Skip to main content
Erschienen in: Wireless Networks 3/2020

07.11.2019

Traffic big data assisted V2X communications toward smart transportation

verfasst von: Chang An, Celimuge Wu

Erschienen in: Wireless Networks | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to enable smart transportation, an efficient vehicle-to-everything (V2X) communication scheme is required. However, due to the mobility of vehicles and temporal varying features of vehicular environment, it is challenging to design an efficient communication scheme for vehicular networks. In this paper, we first give a review on the recent research efforts for solving communication challenges in vehicular networks, and then propose a traffic Big Data Assisted Communication scheme, BDAC, for vehicular networks. The proposed scheme uses past traffic big data to estimate the vehicle density and velocity, and then uses the prediction results to improve the V2X communications. We implement the proposed scheme in a multi-hop broadcast protocol to show the advantage of the proposed scheme by comparing with other baselines.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wu, C., Liu, Z., Zhang, D., Yoshinaga, T., & Ji, Y. (2018). Spatial intelligence towards trustworthy vehicular IoT. IEEE Communications Magazine, 56(10), 22–27.CrossRef Wu, C., Liu, Z., Zhang, D., Yoshinaga, T., & Ji, Y. (2018). Spatial intelligence towards trustworthy vehicular IoT. IEEE Communications Magazine, 56(10), 22–27.CrossRef
2.
Zurück zum Zitat Wu, J., Zou, L., Zhao, L., Al-Dubai, A., Mackenzie, L., & Min, G. (2019). A multi-UAV clustering strategy for reducing insecure communication range. Computer Networks, 158(10), 132–142.CrossRef Wu, J., Zou, L., Zhao, L., Al-Dubai, A., Mackenzie, L., & Min, G. (2019). A multi-UAV clustering strategy for reducing insecure communication range. Computer Networks, 158(10), 132–142.CrossRef
3.
Zurück zum Zitat Wu, C., Yoshinaga, T., Ji, Y., Murase, T., & Zhang, Y. (2017). A reinforcement learning-based data storage scheme for vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 66(7), 6336–6348.CrossRef Wu, C., Yoshinaga, T., Ji, Y., Murase, T., & Zhang, Y. (2017). A reinforcement learning-based data storage scheme for vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 66(7), 6336–6348.CrossRef
4.
Zurück zum Zitat Goudarzi, F., & Asgari, H. (2017). Non-cooperative beacon rate and awareness control for VANETs. IEEE Access, 5, 16858–16870.CrossRef Goudarzi, F., & Asgari, H. (2017). Non-cooperative beacon rate and awareness control for VANETs. IEEE Access, 5, 16858–16870.CrossRef
5.
Zurück zum Zitat Lyu, F., Cheng, N., Zhou, H., Xu, W., Shi, W., Chen, J., et al. (2018). DBCC: Leveraging link perception for distributed beacon congestion control in VANETs. IEEE IoT Journal, 6(5), 4237–4249. Lyu, F., Cheng, N., Zhou, H., Xu, W., Shi, W., Chen, J., et al. (2018). DBCC: Leveraging link perception for distributed beacon congestion control in VANETs. IEEE IoT Journal, 6(5), 4237–4249.
6.
Zurück zum Zitat Dressler, F., Klingler, F., Sommer, C., & Cohen, R. (2018). Not all VANET broadcasts are the same: context-aware class based broadcast. IEEE/ACM Transactions on Networking, 26(1), 17–30.CrossRef Dressler, F., Klingler, F., Sommer, C., & Cohen, R. (2018). Not all VANET broadcasts are the same: context-aware class based broadcast. IEEE/ACM Transactions on Networking, 26(1), 17–30.CrossRef
7.
Zurück zum Zitat Wu, C., Chen, X., Ji, Y., Liu, F., Ohzahata, S., Yoshinaga, T., et al. (2015). Packet size-aware broadcasting in VANETs with fuzzy logic and RL-based parameter adaptation. IEEE Access, 3, 2481–2491.CrossRef Wu, C., Chen, X., Ji, Y., Liu, F., Ohzahata, S., Yoshinaga, T., et al. (2015). Packet size-aware broadcasting in VANETs with fuzzy logic and RL-based parameter adaptation. IEEE Access, 3, 2481–2491.CrossRef
8.
Zurück zum Zitat Wu, C., Ohzahata, S., & Kato, T. (2012). VANET broadcast protocol based on fuzzy logic and lightweight retransmission mechanism. IEICE Transactions on Communications, 95–B(2), 415–425.CrossRef Wu, C., Ohzahata, S., & Kato, T. (2012). VANET broadcast protocol based on fuzzy logic and lightweight retransmission mechanism. IEICE Transactions on Communications, 95–B(2), 415–425.CrossRef
