Skip to main content

2018 | OriginalPaper | Buchkapitel

Trajectory Optimization for Dynamic Grasping in Space Using Adhesive Grippers

verfasst von : Roshena MacPherson, Benjamin Hockman, Andrew Bylard, Matthew A. Estrada, Mark R. Cutkosky, Marco Pavone

Erschienen in: Field and Service Robotics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spacecraft equipped with gecko-inspired dry adhesive grippers can dynamically grasp objects having a wide variety of featureless surfaces. In this paper we propose an optimization-based control strategy to exploit the dynamic robustness of such grippers for the task of grasping a free-floating, spinning object. First, we extend previous work characterizing the dynamic grasping capabilities of these grippers to the case where both object and spacecraft are free-floating and comparably sized. We then formulate the acquisition problem as a two-phase optimization problem, which is amenable to real time implementation and can handle constraints on velocity, control, as well as integer timing constraints for grasping a specific target location on the surface of a spinning object. Conservative analytical bounds for the set of initial states that guarantee feasible grasping solutions are derived. Finally, we validate this control architecture on the Stanford free-flyer test bed—a 2D microgravity test bed for emulating drift dynamics of spacecraft.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Future gripper designs will incorporate an automatic trigger, eliminating the minimum normal impulse requirement.
 
Literatur
1.
Zurück zum Zitat Fong, T., Micire, M., Morse, T., Park, E., Provencher, C., To, V., Wheeler, D.W., Mittman, D., Torres, T., Smith, E.: Smart SPHERES: a telerobotic free-flyer for intravehicular activities in space. In: AIAA SPACE Conferences and Exposition (2013) Fong, T., Micire, M., Morse, T., Park, E., Provencher, C., To, V., Wheeler, D.W., Mittman, D., Torres, T., Smith, E.: Smart SPHERES: a telerobotic free-flyer for intravehicular activities in space. In: AIAA SPACE Conferences and Exposition (2013)
2.
Zurück zum Zitat Ambrose, R., Nesnas, I.A.D., Chandler, F., Allen, B.D., Fong, T., Matthies, L., Mueller, R.: 2015 NASA Technology Roadmaps: TA 4: Robotics and Autonomous Systems. Technical Report, NASA (2015) Ambrose, R., Nesnas, I.A.D., Chandler, F., Allen, B.D., Fong, T., Matthies, L., Mueller, R.: 2015 NASA Technology Roadmaps: TA 4: Robotics and Autonomous Systems. Technical Report, NASA (2015)
3.
Zurück zum Zitat Aghili, F.: A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics. IEEE Trans. Robot. 28(3), 634–649 (2012)CrossRef Aghili, F.: A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics. IEEE Trans. Robot. 28(3), 634–649 (2012)CrossRef
4.
Zurück zum Zitat Motaghedi, P.: On-orbit performance of the orbital express capture system. Proc. SPIE 6958(0E) (2008) Motaghedi, P.: On-orbit performance of the orbital express capture system. Proc. SPIE 6958(0E) (2008)
5.
Zurück zum Zitat Jiang, H., Hawkes, E.W., Arutyunov, V., Tims, J., Fuller, C., King, J.P., Seubert, C., Chang, H.L., Parness, A., Cutkosky, M.R.: Scaling controllable adhesives to grapple floating objects in space. In: Proceedings of IEEE Conference on Robotics and Automation (2015) Jiang, H., Hawkes, E.W., Arutyunov, V., Tims, J., Fuller, C., King, J.P., Seubert, C., Chang, H.L., Parness, A., Cutkosky, M.R.: Scaling controllable adhesives to grapple floating objects in space. In: Proceedings of IEEE Conference on Robotics and Automation (2015)
6.
Zurück zum Zitat Estrada, M.A., Hockman, B., Bylard, A., Hawkes, E.W., Cutkosky, M.R., Pavone, M.: Free-flyer acquisition of spinning objects with gecko-inspired adhesives. In: Proceedings of IEEE Conference on Robotics and Automation (2016) Estrada, M.A., Hockman, B., Bylard, A., Hawkes, E.W., Cutkosky, M.R., Pavone, M.: Free-flyer acquisition of spinning objects with gecko-inspired adhesives. In: Proceedings of IEEE Conference on Robotics and Automation (2016)
7.
