Skip to main content

2024 | OriginalPaper | Buchkapitel

Training Artificial Immune Networks as Standalone Generative Models for Realistic Data Synthesis

verfasst von : Siphesihle Philezwini Sithungu, Elizabeth Marie Ehlers

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, generative modelling has become a significant area of computer science research and artificial intelligence. This has been primarily due to the fact that generative models are useful in addressing the class imbalance problem inherent in some datasets. By generating synthetic data samples for underrepresented classes with a decent amount of variation through random noise, classification models could be trained more efficiently. The popularity of generative models was also increased by the prospect of being able to generate previously non-existent samples of images, audio and video for other creative tasks not related to addressing the class imbalance in datasets. This paper presents exploratory research to train an artificial immune network as a standalone generative model (called a generative adversarial artificial immune network, or GAAINet) using purely immunological computation concepts, such as antibody affinity, clonal selection and hypermutation. Experimental results show that the resulting generator artificial immune network could generate human-recognisable synthetic handwritten digits without any prior knowledge of the MNIST handwritten digits dataset.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
5.
Zurück zum Zitat Ghojogh, B., Ghodsi, A., Karray, F., Crowley, M.: Restricted boltzmann machine and deep belief network: tutorial and survey. arXiv preprint arXiv:2107.12521 (2021) Ghojogh, B., Ghodsi, A., Karray, F., Crowley, M.: Restricted boltzmann machine and deep belief network: tutorial and survey. arXiv preprint arXiv:​2107.​12521 (2021)
6.
Zurück zum Zitat Blunsom, P.: Hidden markov models. Lecture notes, August 15(18–19), 48 (2004) Blunsom, P.: Hidden markov models. Lecture notes, August 15(18–19), 48 (2004)
7.
Zurück zum Zitat Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson (2021) Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson (2021)
10.
Zurück zum Zitat Jerne, N.K.: Towards a network theory of the immune system. Ann. Immunol.Immunol. 125, 373–389 (1974) Jerne, N.K.: Towards a network theory of the immune system. Ann. Immunol.Immunol. 125, 373–389 (1974)
12.
Zurück zum Zitat Diana, R.O.M., de Souza, S.R., Wanner, E.F., Filho, M.F.F.: Hybrid metaheuristic for combinatorial optimization based on immune network for optimization and VNS. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 251–258. GECCO 2017, Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3071178.3071269 Diana, R.O.M., de Souza, S.R., Wanner, E.F., Filho, M.F.F.: Hybrid metaheuristic for combinatorial optimization based on immune network for optimization and VNS. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 251–258. GECCO 2017, Association for Computing Machinery, New York, NY, USA (2017). https://​doi.​org/​10.​1145/​3071178.​3071269
13.
Zurück zum Zitat Agiza, H.N., Hassan, A.E., Salah, A.M.: An improved version of opt-aiNET algorithm (i-opt-aiNET) for function optimization. IJCSNS Int. J. Comput. Sci. Netw. Secur. 11(3), 80–85 (2011) Agiza, H.N., Hassan, A.E., Salah, A.M.: An improved version of opt-aiNET algorithm (i-opt-aiNET) for function optimization. IJCSNS Int. J. Comput. Sci. Netw. Secur. 11(3), 80–85 (2011)
14.
Zurück zum Zitat Souza, S.S., Romero, R., Franco, J.F.: Artificial immune networks copt-aiNET and opt- aiNET applied to the reconfiguration problem of radial electrical distribution systems. Electr. Power Syst. Res. 119, 304–312 (2015)CrossRef Souza, S.S., Romero, R., Franco, J.F.: Artificial immune networks copt-aiNET and opt- aiNET applied to the reconfiguration problem of radial electrical distribution systems. Electr. Power Syst. Res. 119, 304–312 (2015)CrossRef
15.
Zurück zum Zitat Kanwal, S., Khan, F., Alamri, S., Dashtipur, K., Gogate, M.: Covid-opt-aiNET: a clinical decision support system for COVID-19 detection. Int. J. Imaging Syst. Technol. 32(2), 444–461 (2022)CrossRef Kanwal, S., Khan, F., Alamri, S., Dashtipur, K., Gogate, M.: Covid-opt-aiNET: a clinical decision support system for COVID-19 detection. Int. J. Imaging Syst. Technol. 32(2), 444–461 (2022)CrossRef
