Skip to main content
Erschienen in:

15.02.2024 | Electrical and Electronics, Vision and Sensors, Other Fields of Automotive Engineering

Traffic Flow Forecasting Based on Transformer with Diffusion Graph Attention Network

verfasst von: Hong Zhang, Hongyan Wang, Linlong Chen, Tianxin Zhao, Sunan Kan

Erschienen in: International Journal of Automotive Technology | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Der Artikel stellt ein Verkehrsflussvorhersagemodell vor, das auf einem Transformator mit Diffusionsdiagramm-Aufmerksamkeitsnetzwerk (T-DGAN) basiert. Es befasst sich mit den Beschränkungen traditioneller Methoden und existierender Deep-Learning-Modelle im Umgang mit der Nichtlinearität und Komplexität von Verkehrsflussdaten. Das T-DGAN-Modell nutzt eine Encoder-Decoder-Architektur mit Spatio-Temporal Convolutional Network Blocks (ST-CB) und einem Diffusion Graph Attention Block (DGA-B), um sowohl zeitliche als auch räumliche Abhängigkeiten zu erfassen. Die DGA-B aktualisiert dynamisch die Adacency Transition Matrix und spiegelt die sich verändernden räumlichen Korrelationen im Verkehrsfluss wider. Die überlegene Leistung des Modells wird durch umfangreiche Experimente mit realen Datensätzen demonstriert und mit Basismodellen verglichen. Der Artikel enthält auch Visualisierungen und Ablationsstudien, um die Wirksamkeit seiner Komponenten hervorzuheben. Insgesamt bietet das T-DGAN-Modell einen vielversprechenden Ansatz für eine genaue Vorhersage des Verkehrsflusses, mit potenziellen Anwendungen im städtischen Verkehrsmanagement und in der städtischen Planung.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Bogaerts, T., Masegosa, A. D., Angarita-Zapata, J. S., et al. (2020). A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data. Transportation Research Part c, 112, 62–77.CrossRef Bogaerts, T., Masegosa, A. D., Angarita-Zapata, J. S., et al. (2020). A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data. Transportation Research Part c, 112, 62–77.CrossRef
Zurück zum Zitat Cui, Z., Henrickson, K., Ke, R., et al. (2019). Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting. IEEE Transactions on Intelligent Transportation Systems, 21(11), 4883–4894.CrossRef Cui, Z., Henrickson, K., Ke, R., et al. (2019). Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting. IEEE Transactions on Intelligent Transportation Systems, 21(11), 4883–4894.CrossRef
Zurück zum Zitat Djenouri, Y., Belhadi, A., Srivastava, G., et al. (2023). Hybrid graph convolution neural network and branch-and-bound optimization for traffic flow forecasting. Future Generation Computer Systems, 139, 100–108.CrossRef Djenouri, Y., Belhadi, A., Srivastava, G., et al. (2023). Hybrid graph convolution neural network and branch-and-bound optimization for traffic flow forecasting. Future Generation Computer Systems, 139, 100–108.CrossRef
Zurück zum Zitat Emami, A., Sarvi, M., & Bagloee, S. A. (2020). Short-term traffic flow prediction based on faded memory Kalman Filter fusing data from connected vehicles and Bluetooth sensors. Simulation Modelling Practice and Theory, 102, 102025.CrossRef Emami, A., Sarvi, M., & Bagloee, S. A. (2020). Short-term traffic flow prediction based on faded memory Kalman Filter fusing data from connected vehicles and Bluetooth sensors. Simulation Modelling Practice and Theory, 102, 102025.CrossRef
Zurück zum Zitat Guo, S., Lin, Y., Li, S., et al. (2019). Deep spatial–temporal 3D convolutional neural networks for traffic data forecasting. IEEE Transactions on Intelligent Transportation Systems, 20(10), 3913–3926.CrossRef Guo, S., Lin, Y., Li, S., et al. (2019). Deep spatial–temporal 3D convolutional neural networks for traffic data forecasting. IEEE Transactions on Intelligent Transportation Systems, 20(10), 3913–3926.CrossRef
Zurück zum Zitat Guo, S., Lin, Y., Wan, H., et al. (2021). Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Transactions on Knowledge and Data Engineering, 34(11), 5415–5428.CrossRef Guo, S., Lin, Y., Wan, H., et al. (2021). Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Transactions on Knowledge and Data Engineering, 34(11), 5415–5428.CrossRef
Zurück zum Zitat Huang, B., Dou, H., Luo, Y., et al. (2022). Adaptive spatiotemporal transformer graph network for traffic flow forecasting by IoT loop detectors. IEEE Internet of Things Journal, 10(2), 1642–1653.CrossRef Huang, B., Dou, H., Luo, Y., et al. (2022). Adaptive spatiotemporal transformer graph network for traffic flow forecasting by IoT loop detectors. IEEE Internet of Things Journal, 10(2), 1642–1653.CrossRef
Zurück zum Zitat Kong X, Zhang J, Wei X, et al. (2022) Adaptive spatial-temporal graph attention networks for traffic flow forecasting. Applied Intelligence: 1–17. Kong X, Zhang J, Wei X, et al. (2022) Adaptive spatial-temporal graph attention networks for traffic flow forecasting. Applied Intelligence: 1–17.
