Skip to main content

30.11.2024

Trajectory and Motion Prediction of Autonomous Vehicles Driving Assistant System using Distributed Discriminator Based Bi-Directional Long Short Term Memory Model

verfasst von: Sushila Umesh Ratre, Bharti Joshi

Erschienen in: International Journal of Intelligent Transportation Systems Research

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The trajectory and motion prediction of autonomous vehicles stands as a pivotal element in guaranteeing the safety and effectiveness of self-driving systems. Yet, current models frequently encounter challenges in providing precise forecasts of the behaviors exhibited by nearby vehicles and objects. Traditional approaches often grapple with the intricate and ever-changing dynamics of real-world traffic situations, resulting in predictions that fall short in accuracy and, consequently, may introduce safety concerns. Moreover, they face challenges in handling large-scale datasets and real-time processing. To overcome these limitations, this research endeavors to develop a distributed discriminator-based Bi-directional Long Short Term Memory (Distributed discriminator-based Bi-LSTM) model for trajectory and motion prediction in order to predict the capabilities of autonomous vehicles and contribute to safer and more reliable self-driving systems. The Keystone for achieving precise predictions resides in the Distributed discriminator-based Bi-LSTM model, a sophisticated network that adeptly incorporates both historical and forthcoming trajectory data for distinguishing different objects and discerning intricate motion patterns. Harnessing the power of real-time tracking data, it endows autonomous vehicles with the capacity to make well-informed decisions and chart optimal routes, thereby significantly elevating their predictive prowess when navigating intricate and multifaceted road scenarios. For instance, in the case of D1, the model achieves outstandingly low error levels with MAE at 2.02, RMSE at 2.47 and MSE at 6.09. Similarly, in the K-fold 10 scenario, the Distributed Discriminator-based Bi-LSTM surpasses the existing models with notably reduced errors, registering MAE at 2.59, RMSE at 3.29 and MSE at 10.83. These results underscore the significant efficiency enhancement offered by the proposed model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Zhong, J., Sun, H., Cao, W., He, Z.: Pedestrian motion trajectory prediction with stereo-based 3D deep pose estimation and trajectory learning. IEEE Access 8, 23480–23486 (2020)CrossRef Zhong, J., Sun, H., Cao, W., He, Z.: Pedestrian motion trajectory prediction with stereo-based 3D deep pose estimation and trajectory learning. IEEE Access 8, 23480–23486 (2020)CrossRef
2.
Zurück zum Zitat Jeong, Y., Kim, S., Yi, K.: Surround vehicle motion prediction using LSTM-RNN for motion planning of autonomous vehicles at multi-lane turn intersections. IEEE Open J. Intell. Transp. Syst. 1, 2–14 (2020)CrossRef Jeong, Y., Kim, S., Yi, K.: Surround vehicle motion prediction using LSTM-RNN for motion planning of autonomous vehicles at multi-lane turn intersections. IEEE Open J. Intell. Transp. Syst. 1, 2–14 (2020)CrossRef
3.
Zurück zum Zitat Zhang, J., Xiong, J., Li, L., Xi, Q., Chen, X., Li, F.: Motion State Recognition and Trajectory Prediction of Hypersonic Glide Vehicle Based on Deep Learning. IEEE Access 10, 21095–21108 (2022)CrossRef Zhang, J., Xiong, J., Li, L., Xi, Q., Chen, X., Li, F.: Motion State Recognition and Trajectory Prediction of Hypersonic Glide Vehicle Based on Deep Learning. IEEE Access 10, 21095–21108 (2022)CrossRef
4.
Zurück zum Zitat Huang, X., McGill, S.G., DeCastro, J.A., Fletcher, L., Leonard, J.J., Williams, B.C., Rosman, G.: DiversityGAN: Diversity-aware vehicle motion prediction via latent semantic sampling. IEEE Robot. Autom. Lett. 5(4), 5089–5096 (2020)CrossRef Huang, X., McGill, S.G., DeCastro, J.A., Fletcher, L., Leonard, J.J., Williams, B.C., Rosman, G.: DiversityGAN: Diversity-aware vehicle motion prediction via latent semantic sampling. IEEE Robot. Autom. Lett. 5(4), 5089–5096 (2020)CrossRef
5.
