Skip to main content
Erschienen in:

21.05.2019

Traffic Density Recognition Based on Image Global Texture Feature

verfasst von: Hongyu Hu, Zhenhai Gao, Yuhuan Sheng, Chi Zhang, Rencheng Zheng

Erschienen in: International Journal of Intelligent Transportation Systems Research | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Traffic state recognitions can provide a strategic support for control and management of urban traffic, which is crucial to ease traffic congestion, reduce road accidents, and ensure road traffic efficiency. This paper proposes an effective traffic density estimation method based on image processing. In the beginning, a whole image is divided into several cells, and then a region of interest (ROI) is extracted based on calculating varieties of pixel values in a temporal sequence of each cell. Then a texture feature descriptor, a histogram of multi-scale block local binary pattern (HMBLBP) is proposed for local feature representation. The HMBLBP of all cells in the ROI are concatenated as a global feature. Furthermore, principle component analysis is performed for dimensionality reduction to save computational cost. At last, the method proposed is tested with two datasets captured from real-world traffic scenarios. By using the support vector machine (SVM) classifier, traffic states are classified into heavy, medium and light densities. Reliable performances are shown in the experimental tests.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Kong, Q.J., Li, Z.P., Chen, Y.K., Liu, Y.C.: An approach to urban traffic state estimation by fusing multisource information. IEEE Trans. Intell. Transp. Syst. 10(3), 499–511 (2009)CrossRef Kong, Q.J., Li, Z.P., Chen, Y.K., Liu, Y.C.: An approach to urban traffic state estimation by fusing multisource information. IEEE Trans. Intell. Transp. Syst. 10(3), 499–511 (2009)CrossRef
2.
Zurück zum Zitat Ma, D.F., Wang, D.H., Bie, Y.M., Di, S.: A method of signal timing optimization for spillover dissipation in urban street networks. Math. Probl. Eng. 2013(11), 1–11 (2013) Ma, D.F., Wang, D.H., Bie, Y.M., Di, S.: A method of signal timing optimization for spillover dissipation in urban street networks. Math. Probl. Eng. 2013(11), 1–11 (2013)
3.
Zurück zum Zitat Kerner, B.S., Demir, C., Herrtwich, R.G., Klenov, S.L., Rehborn, H., Aleksiü, M., DaimlerChrysler, A.G.: Traffic state detection with floating car data in road networks. In: Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems, pp. 44–49 (2005) Kerner, B.S., Demir, C., Herrtwich, R.G., Klenov, S.L., Rehborn, H., Aleksiü, M., DaimlerChrysler, A.G.: Traffic state detection with floating car data in road networks. In: Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems, pp. 44–49 (2005)
4.
Zurück zum Zitat Ozkurt, C., Camci, F.: Automatic traffic density estimation and vehicle classification for traffic surveillance systems using neural networks. Math. Computational Appl. 14(3), 187–196 (2009) Ozkurt, C., Camci, F.: Automatic traffic density estimation and vehicle classification for traffic surveillance systems using neural networks. Math. Computational Appl. 14(3), 187–196 (2009)
5.
Zurück zum Zitat Horng, G.J., Li, J.P., Cheng, S.T.: Traffic congestion reduce mechanism by adaptive road routing recommendation in smart city. Inter. Conference Consumer Elect., Comm. Networks. 714–717 (2013) Horng, G.J., Li, J.P., Cheng, S.T.: Traffic congestion reduce mechanism by adaptive road routing recommendation in smart city. Inter. Conference Consumer Elect., Comm. Networks. 714–717 (2013)
6.
Zurück zum Zitat Bi, S., Han, L.Q., Zhong, Y.X., Wang, X.J.: All-day traffic states recognition system without vehicle segmentation. J China Universities Posts Telecom. 18(Suppl. 2), 1–18(Suppl. 2),11 (2011) Bi, S., Han, L.Q., Zhong, Y.X., Wang, X.J.: All-day traffic states recognition system without vehicle segmentation. J China Universities Posts Telecom. 18(Suppl. 2), 1–18(Suppl. 2),11 (2011)
7.
Zurück zum Zitat Yuan, J., Zheng, Y., Xie, X., Sun, G.Z.: T-drive: enhancing driving directions with taxi drivers’ intelligence. IEEE Trans. Knowledge Data Engr. 25(1), 220–232 (2013)CrossRef Yuan, J., Zheng, Y., Xie, X., Sun, G.Z.: T-drive: enhancing driving directions with taxi drivers’ intelligence. IEEE Trans. Knowledge Data Engr. 25(1), 220–232 (2013)CrossRef
8.
Zurück zum Zitat Kastrinaki, V., Zervakis, M., Kalaitzakis, K.: A survey of video processing techniques for traffic applications. Image Vis. Comput. 21(4), 359–381 (2003)CrossRef Kastrinaki, V., Zervakis, M., Kalaitzakis, K.: A survey of video processing techniques for traffic applications. Image Vis. Comput. 21(4), 359–381 (2003)CrossRef
9.
Zurück zum Zitat Xu, D.W., Dong, H.H., Jia, L.M., Qin, Y.: Virtual speed sensors based algorithm for expressway traffic state estimation. Sci. CHINA Technol. Sci. 55(5), 1381–1390 (2012)CrossRef Xu, D.W., Dong, H.H., Jia, L.M., Qin, Y.: Virtual speed sensors based algorithm for expressway traffic state estimation. Sci. CHINA Technol. Sci. 55(5), 1381–1390 (2012)CrossRef
10.