Zurück zum Zitat Li Y, Yu R, Cyrus S, et al. (2018) Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. Proceedings of the International Conference on Learning Representa-tions. Li Y, Yu R, Cyrus S, et al. (2018) Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. Proceedings of the International Conference on Learning Representa-tions.
Zurück zum Zitat Li R, Zhang F, Li T, et al. (2022) DMGAN: Dynamic Multi-Hop Graph Attention Network for Traffic Forecasting. IEEE Transactions on Knowledge and Data Engineering 1–14. Li R, Zhang F, Li T, et al. (2022) DMGAN: Dynamic Multi-Hop Graph Attention Network for Traffic Forecasting. IEEE Transactions on Knowledge and Data Engineering 1–14.
Zurück zum Zitat Li, F., Feng, J., Yan, H., et al. (2023). Dynamic graph convolutional recurrent network for traffic prediction: Benchmark and solution. ACM Transactions on Knowledge Discovery from Data, 17(1), 1–21. Li, F., Feng, J., Yan, H., et al. (2023). Dynamic graph convolutional recurrent network for traffic prediction: Benchmark and solution. ACM Transactions on Knowledge Discovery from Data, 17(1), 1–21.
Zurück zum Zitat Li, L., Yang, Y., Yuan, Z., et al. (2021). A spatial-temporal approach for traffic status analysis and prediction based on Bi-LSTM structure. Modern Physics Letters B, 35(31), 2150481.MathSciNetCrossRef Li, L., Yang, Y., Yuan, Z., et al. (2021). A spatial-temporal approach for traffic status analysis and prediction based on Bi-LSTM structure. Modern Physics Letters B, 35(31), 2150481.MathSciNetCrossRef
Zurück zum Zitat Lin, G., Lin, A., & Gu, D. (2022). Using support vector regression and K-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient. Information Sciences, 608, 517–531.CrossRef Lin, G., Lin, A., & Gu, D. (2022). Using support vector regression and K-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient. Information Sciences, 608, 517–531.CrossRef
Zurück zum Zitat Liu J, Kang Y, Li H, et al. (2022) STGHTN: Spatial-temporal gated hybrid transformer network for traffic flow forecasting. Applied Intelligence: 1–17. Liu J, Kang Y, Li H, et al. (2022) STGHTN: Spatial-temporal gated hybrid transformer network for traffic flow forecasting. Applied Intelligence: 1–17.
Zurück zum Zitat Liu, Q., Wang, B., & Zhu, Y. (2018). Short-term traffic speed forecasting based on attention convolutional neural network for arterials. Computer-Aided Civil and Infrastructure Engineering, 33(11), 999–1016.CrossRef Liu, Q., Wang, B., & Zhu, Y. (2018). Short-term traffic speed forecasting based on attention convolutional neural network for arterials. Computer-Aided Civil and Infrastructure Engineering, 33(11), 999–1016.CrossRef
Zurück zum Zitat Lu, B., Gan, X., Jin, H., et al. (2022). Make more connections: Urban traffic flow forecasting with spatiotemporal adaptive gated graph convolution network. ACM Transactions on Intelligent Systems and Technology (TIST), 13(2), 1–25. Lu, B., Gan, X., Jin, H., et al. (2022). Make more connections: Urban traffic flow forecasting with spatiotemporal adaptive gated graph convolution network. ACM Transactions on Intelligent Systems and Technology (TIST), 13(2), 1–25.