Zurück zum Zitat Khakzar, M., Rakotonirainy, A., Bond, A., Dehkordi, S.G.: A dual learning model for vehicle trajectory prediction. IEEE Access 8, 21897–21908 (2020)CrossRef Khakzar, M., Rakotonirainy, A., Bond, A., Dehkordi, S.G.: A dual learning model for vehicle trajectory prediction. IEEE Access 8, 21897–21908 (2020)CrossRef
6.
Zurück zum Zitat De Miguel, M.Á., Armingol, J.M., García, F.: Vehicles trajectory prediction using recurrent VAE network. IEEE Access 10, 32742–32749 (2022)CrossRef De Miguel, M.Á., Armingol, J.M., García, F.: Vehicles trajectory prediction using recurrent VAE network. IEEE Access 10, 32742–32749 (2022)CrossRef
7.
Zurück zum Zitat Fu, M., Zhang, T., Song, W., Yang, Y., Wang, M.: Trajectory prediction-based local spatio-temporal navigation map for autonomous driving in dynamic highway environments. IEEE Trans. Intell. Transp. Syst. 23(7), 6418–6429 (2021)CrossRef Fu, M., Zhang, T., Song, W., Yang, Y., Wang, M.: Trajectory prediction-based local spatio-temporal navigation map for autonomous driving in dynamic highway environments. IEEE Trans. Intell. Transp. Syst. 23(7), 6418–6429 (2021)CrossRef
8.
Zurück zum Zitat Zhang, T., Song, W., Fu, M., Yang, Y., Wang, M.: Vehicle motion prediction at intersections based on the turning intention and prior trajectories model. IEEE/CAA J. Autom. Sin. 8(10), 1657–1666 (2021)CrossRef Zhang, T., Song, W., Fu, M., Yang, Y., Wang, M.: Vehicle motion prediction at intersections based on the turning intention and prior trajectories model. IEEE/CAA J. Autom. Sin. 8(10), 1657–1666 (2021)CrossRef
9.
Zurück zum Zitat Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M.: Desire: Distant future prediction in dynamic scenes with interacting agents. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 336–345 (2017) Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M.: Desire: Distant future prediction in dynamic scenes with interacting agents. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 336–345 (2017)
10.
Zurück zum Zitat Bartoli, F., Lisanti, G., Ballan, L., Del Bimbo, A.: Context-aware trajectory prediction. In: 2018 24th international conference on pattern recognition (ICPR), pp. 1941–1946. IEEE (2018) Bartoli, F., Lisanti, G., Ballan, L., Del Bimbo, A.: Context-aware trajectory prediction. In: 2018 24th international conference on pattern recognition (ICPR), pp. 1941–1946. IEEE (2018)
11.
Zurück zum Zitat Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social gan: Socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2255–2264 (2018) Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social gan: Socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2255–2264 (2018)
12.
Zurück zum Zitat Choi, E.H.: Crash factors in intersection-related crashes: An on-scene perspective (No. HS-811 366) (2010) Choi, E.H.: Crash factors in intersection-related crashes: An on-scene perspective (No. HS-811 366) (2010)
13.
Zurück zum Zitat Wiest, J., Höffken, M., Kreßel, U., Dietmayer, K.: Probabilistic trajectory prediction with Gaussian mixture models. In: 2012 IEEE Intelligent vehicles symposium, pp. 141–146. IEEE (2012) Wiest, J., Höffken, M., Kreßel, U., Dietmayer, K.: Probabilistic trajectory prediction with Gaussian mixture models. In: 2012 IEEE Intelligent vehicles symposium, pp. 141–146. IEEE (2012)
14.