10.
Zurück zum Zitat Wisitpongphan, N., & Tonguz, K. O. (2007). Broadcast storm mitigation techniques in vehicular ad hoc networks. IEEE Wireless Communications, 14(6), 84–94.CrossRef Wisitpongphan, N., & Tonguz, K. O. (2007). Broadcast storm mitigation techniques in vehicular ad hoc networks. IEEE Wireless Communications, 14(6), 84–94.CrossRef
11.
Zurück zum Zitat Tahmasbi-Sarvestani, A., Fallah, Y. P., & Kulathumani, V. (2015). Network-aware double-layer distance-dependent broadcast protocol for VANETs. IEEE Transactions on Vehicular Technology, 64(12), 5536–5546.CrossRef Tahmasbi-Sarvestani, A., Fallah, Y. P., & Kulathumani, V. (2015). Network-aware double-layer distance-dependent broadcast protocol for VANETs. IEEE Transactions on Vehicular Technology, 64(12), 5536–5546.CrossRef
12.
Zurück zum Zitat Shah, S. S., Malik, A. W., Rahman, A. U., Iqbal, S., & Khan, S. U. (2019). Time barrier-based emergency message dissemination in vehicular ad-hoc networks. IEEE Access, 7, 16494–16503.CrossRef Shah, S. S., Malik, A. W., Rahman, A. U., Iqbal, S., & Khan, S. U. (2019). Time barrier-based emergency message dissemination in vehicular ad-hoc networks. IEEE Access, 7, 16494–16503.CrossRef
13.
Zurück zum Zitat Jia, K., Hou, Y., Niu, K., Dong, C., & He, Z. (2019). The delay-constraint broadcast combined with resource reservation mechanism and field test in VANET. IEEE Access, 7, 59600–59612.CrossRef Jia, K., Hou, Y., Niu, K., Dong, C., & He, Z. (2019). The delay-constraint broadcast combined with resource reservation mechanism and field test in VANET. IEEE Access, 7, 59600–59612.CrossRef
15.
Zurück zum Zitat Li, P., Zhang, T., Huang, C., Chen, X., & Fu, B. (2017). RSU-assisted geocast in vehicular ad hoc networks. IEEE Wireless Communications, 24(1), 53–59.CrossRef Li, P., Zhang, T., Huang, C., Chen, X., & Fu, B. (2017). RSU-assisted geocast in vehicular ad hoc networks. IEEE Wireless Communications, 24(1), 53–59.CrossRef
16.
Zurück zum Zitat Zhang, F., Jin, B., Wang, Z., Liu, H., Hu, J., & Zhang, L. (2016). On geocasting over urban bus-based networks by mining trajectories. IEEE Transactions on Intelligent Transportation Systems, 17(6), 1734–1747.CrossRef Zhang, F., Jin, B., Wang, Z., Liu, H., Hu, J., & Zhang, L. (2016). On geocasting over urban bus-based networks by mining trajectories. IEEE Transactions on Intelligent Transportation Systems, 17(6), 1734–1747.CrossRef
17.
Zurück zum Zitat Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge intelligence paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8), 1738–1762.CrossRef Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge intelligence paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8), 1738–1762.CrossRef
18.
Zurück zum Zitat Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y., & Bennis, M. (2019). Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning. IEEE Internet of Things Journal, 6(3), 4005–4018.CrossRef Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y., & Bennis, M. (2019). Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning. IEEE Internet of Things Journal, 6(3), 4005–4018.CrossRef
19.
Zurück zum Zitat Hassan, N., Yau, K. A., & Wu, C. (2019). Edge computing in 5G: A review. IEEE Access, 7, 127276–127289.CrossRef Hassan, N., Yau, K. A., & Wu, C. (2019). Edge computing in 5G: A review. IEEE Access, 7, 127276–127289.CrossRef
20.
Zurück zum Zitat Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., & Wang, W. (2017). A survey on mobile edge networks: Convergence of computing, caching and communications. IEEE Access, 5, 6757–6779.CrossRef Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., & Wang, W. (2017). A survey on mobile edge networks: Convergence of computing, caching and communications. IEEE Access, 5, 6757–6779.CrossRef
21.
Zurück zum Zitat Liu, S., Liu, L., Tang, J., Yu, B., Wang, Y., & Shi, W. (2019). Edge computing for autonomous driving: Opportunities and challenges. Proceedings of the IEEE, 107(8), 1697–1716.CrossRef Liu, S., Liu, L., Tang, J., Yu, B., Wang, Y., & Shi, W. (2019). Edge computing for autonomous driving: Opportunities and challenges. Proceedings of the IEEE, 107(8), 1697–1716.CrossRef
