Skip to main content
Erschienen in: Lasers in Manufacturing and Materials Processing 4/2019

15.11.2019

Track-Scale Simulations of Selective Laser Melting to Investigate Development and Mitigation of Thermal Stresses

verfasst von: Rahul Sharma, Arvind Kumar

Erschienen in: Lasers in Manufacturing and Materials Processing | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work investigates the evolution of thermal stresses, dependence of residual stress on important process parameters, critical locations of high stresses and ways to minimize them by adopting the appropriate set of the parameters for selective laser melting of Ti6Al4V at track-scale. A fully coupled 3D thermo-mechanical model is developed. Elasto-plastic material and material properties considered are dependent on temperature. In the coupled modelling approach, the validation of thermal model carried out with the available experimental data. Detailed analysis of temperature field and resulting thermal stresses is then presented. During heating, compressive stress zone is observed in the neighbourhood of the melt pool and balancing tensile stress zone below it. As laser traverses forward, tensile stresses are generated in the solidified melt pool region and a balancing compressive stress zone underneath it is observed. It is quantified that with increase in laser heat source power and interaction time, the magnitude of residual stress increases, but pre-heating the substrate reduces the residual stress. The magnitude of residual stress is also decreased by adopting the alternate-scan strategy over the uni-directional scan-strategy. Apart from delineating the detailed quantitative analysis of residual stress, this work helps understand the evolution of thermal stress in the SLM process at the fundamental level, i.e. at track-scale which is the basic building block. This understanding is crucial to control the residual stresses at part scale. Volume reduction during the conversion of powder material to bulk liquid has been received less attention in the previous thermal models. Thus, its incorporation in the present thermal model makes the modelling approach more realistic, as the predictions of the thermal model act as important inputs to the coupled mechanical model that calculates stresses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dutta, B., Froeas, F.: The additive manufacturing (AM) of titanium alloys. Met Powder Rep. 72, 96–106 (2017)CrossRef Dutta, B., Froeas, F.: The additive manufacturing (AM) of titanium alloys. Met Powder Rep. 72, 96–106 (2017)CrossRef
2.
Zurück zum Zitat Gokuldoss, P., Kolla, S., Eckert, J.: Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting – selection guidelines. Mater. 10, 672 (2017)CrossRef Gokuldoss, P., Kolla, S., Eckert, J.: Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting – selection guidelines. Mater. 10, 672 (2017)CrossRef
3.
Zurück zum Zitat Gibson, I., Rosen, D., Stucker, B.: Additive Manufacturing Technologies. Springer-Verlag, New York (2015)CrossRef Gibson, I., Rosen, D., Stucker, B.: Additive Manufacturing Technologies. Springer-Verlag, New York (2015)CrossRef
4.
Zurück zum Zitat Ahmad, B., Veen, S., Fitzpatrick, M., Guo, H.: Residual stress evaluation in selective-laser-melting additively manufactured titanium (Ti-6Al-4V) and inconel 718 using the contour method and numerical simulation. Addi Manufac. 22, 571–582 (2018)CrossRef Ahmad, B., Veen, S., Fitzpatrick, M., Guo, H.: Residual stress evaluation in selective-laser-melting additively manufactured titanium (Ti-6Al-4V) and inconel 718 using the contour method and numerical simulation. Addi Manufac. 22, 571–582 (2018)CrossRef
5.
Zurück zum Zitat Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H.A., Maier, H.J.: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatigue. 48, 300–307 (2013)CrossRef Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H.A., Maier, H.J.: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatigue. 48, 300–307 (2013)CrossRef
6.
Zurück zum Zitat Vastola, G., Zhang, G., Pei, Q.X., Zhang, Y.W.: Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling. Addit. Manuf. 12, 231–239 (2016)CrossRef Vastola, G., Zhang, G., Pei, Q.X., Zhang, Y.W.: Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling. Addit. Manuf. 12, 231–239 (2016)CrossRef
7.