Zurück zum Zitat Klingelschmitt, S., Platho, M., Groß, H.M., Willert, V., Eggert, J.: Combining behavior and situation information for reliably estimating multiple intentions. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings, pp. 388–393. IEEE (2014) Klingelschmitt, S., Platho, M., Groß, H.M., Willert, V., Eggert, J.: Combining behavior and situation information for reliably estimating multiple intentions. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings, pp. 388–393. IEEE (2014)
15.
Zurück zum Zitat Gindele, T., Brechtel, S., Dillmann, R.: A probabilistic model for estimating driver behaviors and vehicle trajectories in traffic environments. In: 13th International IEEE Conference on Intelligent Transportation Systems, pp. 1625–1631. IEEE (2010) Gindele, T., Brechtel, S., Dillmann, R.: A probabilistic model for estimating driver behaviors and vehicle trajectories in traffic environments. In: 13th International IEEE Conference on Intelligent Transportation Systems, pp. 1625–1631. IEEE (2010)
16.
Zurück zum Zitat Phillips, D.J., Wheeler, T.A., Kochenderfer, M.J.: Generalizable intention prediction of human drivers at intersections. In: 2017 IEEE intelligent vehicles symposium (IV), pp. 1665–1670. IEEE (2017) Phillips, D.J., Wheeler, T.A., Kochenderfer, M.J.: Generalizable intention prediction of human drivers at intersections. In: 2017 IEEE intelligent vehicles symposium (IV), pp. 1665–1670. IEEE (2017)
17.
Zurück zum Zitat Meng, F., Tian, K.: Phased-array radar task scheduling method for hypersonic-glide vehicles. IEEE Access 8, 221288–221298 (2020)CrossRef Meng, F., Tian, K.: Phased-array radar task scheduling method for hypersonic-glide vehicles. IEEE Access 8, 221288–221298 (2020)CrossRef
18.
Zurück zum Zitat Dai, H.F., Bian, H.W., Wang, R.Y., Ma, H.: An INS/GNSS integrated navigation in GNSS denied environment using recurrent neural network. Defence Technol. 16(2), 334–340 (2020)CrossRef Dai, H.F., Bian, H.W., Wang, R.Y., Ma, H.: An INS/GNSS integrated navigation in GNSS denied environment using recurrent neural network. Defence Technol. 16(2), 334–340 (2020)CrossRef
19.
Zurück zum Zitat Wang, Y., Liu, T., Zhang, D., Xie, Y.: Dual-convolutional neural network based aerodynamic prediction and multi-objective optimization of a compact turbine rotor. Aerosp. Sci. Technol. 116, 106869 (2021)CrossRef Wang, Y., Liu, T., Zhang, D., Xie, Y.: Dual-convolutional neural network based aerodynamic prediction and multi-objective optimization of a compact turbine rotor. Aerosp. Sci. Technol. 116, 106869 (2021)CrossRef
20.
Zurück zum Zitat Che, C., Wang, H., Fu, Q., Ni, X.: Combining multiple deep learning algorithms for prognostic and health management of aircraft. Aerosp. Sci. Technol. 94, 105423 (2019)CrossRef Che, C., Wang, H., Fu, Q., Ni, X.: Combining multiple deep learning algorithms for prognostic and health management of aircraft. Aerosp. Sci. Technol. 94, 105423 (2019)CrossRef
21.
Zurück zum Zitat Zhang, Y., Li, Y., Zhang, G.: Short-term wind power forecasting approach based on Seq2Seq model using NWP data. Energy 213, 118371 (2020)CrossRef Zhang, Y., Li, Y., Zhang, G.: Short-term wind power forecasting approach based on Seq2Seq model using NWP data. Energy 213, 118371 (2020)CrossRef
22.
Zurück zum Zitat Houenou, A., Bonnifait, P., Cherfaoui, V., Yao, W.: November. Vehicle trajectory prediction based on motion model and maneuver recognition. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp. 4363–4369. IEEE (2013) Houenou, A., Bonnifait, P., Cherfaoui, V., Yao, W.: November. Vehicle trajectory prediction based on motion model and maneuver recognition. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp. 4363–4369. IEEE (2013)
23.