Zurück zum Zitat Tao, S., Manolopoulos, V., Rodriguez, S., Rusu, A.: Real-time urban traffic state estimation with a-gps mobile phones as probes. J Trans Technol. 02(1), 22–31 (2012) Tao, S., Manolopoulos, V., Rodriguez, S., Rusu, A.: Real-time urban traffic state estimation with a-gps mobile phones as probes. J Trans Technol. 02(1), 22–31 (2012)
11.
Zurück zum Zitat Van Hinsbergen, C.P.I.J., Schreiter, T., Zuurbier, F.S., Van Lint, J.W.C., Van Zuylen, H.J.: Localized extended Kalman filter for scalable real-time traffic state estimation. IEEE Trans. Intell. Transp. Syst. 13(1), 385–394 (2012)CrossRef Van Hinsbergen, C.P.I.J., Schreiter, T., Zuurbier, F.S., Van Lint, J.W.C., Van Zuylen, H.J.: Localized extended Kalman filter for scalable real-time traffic state estimation. IEEE Trans. Intell. Transp. Syst. 13(1), 385–394 (2012)CrossRef
12.
Zurück zum Zitat Beymer, D., Mclauchlan, P., Coifman, B., Malik, J.: A real-time computer vision system for measuring traffic parameters. Conference Computer Vision Pattern Recognition. 495–501 (1997) Beymer, D., Mclauchlan, P., Coifman, B., Malik, J.: A real-time computer vision system for measuring traffic parameters. Conference Computer Vision Pattern Recognition. 495–501 (1997)
13.
Zurück zum Zitat Zhang, W., Wu, Q., J, M., Yin, H.B.: Moving vehicles detection based on adaptive motion histogram. Digital Signal Processing. 10(3), 793–805 (2010)CrossRef Zhang, W., Wu, Q., J, M., Yin, H.B.: Moving vehicles detection based on adaptive motion histogram. Digital Signal Processing. 10(3), 793–805 (2010)CrossRef
14.
Zurück zum Zitat Ji, X.P., Wei, Z.Q., Feng, Y.W.: Effective vehicle detection technique for traffic surveillance systems. J. Vis. Commun. Image Represent. 17(3), 647–658 (2006)CrossRef Ji, X.P., Wei, Z.Q., Feng, Y.W.: Effective vehicle detection technique for traffic surveillance systems. J. Vis. Commun. Image Represent. 17(3), 647–658 (2006)CrossRef
15.
Zurück zum Zitat Spagnolo, P., Orazio, T.D., Leo, M., Distante, A.: Moving object segmentation by background subtraction and temporal analysis. Image Vis. Comput. 24(5), 411–423 (2006)CrossRef Spagnolo, P., Orazio, T.D., Leo, M., Distante, A.: Moving object segmentation by background subtraction and temporal analysis. Image Vis. Comput. 24(5), 411–423 (2006)CrossRef
16.
Zurück zum Zitat Wang, W.Q., Yang, J., Gao, W.: Modeling background and segmenting moving objects from compressed video. IEEE Transactions Circuits Syst. Video Technol. 18(5), 670–681 (2008)CrossRef Wang, W.Q., Yang, J., Gao, W.: Modeling background and segmenting moving objects from compressed video. IEEE Transactions Circuits Syst. Video Technol. 18(5), 670–681 (2008)CrossRef
17.
Zurück zum Zitat Porikli F., Li X.K.: Traffic congestion estimation using HMM models without vehicle tracking. 2004 IEEE Intelligent Vehicles Symposium 188–193 (2004) Porikli F., Li X.K.: Traffic congestion estimation using HMM models without vehicle tracking. 2004 IEEE Intelligent Vehicles Symposium 188–193 (2004)
18.
Zurück zum Zitat Tan, E., Chen, J.: Vehicular traffic density estimation via statistical methods with automated state learning. IEEE Conference Advanced Video Signal Based Surveillance. 164–169 (2007) Tan, E., Chen, J.: Vehicular traffic density estimation via statistical methods with automated state learning. IEEE Conference Advanced Video Signal Based Surveillance. 164–169 (2007)
19.
Zurück zum Zitat Zhang, Y., Jia, K.B.: Traffic state identification for expressway based on video sequences. J. Transport Inform. Safety. 31(4), 14–20 (2013) Zhang, Y., Jia, K.B.: Traffic state identification for expressway based on video sequences. J. Transport Inform. Safety. 31(4), 14–20 (2013)
20.
Zurück zum Zitat Ojala, T., Pietikäinen, M.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Machine Intell. 24(7), 971–987 (2002)CrossRef Ojala, T., Pietikäinen, M.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Machine Intell. 24(7), 971–987 (2002)CrossRef
21.
Zurück zum Zitat Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29(1), 51–59 (1996)CrossRef Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29(1), 51–59 (1996)CrossRef
22.
Zurück zum Zitat Guo, L., Ge, P.S., Zhang, M.H., Li, L.H., Zhao, Y.B.: Pedestrian detection for intelligent transportation systems combining AdaBoost algorithm and support vector machine. Expert Syst. Appl. 39(4), 4274–4286 (2012)CrossRef Guo, L., Ge, P.S., Zhang, M.H., Li, L.H., Zhao, Y.B.: Pedestrian detection for intelligent transportation systems combining AdaBoost algorithm and support vector machine. Expert Syst. Appl. 39(4), 4274–4286 (2012)CrossRef
23.
Zurück zum Zitat Chan, A.B., Vasconcelos, N.: Probabilistic kernels for the classification of auto-regressive visual processes. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 846–851 (2005) Chan, A.B., Vasconcelos, N.: Probabilistic kernels for the classification of auto-regressive visual processes. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 846–851 (2005)
Metadaten
Titel
Traffic Density Recognition Based on Image Global Texture Feature
verfasst von
Hongyu Hu
Zhenhai Gao
Yuhuan Sheng
Chi Zhang
Rencheng Zheng
Publikationsdatum
21.05.2019
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research / Ausgabe 3/2019
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-019-00187-0

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.