Zurück zum Zitat Shiomi, M., Osakadal, K., Nakamural, K., Yamashital, T., Abe, F.: Residual stress within metallic model made by selective laser melting process. CIRP Ann. 53(1), 195–198 (2004)CrossRef Shiomi, M., Osakadal, K., Nakamural, K., Yamashital, T., Abe, F.: Residual stress within metallic model made by selective laser melting process. CIRP Ann. 53(1), 195–198 (2004)CrossRef
8.
Zurück zum Zitat Mercelis, P., Kruth, F.: Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 12(5), 254–265 (2006)CrossRef Mercelis, P., Kruth, F.: Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 12(5), 254–265 (2006)CrossRef
9.
Zurück zum Zitat Cheng, B., Shrestha, S., Chou, Y.: Stress and deformation evaluations of scanning strategy effect in selective laser melting. Addi. Manufac. 12, 240–251 (2016)CrossRef Cheng, B., Shrestha, S., Chou, Y.: Stress and deformation evaluations of scanning strategy effect in selective laser melting. Addi. Manufac. 12, 240–251 (2016)CrossRef
10.
Zurück zum Zitat Song, J., Wu, W., Zhang, L., He, B., Lu, L., Ni, X., Long, Q., Zhu, G.: Role of scanning strategy on residual stress distribution in Ti-6Al-4V alloy prepared by selective laser melting. Optik. 170, 342–352 (2018)CrossRef Song, J., Wu, W., Zhang, L., He, B., Lu, L., Ni, X., Long, Q., Zhu, G.: Role of scanning strategy on residual stress distribution in Ti-6Al-4V alloy prepared by selective laser melting. Optik. 170, 342–352 (2018)CrossRef
11.
Zurück zum Zitat Hussein, A., Hao, L., Yan, C., Everson, R.: Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater & Des. 52, 638–647 (2013)CrossRef Hussein, A., Hao, L., Yan, C., Everson, R.: Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater & Des. 52, 638–647 (2013)CrossRef
12.
Zurück zum Zitat Li, C., Liu, J.F., Fang, X.Y., Guo, Y.B.: Efficient predictive model of part distortion and residual stress in selective laser melting. Addi. Manufac. 17, 157–168 (2017)CrossRef Li, C., Liu, J.F., Fang, X.Y., Guo, Y.B.: Efficient predictive model of part distortion and residual stress in selective laser melting. Addi. Manufac. 17, 157–168 (2017)CrossRef
13.
Zurück zum Zitat Li, Y., Zhou, K., Tan, P., Tor, S.B., Chua, C.K., Leong, K.F.: Modeling temperature and residual stress fields in selective laser melting. Int J Mech Sci. 136, 24–35 (2018)CrossRef Li, Y., Zhou, K., Tan, P., Tor, S.B., Chua, C.K., Leong, K.F.: Modeling temperature and residual stress fields in selective laser melting. Int J Mech Sci. 136, 24–35 (2018)CrossRef
14.
Zurück zum Zitat Li, Y., Zhou, K., Tor, S., Chua, C., Leong, K.: Heat transfer and phase transition in the selective laser melting process. Int J Heat and Mass transf. 108(B), 2408–2416 (2017)CrossRef Li, Y., Zhou, K., Tor, S., Chua, C., Leong, K.: Heat transfer and phase transition in the selective laser melting process. Int J Heat and Mass transf. 108(B), 2408–2416 (2017)CrossRef
15.
Zurück zum Zitat Tan, P., Shen, F., Li, B., Zhou, K.: A thermo-metallurgical-mechanical model for selective laser melting of Ti6Al4V. Mater. & Des. 168, 107642 (2019)CrossRef Tan, P., Shen, F., Li, B., Zhou, K.: A thermo-metallurgical-mechanical model for selective laser melting of Ti6Al4V. Mater. & Des. 168, 107642 (2019)CrossRef
16.
Zurück zum Zitat Yilbas, B.S., Akhtar, S.S., Matthews, A., Karatas, C., Leyland, A.: Microstructure and thermal stress distributions in laser Carbonitriding treatment of Ti–6Al–4V alloy. Journal of Manuf Sci Eng. 133, 021013–021011 (2011)CrossRef Yilbas, B.S., Akhtar, S.S., Matthews, A., Karatas, C., Leyland, A.: Microstructure and thermal stress distributions in laser Carbonitriding treatment of Ti–6Al–4V alloy. Journal of Manuf Sci Eng. 133, 021013–021011 (2011)CrossRef
17.
Zurück zum Zitat Wu, J., Wang, L., An, X.: Numerical analysis of residual stress evolution of AlSi10Mg manufactured by selective laser melting. Optik. 137, 65–78 (2017)CrossRef Wu, J., Wang, L., An, X.: Numerical analysis of residual stress evolution of AlSi10Mg manufactured by selective laser melting. Optik. 137, 65–78 (2017)CrossRef
18.
Zurück zum Zitat Fan, Z. and Liou, F.: Numerical modeling of the additive manufacturing (AM) processes of titanium alloy. In: Amin, A.K.M. (Ed.) Titanium Alloys–Towards achieving enhanced properties for diversified applications, pp. 3–28. InTech (2012) Fan, Z. and Liou, F.: Numerical modeling of the additive manufacturing (AM) processes of titanium alloy. In: Amin, A.K.M. (Ed.) Titanium Alloys–Towards achieving enhanced properties for diversified applications, pp. 3–28. InTech (2012)