Zurück zum Zitat Wiest, J., Höffken, M., Kreßel, U., Dietmayer, K.: Probabilistic trajectory prediction with Gaussian mixture models. In: 2012 IEEE Intelligent vehicles symposium, pp. 141–146. IEEE (2012) Wiest, J., Höffken, M., Kreßel, U., Dietmayer, K.: Probabilistic trajectory prediction with Gaussian mixture models. In: 2012 IEEE Intelligent vehicles symposium, pp. 141–146. IEEE (2012)
24.
Zurück zum Zitat Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social gan: Socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2255–2264 (2018) Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social gan: Socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2255–2264 (2018)
25.
Zurück zum Zitat Hong, Z.W., Shann, T.Y., Su, S.Y., Chang, Y.H., Fu, T.J., Lee, C.Y.: Diversity-driven exploration strategy for deep reinforcement learning. Adv. Neural Inf. Process. Syst. 31 (2018) Hong, Z.W., Shann, T.Y., Su, S.Y., Chang, Y.H., Fu, T.J., Lee, C.Y.: Diversity-driven exploration strategy for deep reinforcement learning. Adv. Neural Inf. Process. Syst. 31 (2018)
27.
Zurück zum Zitat Cohen, A., Qiao, X., Yu, L., Way, E., Tong, X.: Diverse exploration via conjugate policies for policy gradient methods. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 3404–3411 (2019) Cohen, A., Qiao, X., Yu, L., Way, E., Tong, X.: Diverse exploration via conjugate policies for policy gradient methods. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 3404–3411 (2019)
28.
Zurück zum Zitat Feng, X., Cen, Z., Hu, J., Zhang, Y.: Vehicle trajectory prediction using intention-based conditional variational autoencoder. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3514–3519. IEEE (2019) Feng, X., Cen, Z., Hu, J., Zhang, Y.: Vehicle trajectory prediction using intention-based conditional variational autoencoder. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3514–3519. IEEE (2019)
29.
Zurück zum Zitat Schreier, M., Willert, V., Adamy, J.: Bayesian, maneuver-based, long-term trajectory prediction and criticality assessment for driver assistance systems. In: 17th international IEEE conference on intelligent transportation systems (ITSC), pp. 334–341. IEEE (2014) Schreier, M., Willert, V., Adamy, J.: Bayesian, maneuver-based, long-term trajectory prediction and criticality assessment for driver assistance systems. In: 17th international IEEE conference on intelligent transportation systems (ITSC), pp. 334–341. IEEE (2014)
30.
Zurück zum Zitat Deo, N., Trivedi, M.M.: Convolutional social pooling for vehicle trajectory prediction. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 1468–1476 (2018) Deo, N., Trivedi, M.M.: Convolutional social pooling for vehicle trajectory prediction. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 1468–1476 (2018)
31.
Zurück zum Zitat U.S. Department of Transportation Federal Highway Administration: Next Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data. [Dataset]. Provided by ITS DataHub through Data.transportation.gov. Accessed 31 Dec 2021 from https://doi.org/10.21949/1504477 (2016) U.S. Department of Transportation Federal Highway Administration: Next Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data. [Dataset]. Provided by ITS DataHub through Data.transportation.gov. Accessed 31 Dec 2021 from https://​doi.​org/​10.​21949/​1504477 (2016)
32.
Zurück zum Zitat Tang, B., Khokhar, S., Gupta, R.: Turn prediction at generalized intersections. In: 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 1399-1404. IEEE (2015) Tang, B., Khokhar, S., Gupta, R.: Turn prediction at generalized intersections. In: 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 1399-1404. IEEE (2015)
33.