Zurück zum Zitat Hawkes, E.W., Christensen, D.L., Eason, E.V., Estrada, M.A., Heverly, M., Hilgemann, E., Jiang, H., Pope, M.T., Parness, A., Cutkosky, M.R.: Dynamic surface grasping with directional adhesion. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2013) Hawkes, E.W., Christensen, D.L., Eason, E.V., Estrada, M.A., Heverly, M., Hilgemann, E., Jiang, H., Pope, M.T., Parness, A., Cutkosky, M.R.: Dynamic surface grasping with directional adhesion. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)
8.
Zurück zum Zitat Estrada, M.A., Jiang, H., Noll, B., Hawkes, E.W., Pavone, M., Cutkosky, M.R.: Force and moment constraints of a curved surface gripper and wrist for assistive free flyers. In: Proceedings IEEE Conference on Robotics and Automation (2017) Estrada, M.A., Jiang, H., Noll, B., Hawkes, E.W., Pavone, M., Cutkosky, M.R.: Force and moment constraints of a curved surface gripper and wrist for assistive free flyers. In: Proceedings IEEE Conference on Robotics and Automation (2017)
9.
Zurück zum Zitat Weiss, A., Baldwin, M., Erwin, R.S., Kolmanovsky, I.: Model predictive control for spacecraft rendezvous and docking: Strategies for handling constraints and case studies. IEEE Trans. Control Syst. Technol. 23(4), 1638–1647 (2015)CrossRef Weiss, A., Baldwin, M., Erwin, R.S., Kolmanovsky, I.: Model predictive control for spacecraft rendezvous and docking: Strategies for handling constraints and case studies. IEEE Trans. Control Syst. Technol. 23(4), 1638–1647 (2015)CrossRef
10.
Zurück zum Zitat Hartley, E., Trodden, P.A., Richards, A.G., Maciejowski, J.M.: Model predictive control system design and implementation for spacecraft rendezvous. Control Eng. Pract. 20(7), 695–713 (2012)CrossRef Hartley, E., Trodden, P.A., Richards, A.G., Maciejowski, J.M.: Model predictive control system design and implementation for spacecraft rendezvous. Control Eng. Pract. 20(7), 695–713 (2012)CrossRef
11.
Zurück zum Zitat Park, H., Di Cairano, S., Kolmanovsky, I.: Model predictive control of spacecraft docking with a non-rotating platform. IFAC World Congr. 44(1), 8485–8490 (2011) Park, H., Di Cairano, S., Kolmanovsky, I.: Model predictive control of spacecraft docking with a non-rotating platform. IFAC World Congr. 44(1), 8485–8490 (2011)
12.
Zurück zum Zitat Di Cairano, S., Park, H., Kolmanovsky, I.: Model predictive control approach for guidance of spacecraft rendezvous and proximity maneuvering. Int. J. Robust Nonlinear Control 22(12), 1398–1427 (2012)CrossRefMATHMathSciNet Di Cairano, S., Park, H., Kolmanovsky, I.: Model predictive control approach for guidance of spacecraft rendezvous and proximity maneuvering. Int. J. Robust Nonlinear Control 22(12), 1398–1427 (2012)CrossRefMATHMathSciNet
13.
Zurück zum Zitat Yoshida, K., Nakanishi, H., Ueno, H., Inaba, N., Oda, M.: Dynamics, control and impedance matching for robotic capture of a non-cooperative satellite. Adv. Robot. 18(2), 175–198 (2004)CrossRef Yoshida, K., Nakanishi, H., Ueno, H., Inaba, N., Oda, M.: Dynamics, control and impedance matching for robotic capture of a non-cooperative satellite. Adv. Robot. 18(2), 175–198 (2004)CrossRef
14.
Zurück zum Zitat Schmerling, E., Janson, L., Pavone, M.: Optimal sampling-based motion planning under differential constraints: the drift case with linear affine dynamics. In: Proceedings of IEEE Conference on Decision and Control (2015) Schmerling, E., Janson, L., Pavone, M.: Optimal sampling-based motion planning under differential constraints: the drift case with linear affine dynamics. In: Proceedings of IEEE Conference on Decision and Control (2015)
15.
Zurück zum Zitat Kirk, D.E.: Optimal Control Theory: An Introduction. Courier Corporation (2012) Kirk, D.E.: Optimal Control Theory: An Introduction. Courier Corporation (2012)
Metadaten
Titel
Trajectory Optimization for Dynamic Grasping in Space Using Adhesive Grippers
verfasst von
Roshena MacPherson
Benjamin Hockman
Andrew Bylard
Matthew A. Estrada
Mark R. Cutkosky
Marco Pavone
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-67361-5_4

Neuer Inhalt