Zurück zum Zitat Sadeghi Gargari, N., Panahi, R., Akbari, H., et al. (2022). Long-term traffic forecast using neural network and seasonal autoregressive integrated moving average: Case of a container port. Transportation Research Record, 2676(8), 236–252.CrossRef Sadeghi Gargari, N., Panahi, R., Akbari, H., et al. (2022). Long-term traffic forecast using neural network and seasonal autoregressive integrated moving average: Case of a container port. Transportation Research Record, 2676(8), 236–252.CrossRef
Zurück zum Zitat Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica d: Nonlinear Phenomena, 404, 132306.MathSciNetCrossRef Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica d: Nonlinear Phenomena, 404, 132306.MathSciNetCrossRef
Zurück zum Zitat Sun, Y., Jiang, X., Hu, Y., et al. (2022). Dual dynamic spatial-temporal graph convolution network for traffic prediction. IEEE Transactions on Intelligent Transportation Systems, 23(12), 23680–23693.CrossRef Sun, Y., Jiang, X., Hu, Y., et al. (2022). Dual dynamic spatial-temporal graph convolution network for traffic prediction. IEEE Transactions on Intelligent Transportation Systems, 23(12), 23680–23693.CrossRef
Zurück zum Zitat Wang, S., Patwary, A. U. Z., & Huang, W. (2022a). A general framework for combining traffic flow models and Bayesian network for traffic parameters estimation. Transportation Research Part c, 139, 103664.CrossRef Wang, S., Patwary, A. U. Z., & Huang, W. (2022a). A general framework for combining traffic flow models and Bayesian network for traffic parameters estimation. Transportation Research Part c, 139, 103664.CrossRef
Zurück zum Zitat Wang, T., Ni, S., Qin, T., et al. (2022b). TransGAT: A dynamic graph attention residual networks for traffic flow forecasting. Sustainable Computing: Informatics and Systems, 36, 100779. Wang, T., Ni, S., Qin, T., et al. (2022b). TransGAT: A dynamic graph attention residual networks for traffic flow forecasting. Sustainable Computing: Informatics and Systems, 36, 100779.
Zurück zum Zitat Wang, Z., Su, X., & Ding, Z. (2020). Long-Term Traffic Prediction Based on LSTM Encoder-Decoder Architecture[J]. IEEE Transactions on Intelligent Transportation Systems, 99, 1–11. Wang, Z., Su, X., & Ding, Z. (2020). Long-Term Traffic Prediction Based on LSTM Encoder-Decoder Architecture[J]. IEEE Transactions on Intelligent Transportation Systems, 99, 1–11.
Zurück zum Zitat Wu, Z., Pan, S., Chen, F., et al. (2020). A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1), 4–24.MathSciNetCrossRef Wu, Z., Pan, S., Chen, F., et al. (2020). A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1), 4–24.MathSciNetCrossRef
Zurück zum Zitat Yin, X., Wu, G., Wei, J., et al. (2021). Deep learning on traffic prediction: Methods, analysis, and future directions. IEEE Transactions on Intelligent Transportation Systems, 23(6), 4927–4943.CrossRef Yin, X., Wu, G., Wei, J., et al. (2021). Deep learning on traffic prediction: Methods, analysis, and future directions. IEEE Transactions on Intelligent Transportation Systems, 23(6), 4927–4943.CrossRef
Zurück zum Zitat Yu, B., Lee, Y., & Sohn, K. (2020). Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN). Transportation Research Part c, 114, 189–204.CrossRef Yu, B., Lee, Y., & Sohn, K. (2020). Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN). Transportation Research Part c, 114, 189–204.CrossRef
Zurück zum Zitat Zhang, C., Pan, X., Li, H., et al. (2018). A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 140, 133–144.CrossRef Zhang, C., Pan, X., Li, H., et al. (2018). A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 140, 133–144.CrossRef
Zurück zum Zitat Zhang, K., Zheng, L., Liu, Z., et al. (2020). A deep learning based multitask model for network-wide traffic speed prediction. Neurocomputing, 396, 438–450.CrossRef Zhang, K., Zheng, L., Liu, Z., et al. (2020). A deep learning based multitask model for network-wide traffic speed prediction. Neurocomputing, 396, 438–450.CrossRef
Zurück zum Zitat Zheng, C., Fan, X., Wang, C., et al. (2022). GMAN: A Graph Multi-Attention Network for Traffic Predic-tion. Proceedings of the AAAI Conference on Artificial Intelligence, 34(01), 1234–1241.CrossRef Zheng, C., Fan, X., Wang, C., et al. (2022). GMAN: A Graph Multi-Attention Network for Traffic Predic-tion. Proceedings of the AAAI Conference on Artificial Intelligence, 34(01), 1234–1241.CrossRef
Metadaten
Titel
Traffic Flow Forecasting Based on Transformer with Diffusion Graph Attention Network
verfasst von
Hong Zhang
Hongyan Wang
Linlong Chen
Tianxin Zhao
Sunan Kan
Publikationsdatum
15.02.2024
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology / Ausgabe 3/2024
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00036-4