Zurück zum Zitat Phillips, D.J., Wheeler, T.A., Kochenderfer, M.J.: Generalizable intention prediction of human drivers at intersections. In: 2017 IEEE intelligent vehicles symposium (IV), pp. 1665–1670. IEEE (2017) Phillips, D.J., Wheeler, T.A., Kochenderfer, M.J.: Generalizable intention prediction of human drivers at intersections. In: 2017 IEEE intelligent vehicles symposium (IV), pp. 1665–1670. IEEE (2017)
34.
Zurück zum Zitat Zyner, A., Worrall, S., Nebot, E.: A recurrent neural network solution for predicting driver intention at unsignalized intersections. IEEE Robot. Autom. Lett. 3(3), 1759–1764 (2018)CrossRef Zyner, A., Worrall, S., Nebot, E.: A recurrent neural network solution for predicting driver intention at unsignalized intersections. IEEE Robot. Autom. Lett. 3(3), 1759–1764 (2018)CrossRef
35.
Zurück zum Zitat Williams, G., Baxter, R., He, H., Hawkins, S., Gu, L.: A comparative study of RNN for outlier detection in data mining. In: 2002 IEEE International Conference on Data Mining, 2002. Proceedings., pp. 709-712. IEEE (2002) Williams, G., Baxter, R., He, H., Hawkins, S., Gu, L.: A comparative study of RNN for outlier detection in data mining. In: 2002 IEEE International Conference on Data Mining, 2002. Proceedings., pp. 709-712. IEEE (2002)
36.
Zurück zum Zitat Chen, H., Zhang, X.: Path planning for intelligent vehicle collision avoidance of dynamic pedestrian using Att-LSTM, MSFM, and MPC at unsignalized crosswalk. IEEE Trans. Ind. Electron. 69(4), 4285–4295 (2021)CrossRef Chen, H., Zhang, X.: Path planning for intelligent vehicle collision avoidance of dynamic pedestrian using Att-LSTM, MSFM, and MPC at unsignalized crosswalk. IEEE Trans. Ind. Electron. 69(4), 4285–4295 (2021)CrossRef
37.
Zurück zum Zitat Ding, Y., Zhu, Y., Feng, J., Zhang, P., Cheng, Z.: Interpretable spatio-temporal attention LSTM model for flood forecasting. Neurocomputing 403, 348–359 (2020)CrossRef Ding, Y., Zhu, Y., Feng, J., Zhang, P., Cheng, Z.: Interpretable spatio-temporal attention LSTM model for flood forecasting. Neurocomputing 403, 348–359 (2020)CrossRef
38.
Zurück zum Zitat Abdel-Nasser, M., Mahmoud, K.: Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Comput. Appl. 31, 2727–2740 (2019)CrossRef Abdel-Nasser, M., Mahmoud, K.: Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Comput. Appl. 31, 2727–2740 (2019)CrossRef
39.
Zurück zum Zitat Deo, N., Trivedi, M.M.: Multi-modal trajectory prediction of surrounding vehicles with maneuver based lstms. In: 2018 IEEE intelligent vehicles symposium (IV), pp. 1179–1184. IEEE (2018) Deo, N., Trivedi, M.M.: Multi-modal trajectory prediction of surrounding vehicles with maneuver based lstms. In: 2018 IEEE intelligent vehicles symposium (IV), pp. 1179–1184. IEEE (2018)
40.
Zurück zum Zitat Messaoud, K., Yahiaoui, I., Verroust-Blondet, A., Nashashibi, F.: Attention based vehicle trajectory prediction. IEEE Trans. Intell. Veh. 6(1), 175–185 (2020)CrossRef Messaoud, K., Yahiaoui, I., Verroust-Blondet, A., Nashashibi, F.: Attention based vehicle trajectory prediction. IEEE Trans. Intell. Veh. 6(1), 175–185 (2020)CrossRef
41.
Zurück zum Zitat Li, X., Ying, X., Chuah, M.C.: Grip: Graph-based interaction-aware trajectory prediction. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3960–3966. IEEE (2019) Li, X., Ying, X., Chuah, M.C.: Grip: Graph-based interaction-aware trajectory prediction. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3960–3966. IEEE (2019)
42.