22.
Zurück zum Zitat Khattak, H. A., Islam, S. U., Din, I. U., & Guizani, M. (2019). Integrating fog computing with VANETs: A consumer perspective. IEEE Communications Standards Magazine, 3(1), 19–25.CrossRef Khattak, H. A., Islam, S. U., Din, I. U., & Guizani, M. (2019). Integrating fog computing with VANETs: A consumer perspective. IEEE Communications Standards Magazine, 3(1), 19–25.CrossRef
23.
Zurück zum Zitat Peng, H., Ye, Q., & Shen, X. S. (2019). SDN-based resource management for autonomous vehicular networks: A multi-access edge computing approach. IEEE Wireless Communications, 26(4), 156–162.CrossRef Peng, H., Ye, Q., & Shen, X. S. (2019). SDN-based resource management for autonomous vehicular networks: A multi-access edge computing approach. IEEE Wireless Communications, 26(4), 156–162.CrossRef
24.
Zurück zum Zitat Hu, Q., Wu, C., Zhao, X., Chen, X., Ji, Y., & Yoshinaga, T. (2017). Vehicular multi-access edge computing with licensed sub-6 GHz, IEEE 802.11p and mmWave. IEEE Access, 6, 1995–2004.CrossRef Hu, Q., Wu, C., Zhao, X., Chen, X., Ji, Y., & Yoshinaga, T. (2017). Vehicular multi-access edge computing with licensed sub-6 GHz, IEEE 802.11p and mmWave. IEEE Access, 6, 1995–2004.CrossRef
25.
Zurück zum Zitat Hao, Y., Miao, Y., Hu, L., Hossain, M. S., Muhammad, G., & Amin, S. U. (2019). Smart-Edge-CoCaCo: AI-enabled smart edge with joint computation, caching, and communication in heterogeneous IoT. IEEE Network, 33(2), 58–64.CrossRef Hao, Y., Miao, Y., Hu, L., Hossain, M. S., Muhammad, G., & Amin, S. U. (2019). Smart-Edge-CoCaCo: AI-enabled smart edge with joint computation, caching, and communication in heterogeneous IoT. IEEE Network, 33(2), 58–64.CrossRef
26.
Zurück zum Zitat Wu, C., Chen, X., Yoshinaga, T., Ji, Y., & Zhang, Y. (2019). Integrating licensed and unlicensed spectrum in the internet of vehicles with mobile edge computing. IEEE Network, 33(4), 48–53.CrossRef Wu, C., Chen, X., Yoshinaga, T., Ji, Y., & Zhang, Y. (2019). Integrating licensed and unlicensed spectrum in the internet of vehicles with mobile edge computing. IEEE Network, 33(4), 48–53.CrossRef
28.
Zurück zum Zitat Cui, J., Cao, S., Chang, Y., Wu, L., Liu, D., & Yang, Y. (2019). An adaptive spray and wait routing algorithm based on quality of node in delay tolerant network. IEEE Access, 7, 35274–35286.CrossRef Cui, J., Cao, S., Chang, Y., Wu, L., Liu, D., & Yang, Y. (2019). An adaptive spray and wait routing algorithm based on quality of node in delay tolerant network. IEEE Access, 7, 35274–35286.CrossRef
29.
Zurück zum Zitat Chen, X., Wu, C., Bennis, M., Zhao, Z., & Han, Z. (2019). Learning to entangle radio resources in vehicular communications: An oblivious game-theoretic perspective. IEEE Transactions on Vehicular Technology, 68(5), 4262–4274.CrossRef Chen, X., Wu, C., Bennis, M., Zhao, Z., & Han, Z. (2019). Learning to entangle radio resources in vehicular communications: An oblivious game-theoretic perspective. IEEE Transactions on Vehicular Technology, 68(5), 4262–4274.CrossRef
30.
Zurück zum Zitat Chen, J., & Ran, X. (2019). Deep learning with edge computing: A review. Proceedings of the IEEE, 107(8), 1655–1674.CrossRef Chen, J., & Ran, X. (2019). Deep learning with edge computing: A review. Proceedings of the IEEE, 107(8), 1655–1674.CrossRef
31.
Zurück zum Zitat Dai, Y., Xu, D., Maharjan, S., Qiao, G., & Zhang, Y. (2019). Artificial intelligence empowered edge computing and caching for internet of vehicles. IEEE Network, 26(3), 12–18. Dai, Y., Xu, D., Maharjan, S., Qiao, G., & Zhang, Y. (2019). Artificial intelligence empowered edge computing and caching for internet of vehicles. IEEE Network, 26(3), 12–18.
32.
Zurück zum Zitat Liu, G., Xu, Y., He, Z., Rao, Y., Xia, J., & Fan, L. (2019). Deep learning-based channel prediction for edge computing networks toward intelligent connected vehicles. IEEE Access, 7, 114487–114495.CrossRef Liu, G., Xu, Y., He, Z., Rao, Y., Xia, J., & Fan, L. (2019). Deep learning-based channel prediction for edge computing networks toward intelligent connected vehicles. IEEE Access, 7, 114487–114495.CrossRef