19.
Zurück zum Zitat Welsch, G., Boyer, R., Collings, E.W.: Materials properties handbook: titanium alloys ASM international. Ohio. (1998) Welsch, G., Boyer, R., Collings, E.W.: Materials properties handbook: titanium alloys ASM international. Ohio. (1998)
20.
Zurück zum Zitat Mills, K.C.: Recommended values of thermophysical properties for selected commercial alloys. Cambridge. (2002) Mills, K.C.: Recommended values of thermophysical properties for selected commercial alloys. Cambridge. (2002)
21.
Zurück zum Zitat Parry, L., Ashcroft, I.A., Wildman, R.D.: Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit Manuf. 12, 1–5 (2016)CrossRef Parry, L., Ashcroft, I.A., Wildman, R.D.: Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit Manuf. 12, 1–5 (2016)CrossRef
22.
Zurück zum Zitat Thummler, F., Oberacker, R.: An introduction to powder metallurgy. London. (1993) Thummler, F., Oberacker, R.: An introduction to powder metallurgy. London. (1993)
23.
Zurück zum Zitat Saxena, S., Sharma, R., Kumar, A.: A Microscale Study of Thermal Field and Stresses during Processing of Ti6Al4V Powder Layer by Selective Laser Melting Lasers in Manufacturing and Mater. Process., 1–31 (2018) Saxena, S., Sharma, R., Kumar, A.: A Microscale Study of Thermal Field and Stresses during Processing of Ti6Al4V Powder Layer by Selective Laser Melting Lasers in Manufacturing and Mater. Process., 1–31 (2018)
24.
Zurück zum Zitat Verhaeghe, F., Craeghs, T., Heulens, J., Pandelaers, L.: A pragmatic model for selective laser melting with evaporation. Acta Mater. 57, 6006–6012 (2009)CrossRef Verhaeghe, F., Craeghs, T., Heulens, J., Pandelaers, L.: A pragmatic model for selective laser melting with evaporation. Acta Mater. 57, 6006–6012 (2009)CrossRef
25.
Zurück zum Zitat Buchbinder, D., Meiners, W., Pirch, N., Wissenbach, K., Schrage, J.: Investigation on reducing distortion by preheating during manufacture of aluminium parts using selective laser melting. J Laser App. 26(1), 1–10 (2014) Buchbinder, D., Meiners, W., Pirch, N., Wissenbach, K., Schrage, J.: Investigation on reducing distortion by preheating during manufacture of aluminium parts using selective laser melting. J Laser App. 26(1), 1–10 (2014)
26.
Zurück zum Zitat Zaeh, M., Branner, G.: Investigations on residual stresses and deformations in selective laser melting. Prod Eng – Res Dev. 4, 35–45 (2012)CrossRef Zaeh, M., Branner, G.: Investigations on residual stresses and deformations in selective laser melting. Prod Eng – Res Dev. 4, 35–45 (2012)CrossRef
27.
Zurück zum Zitat Kruth, J., Deckers, J., Yasa, E., Wauthlé, R.: Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proceeding Institute of Mechanical Engineering Part B: Journal of Engineering Manufacture. 226(6), 980–991 (2012)CrossRef Kruth, J., Deckers, J., Yasa, E., Wauthlé, R.: Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proceeding Institute of Mechanical Engineering Part B: Journal of Engineering Manufacture. 226(6), 980–991 (2012)CrossRef
28.
Zurück zum Zitat Nickel, A.H., Barnett, D.M., Prinz, F.B.: Thermal stresses and deposition patterns in layered manufacturing. Mater Sci Eng A. 317, 59–64 (2001)CrossRef Nickel, A.H., Barnett, D.M., Prinz, F.B.: Thermal stresses and deposition patterns in layered manufacturing. Mater Sci Eng A. 317, 59–64 (2001)CrossRef
29.
Zurück zum Zitat Li, C., Wang, Y., Zhan, H., Han, T., Han, B., Zhao, W.: Three-dimensional finite element analysis of temperatures and stresses in wide-band laser surface melting processing. Mater. & Des. 31, 3366–3373 (2010)CrossRef Li, C., Wang, Y., Zhan, H., Han, T., Han, B., Zhao, W.: Three-dimensional finite element analysis of temperatures and stresses in wide-band laser surface melting processing. Mater. & Des. 31, 3366–3373 (2010)CrossRef
Metadaten
Titel
Track-Scale Simulations of Selective Laser Melting to Investigate Development and Mitigation of Thermal Stresses
verfasst von
Rahul Sharma
Arvind Kumar
Publikationsdatum
15.11.2019
Verlag
Springer US
Erschienen in
Lasers in Manufacturing and Materials Processing / Ausgabe 4/2019
Print ISSN: 2196-7229
Elektronische ISSN: 2196-7237
DOI
https://doi.org/10.1007/s40516-019-00103-0

Weitere Artikel der Ausgabe 4/2019

Lasers in Manufacturing and Materials Processing 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.