dalui, M., Sen, B., Sikdar, B.K.: Fault tolerant QCA logic design with coupled majority-minority gate. Int. J. Comput. Appl. 1(29), 81–87. Foundation of Computer Science (2010) Dalui, M., Sen, B., Sikdar, B.K.: Fault tolerant QCA logic design with coupled majority-minority gate. Int. J. Comput. Appl. 1(29), 81–87. Foundation of Computer Science (2010)
27.
Zurück zum Zitat Huang, J., Momenzadeh, M., Lombardi, F.: On the tolerance to manufacturing defects in molecular QCA tiles for processing-by-wire. J. Electron. Test. 23(2–3), 163–174 (2007). doi:10.1007/s10836-006-0548-6 CrossRef Huang, J., Momenzadeh, M., Lombardi, F.: On the tolerance to manufacturing defects in molecular QCA tiles for processing-by-wire. J. Electron. Test. 23(2–3), 163–174 (2007). doi:10.​1007/​s10836-006-0548-6 CrossRef
28.
Zurück zum Zitat Huang, J., Momenzadeh, M., Lombardi, F.: Proceedings of Defect tolerance of QCA tiles. In: Design, Automation and Test in Europe, 2006 (DATE ’06), vol. 1, pp.1–6 (2006) Huang, J., Momenzadeh, M., Lombardi, F.: Proceedings of Defect tolerance of QCA tiles. In: Design, Automation and Test in Europe, 2006 (DATE ’06), vol. 1, pp.1–6 (2006)
29.
Zurück zum Zitat Vankamamidi, V., Lombardi, F.: Design of defect tolerant tile-based QCA circuits. In: Proceedings of the 18th ACM Great Lakes Symposium on VLSI, ser., 2008 (GLSVLSI ’08), pp. 237–242. doi:10.1145/1366110.1366169 Vankamamidi, V., Lombardi, F.: Design of defect tolerant tile-based QCA circuits. In: Proceedings of the 18th ACM Great Lakes Symposium on VLSI, ser., 2008 (GLSVLSI ’08), pp. 237–242. doi:10.​1145/​1366110.​1366169
30.
Zurück zum Zitat Srivastava, S., Sarkar, S., Bhanja, S.: Error-power tradeoffs in QCA design. In: 8th IEEE Conference on Nanotechnology, 2008 (NANO ’08), pp. 530–533 (2008) Srivastava, S., Sarkar, S., Bhanja, S.: Error-power tradeoffs in QCA design. In: 8th IEEE Conference on Nanotechnology, 2008 (NANO ’08), pp. 530–533 (2008)
31.
Zurück zum Zitat Farazkish, R., Sayedsalehi, S., Navi, K.: Novel design for quantum dots cellular automata to obtain fault-tolerant majority gate. J. Nanotechnol. 2012(8), 1–8 (2010) Farazkish, R., Sayedsalehi, S., Navi, K.: Novel design for quantum dots cellular automata to obtain fault-tolerant majority gate. J. Nanotechnol. 2012(8), 1–8 (2010)
32.
Zurück zum Zitat Walus, K., Dysart, T., Jullien, G., Budiman, R.: QCAdesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)CrossRef Walus, K., Dysart, T., Jullien, G., Budiman, R.: QCAdesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)CrossRef
33.
Zurück zum Zitat Dysart, T., Kogge, P.: Analyzing the inherent reliability of moderately sized magnetic and electrostatic QCA circuits via probabilistic transfer matrices. IEEE Trans. VLSI Syst. 17(4), 507–516 (2009)CrossRef Dysart, T., Kogge, P.: Analyzing the inherent reliability of moderately sized magnetic and electrostatic QCA circuits via probabilistic transfer matrices. IEEE Trans. VLSI Syst. 17(4), 507–516 (2009)CrossRef
34.
Zurück zum Zitat Angizi, S., Navi, K., Sayedsalehi, S., Navin, A.H.: Efficient quantum dot cellular automata memory architectures based on the new wiring approach. J. Comput.Theor. Nanosci. 11(11), 2318–2328 (2014) Angizi, S., Navi, K., Sayedsalehi, S., Navin, A.H.: Efficient quantum dot cellular automata memory architectures based on the new wiring approach. J. Comput.Theor. Nanosci. 11(11), 2318–2328 (2014)
35.
Zurück zum Zitat Ma, X., Lombardi, F.: Fault tolerant schemes for QCA systems. In: IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems, 2008 (DFTVS ’08), pp. 236–244 (2008) Ma, X., Lombardi, F.: Fault tolerant schemes for QCA systems. In: IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems, 2008 (DFTVS ’08), pp. 236–244 (2008)
36.
Zurück zum Zitat Dysart, T., Kogge, P.: Reliability impact of n-modular redundancy in QCA. IEEE Trans. Nanotechnol. 10(5), 1015–1022 (2011)CrossRef Dysart, T., Kogge, P.: Reliability impact of n-modular redundancy in QCA. IEEE Trans. Nanotechnol. 10(5), 1015–1022 (2011)CrossRef
Metadaten
Titel
Towards the design of hybrid QCA tiles targeting high fault tolerance
verfasst von
Bibhash Sen
Manojit Dutta
Rijoy Mukherjee
Rajdeep Kumar Nath
Amar Prakash Sinha
Biplab K. Sikdar
Publikationsdatum
03.11.2015
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 2/2016
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-015-0760-7

Weitere Artikel der Ausgabe 2/2016

Journal of Computational Electronics 2/2016 Zur Ausgabe

Neuer Inhalt