33.
Zurück zum Zitat Zhou, Z., Yu, H., Xu, C., Zhang, Y., Mumtaz, S., & Rodriguez, J. (2018). Dependable content distribution in D2D-based cooperative vehicular networks: A big data-integrated coalition game approach. IEEE Transactions on Intelligent Transportation Systems, 19(3), 953–964.CrossRef Zhou, Z., Yu, H., Xu, C., Zhang, Y., Mumtaz, S., & Rodriguez, J. (2018). Dependable content distribution in D2D-based cooperative vehicular networks: A big data-integrated coalition game approach. IEEE Transactions on Intelligent Transportation Systems, 19(3), 953–964.CrossRef
34.
Zurück zum Zitat Lin, K., Luo, J., Hu, L., Hossain, M. S., & Ghoneim, A. (2017). Localization based on social big data analysis in the vehicular networks. IEEE Transactions on Industrial Informatics, 13(4), 1932–1940.CrossRef Lin, K., Luo, J., Hu, L., Hossain, M. S., & Ghoneim, A. (2017). Localization based on social big data analysis in the vehicular networks. IEEE Transactions on Industrial Informatics, 13(4), 1932–1940.CrossRef
35.
Zurück zum Zitat Cheng, N., Lyu, F., Chen, J., Xu, W., Zhou, H., Zhang, S., et al. (2018). Big data driven vehicular networks. IEEE Network, 32(6), 160–167.CrossRef Cheng, N., Lyu, F., Chen, J., Xu, W., Zhou, H., Zhang, S., et al. (2018). Big data driven vehicular networks. IEEE Network, 32(6), 160–167.CrossRef
37.
Zurück zum Zitat Bai, S., et al. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:1803.01271. Bai, S., et al. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:​1803.​01271.
38.
Zurück zum Zitat Wang, Y., & Tian, F. (2016). Recurrent residual learning for sequence classification. In EMNLP (pp. 938–943). Wang, Y., & Tian, F. (2016). Recurrent residual learning for sequence classification. In EMNLP (pp. 938–943).
39.
Zurück zum Zitat Guleng, S., Wu, C., Yoshinaga, T., & Ji, Y. (2019). Traffic big data assisted broadcast in vehicular networks. In Proceedings of ACM RACS, 5 pages. Guleng, S., Wu, C., Yoshinaga, T., & Ji, Y. (2019). Traffic big data assisted broadcast in vehicular networks. In Proceedings of ACM RACS, 5 pages.
41.
Zurück zum Zitat Khan, A., Sadhu, S., & Yeleswarapu, M. (2009). A comparative analysis of DSRC and 802.11 over vehicular ad hoc networks. Project Report, University of California, Santa Barbara (pp. 1–8). Khan, A., Sadhu, S., & Yeleswarapu, M. (2009). A comparative analysis of DSRC and 802.11 over vehicular ad hoc networks. Project Report, University of California, Santa Barbara (pp. 1–8).
42.
Zurück zum Zitat Bai, F., Sadagopan, N., & Helmy, A. (2003). Important: A framework to systematically analyze the impact of mobility on performance of routing protocols for adhoc networks. In 22nd Annual joint conference of the IEEE computer and communications societies, San Francisco, USA (pp. 825–835). Bai, F., Sadagopan, N., & Helmy, A. (2003). Important: A framework to systematically analyze the impact of mobility on performance of routing protocols for adhoc networks. In 22nd Annual joint conference of the IEEE computer and communications societies, San Francisco, USA (pp. 825–835).
43.
Zurück zum Zitat Krajzewicz, D., Hertkorn, G., Rossel, C., & Wagner, P. (2002). SUMO (simulation of urban mobility): An open-source traffic simulation. In Proceedings of 4th middle east Symposium on simulation and modelling (MESM2002) (pp. 183–187). SCS European Publishing House. Krajzewicz, D., Hertkorn, G., Rossel, C., & Wagner, P. (2002). SUMO (simulation of urban mobility): An open-source traffic simulation. In Proceedings of 4th middle east Symposium on simulation and modelling (MESM2002) (pp. 183–187). SCS European Publishing House.
Metadaten
Titel
Traffic big data assisted V2X communications toward smart transportation
verfasst von
Chang An
Celimuge Wu
Publikationsdatum
07.11.2019
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 3/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-02181-6

Weitere Artikel der Ausgabe 3/2020

Wireless Networks 3/2020 Zur Ausgabe

Neuer Inhalt