16.
Zurück zum Zitat Rassam, M.A., Maarof, M.A.: Artificial immune network clustering approach for anomaly intrusion detection. J. Adv. Inf. Technol. 3(3), 147–154 (2012) Rassam, M.A., Maarof, M.A.: Artificial immune network clustering approach for anomaly intrusion detection. J. Adv. Inf. Technol. 3(3), 147–154 (2012)
17.
Zurück zum Zitat Yang, H., Guo, J., Deng, F.: Collaborative RFID intrusion detection with an artificial immune system. J. Intell. Inf. Syst.Intell. Inf. Syst. 36(1), 1–26 (2011)CrossRef Yang, H., Guo, J., Deng, F.: Collaborative RFID intrusion detection with an artificial immune system. J. Intell. Inf. Syst.Intell. Inf. Syst. 36(1), 1–26 (2011)CrossRef
18.
Zurück zum Zitat Xiao, X., Zhang, R.R.: A network intrusion detection model based on artificial immune. In: Advanced Materials Research. vol. 361, pp. 687–690. Trans Tech Publ (2012) Xiao, X., Zhang, R.R.: A network intrusion detection model based on artificial immune. In: Advanced Materials Research. vol. 361, pp. 687–690. Trans Tech Publ (2012)
20.
21.
Zurück zum Zitat Sithungu, S.P., Ehlers, E.M.: GAAINet: a generative adversarial artificial immune network model for intrusion detection in industrial IoT Systems. J. Adv. Inf. Technol. 13(5), 456–461 (2022) Sithungu, S.P., Ehlers, E.M.: GAAINet: a generative adversarial artificial immune network model for intrusion detection in industrial IoT Systems. J. Adv. Inf. Technol. 13(5), 456–461 (2022)
22.
Zurück zum Zitat Sinn, M., Rawat, A.: Non-parametric estimation of jensen-shannon divergence in generative adversarial network training. In: Storkey, A., Perez-Cruz, F. (eds.) Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 84, pp. 642–651. PMLR (2018) Sinn, M., Rawat, A.: Non-parametric estimation of jensen-shannon divergence in generative adversarial network training. In: Storkey, A., Perez-Cruz, F. (eds.) Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 84, pp. 642–651. PMLR (2018)
23.
Zurück zum Zitat Kivinen, J., Williams, C.: Multiple texture boltzmann machines. In: Lawrence, N.D., Girolami, M. (eds.) Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 22, pp. 638–646. PMLR, La Palma, Canary Islands (2012) Kivinen, J., Williams, C.: Multiple texture boltzmann machines. In: Lawrence, N.D., Girolami, M. (eds.) Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 22, pp. 638–646. PMLR, La Palma, Canary Islands (2012)
25.
Zurück zum Zitat Tan, B., Peng, F.: Unsupervised query segmentation using generative language models and wikipedia. In: Proceedings of the 17th International Conference on World Wide Web, pp. 347–356. WWW 2008, Association for Computing Machinery, New York, NY, USA (2008). https://doi.org/10.1145/1367497.1367545 Tan, B., Peng, F.: Unsupervised query segmentation using generative language models and wikipedia. In: Proceedings of the 17th International Conference on World Wide Web, pp. 347–356. WWW 2008, Association for Computing Machinery, New York, NY, USA (2008). https://​doi.​org/​10.​1145/​1367497.​1367545
26.
Zurück zum Zitat Tang, Y., Salakhutdinov, R., Hinton, G.: Deep lambertian networks (2012) Tang, Y., Salakhutdinov, R., Hinton, G.: Deep lambertian networks (2012)
27.
Zurück zum Zitat Salakhutdinov, R., Larochelle, H.: Efficient learning of deep boltzmann machines. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 9, pp. 693–700. PMLR, Chia Laguna Resort, Sardinia, Italy (2010) Salakhutdinov, R., Larochelle, H.: Efficient learning of deep boltzmann machines. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 9, pp. 693–700. PMLR, Chia Laguna Resort, Sardinia, Italy (2010)
28.
Zurück zum Zitat Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014) Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014)
29.
Zurück zum Zitat Salimans, T., et al.: Improved techniques for training GANs. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016) Salimans, T., et al.: Improved techniques for training GANs. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016)
Metadaten
Titel
Training Artificial Immune Networks as Standalone Generative Models for Realistic Data Synthesis
verfasst von
Siphesihle Philezwini Sithungu
Elizabeth Marie Ehlers
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_20