Zurück zum Zitat Messaoud, K., Yahiaoui, I., Verroust-Blondet, A., Nashashibi, F.: Relational recurrent neural networks for vehicle trajectory prediction. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 1813-1818. IEEE (2019) Messaoud, K., Yahiaoui, I., Verroust-Blondet, A., Nashashibi, F.: Relational recurrent neural networks for vehicle trajectory prediction. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 1813-1818. IEEE (2019)
43.
Zurück zum Zitat Wiest, J., Höffken, M., Kreßel, U., Dietmayer, K.: Probabilistic trajectory prediction with Gaussian mixture models. In: 2012 IEEE Intelligent vehicles symposium, pp. 141–146. IEEE (2012) Wiest, J., Höffken, M., Kreßel, U., Dietmayer, K.: Probabilistic trajectory prediction with Gaussian mixture models. In: 2012 IEEE Intelligent vehicles symposium, pp. 141–146. IEEE (2012)
44.
Zurück zum Zitat Messaoud, K., Yahiaoui, I., Verroust-Blondet, A., Nashashibi, F.: Non-local social pooling for vehicle trajectory prediction. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 975–980. IEEE (2019) Messaoud, K., Yahiaoui, I., Verroust-Blondet, A., Nashashibi, F.: Non-local social pooling for vehicle trajectory prediction. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 975–980. IEEE (2019)
45.
Zurück zum Zitat Bartoli, F., Lisanti, G., Ballan, L., Del Bimbo, A.: Context-aware trajectory prediction. In: 2018 24th international conference on pattern recognition (ICPR), pp. 1941–1946. IEEE (2018) Bartoli, F., Lisanti, G., Ballan, L., Del Bimbo, A.: Context-aware trajectory prediction. In: 2018 24th international conference on pattern recognition (ICPR), pp. 1941–1946. IEEE (2018)
46.
Zurück zum Zitat Williams, K.R., Schlossman, R., Whitten, D., Ingram, J., Musuvathy, S., Pagan, J., Williams, K.A., et al.: Trajectory planning with deep reinforcement learning in high-level action spaces. IEEE Trans. Aerosp. Electron. Syst. 59(3), 2513–2529 (2022) Williams, K.R., Schlossman, R., Whitten, D., Ingram, J., Musuvathy, S., Pagan, J., Williams, K.A., et al.: Trajectory planning with deep reinforcement learning in high-level action spaces. IEEE Trans. Aerosp. Electron. Syst. 59(3), 2513–2529 (2022)
47.
Zurück zum Zitat Xue, W., Lian, B., Fan, J., Chai, T., Lewis, F.L.: Inverse reinforcement learning for trajectory imitation using static output feedback control. IEEE Trans. Cybern. 54(3), 1695–1707 (2023)CrossRef Xue, W., Lian, B., Fan, J., Chai, T., Lewis, F.L.: Inverse reinforcement learning for trajectory imitation using static output feedback control. IEEE Trans. Cybern. 54(3), 1695–1707 (2023)CrossRef
48.
Zurück zum Zitat Choi, D., An, T.-H., Ahn, K., Choi, J.: Future trajectory prediction via RNN and maximum margin inverse reinforcement learning. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 125–130. IEEE (2018) Choi, D., An, T.-H., Ahn, K., Choi, J.: Future trajectory prediction via RNN and maximum margin inverse reinforcement learning. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 125–130. IEEE (2018)
49.
Zurück zum Zitat Avaei, A., van der Spaa, L., Peternel, L., Kober, J.: An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12(2), 61 (2023)CrossRef Avaei, A., van der Spaa, L., Peternel, L., Kober, J.: An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12(2), 61 (2023)CrossRef
Metadaten
Titel
Trajectory and Motion Prediction of Autonomous Vehicles Driving Assistant System using Distributed Discriminator Based Bi-Directional Long Short Term Memory Model
verfasst von
Sushila Umesh Ratre
Bharti Joshi
Publikationsdatum
30.11.2024
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-024-00447-8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.