2013 | OriginalPaper | Buchkapitel
Training Neural Networks by Resilient Backpropagation Algorithm for Tourism Forecasting
verfasst von : Paula Odete Fernandes, João Paulo Teixeira, João Ferreira, Susana Azevedo
Erschienen in: Management Intelligent Systems
Verlag: Springer International Publishing
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
The main objective of this study is to presents a set of models for tourism destinations competitiveness, using the Artificial Neural Networks (ANN) methodology. The time series of two regions (North and Centre of Portugal) has used to predict the tourism demand. The prediction for two years ahead gives a mean absolute percentage error between 5 and 9 %. Therefore, the ANN model is adequate for modelling and prediction of the reference time series. This model is an important and useful framework for better planning and development of these two regions as they operate in highly competitive markets.