Skip to main content

19.11.2024 | Chassis, Electrical and Electronics, Vehicle Dynamics and Control

Trajectory Tracking Control for Self-driving Vehicle Considering Road Slope and Adhesion Condition

verfasst von: Zejia He, Jixiang Liang, Yiming Li, Weilu Hou, Qin Shi

Erschienen in: International Journal of Automotive Technology

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There are strict constraints of vehicle location and running time in trajectory tracking. When a self-driving vehicle with a two-dimensional tracking strategy drives on ramps, the demand trajectory will be lengthened due to the existence of road slope, resulting in low tracking accuracy. Moreover, the existing techniques are difficult to cope with sudden changes in road adhesion. Here we discuss a series of studies on trajectory tracking control with the consideration of road slope and adhesion condition. A tridimensional vehicle kinematics model is constructed, based on which a basic tracking controller is designed to adjust front wheel steering angle. The obtained vehicle speed is not directly applied to the self-driving vehicle, but is sent as a control target to a motor torque command controller based on a constructed longitudinal vehicle dynamics model. In this process, the control of slip ratio is taken into account to prevent wheels from being locked by regulating the torque command. The two controllers are linked by the vehicle speed. Some comparative tests are carried out by a software-in-loop experimental platform. The test results demonstrate that the adaptability of the self-driving vehicle to the road slope and adhesion variation during the trajectory tracking can be improved.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Amer, N. H., Zamzuri, H., Hudha, K., & Kadir, Z. A. (2017). Modelling and control strategies in path tracking control for autonomous ground vehicles: A review of state of the art and challenges. Journal of Intelligent and Robotic Systems, 86, 225–254.CrossRef Amer, N. H., Zamzuri, H., Hudha, K., & Kadir, Z. A. (2017). Modelling and control strategies in path tracking control for autonomous ground vehicles: A review of state of the art and challenges. Journal of Intelligent and Robotic Systems, 86, 225–254.CrossRef
Zurück zum Zitat Cao, H., Song, X., Zhao, S., Bao, S., & Huang, Z. (2017). An optimal model-based trajectory following architecture synthesising the lateral adaptive preview strategy and longitudinal velocity planning for highly automated vehicle. Vehicle System Dynamics, 55(8), 1143–1188.CrossRef Cao, H., Song, X., Zhao, S., Bao, S., & Huang, Z. (2017). An optimal model-based trajectory following architecture synthesising the lateral adaptive preview strategy and longitudinal velocity planning for highly automated vehicle. Vehicle System Dynamics, 55(8), 1143–1188.CrossRef
Zurück zum Zitat Cao, J., Song, C., Peng, S., Song, S., Zhang, X., & Xiao, F. (2020). Trajectory tracking control algorithm for autonomous vehicle considering cornering characteristics. IEEE Access, 8, 59470–59484.CrossRef Cao, J., Song, C., Peng, S., Song, S., Zhang, X., & Xiao, F. (2020). Trajectory tracking control algorithm for autonomous vehicle considering cornering characteristics. IEEE Access, 8, 59470–59484.CrossRef
Zurück zum Zitat Chen, L., Li, Y., Huang, C., Li, B., Xing, Y., Tian, D., Li, L., Hu, Z., Na, X., Li, Z., Teng, S., Lv, C., Wang, J., Cao, D., Zheng, N., & Wang, F.-Y. (2023). Milestones in autonomous driving and intelligent vehicles: Survey of surveys. IEEE Transactions on Intelligent Vehicles, 8(2), 1046–1056.CrossRef Chen, L., Li, Y., Huang, C., Li, B., Xing, Y., Tian, D., Li, L., Hu, Z., Na, X., Li, Z., Teng, S., Lv, C., Wang, J., Cao, D., Zheng, N., & Wang, F.-Y. (2023). Milestones in autonomous driving and intelligent vehicles: Survey of surveys. IEEE Transactions on Intelligent Vehicles, 8(2), 1046–1056.CrossRef
Zurück zum Zitat Chen, Y., Peng, H., & Grizzle, J. W. (2017). Fast trajectory planning and robust trajectory tracking for pedestrian avoidance. IEEE Access, 5, 9304–9317.CrossRef Chen, Y., Peng, H., & Grizzle, J. W. (2017). Fast trajectory planning and robust trajectory tracking for pedestrian avoidance. IEEE Access, 5, 9304–9317.CrossRef
Zurück zum Zitat Chu, D., Li, H., Zhao, C., & Zhou, T. (2023). Trajectory tracking of autonomous vehicle based on model predictive control with PID feedback. IEEE Transactions on Intelligent Transportation Systems, 24(2), 2239–2250. Chu, D., Li, H., Zhao, C., & Zhou, T. (2023). Trajectory tracking of autonomous vehicle based on model predictive control with PID feedback. IEEE Transactions on Intelligent Transportation Systems, 24(2), 2239–2250.
Zurück zum Zitat Dixit, S., Fallah, S., Montanaro, U., Dianati, M., Stevens, A., Mccullough, F., & Mouzakitis, A. (2018). Trajectory planning and tracking for autonomous overtaking: State-of-the-art and future prospects. Annual Reviews in Control, 45, 76–86.MathSciNetCrossRef Dixit, S., Fallah, S., Montanaro, U., Dianati, M., Stevens, A., Mccullough, F., & Mouzakitis, A. (2018). Trajectory planning and tracking for autonomous overtaking: State-of-the-art and future prospects. Annual Reviews in Control, 45, 76–86.MathSciNetCrossRef
Zurück zum Zitat Fan, Z., Li, X., Zhu, Y., Hao, B., Li, S., & Zhou, T. (2022). Research on trajectory tracking control of skid steering vehicle based on model predictive control. In 2021 6th International conference on intelligent transportation engineering (ICITE 2021) (pp. 937–949). Fan, Z., Li, X., Zhu, Y., Hao, B., Li, S., & Zhou, T. (2022). Research on trajectory tracking control of skid steering vehicle based on model predictive control. In 2021 6th International conference on intelligent transportation engineering (ICITE 2021) (pp. 937–949).
Zurück zum Zitat Gao, H., Kan, Z., & Li, K. (2022). Robust lateral trajectory following control of unmanned vehicle based on model predictive control. IEEE/ASME Transactions on Mechatronics, 27(3), 1278–1287.CrossRef Gao, H., Kan, Z., & Li, K. (2022). Robust lateral trajectory following control of unmanned vehicle based on model predictive control. IEEE/ASME Transactions on Mechatronics, 27(3), 1278–1287.CrossRef
Zurück zum Zitat Gao, Y., Wang, X., Huang, J., & Yuan, L. (2024). Adaptive model predictive control for intelligent vehicle trajectory tracking considering road curvature. International Journal of Automotive Technology, 25, 1051–1064.CrossRef Gao, Y., Wang, X., Huang, J., & Yuan, L. (2024). Adaptive model predictive control for intelligent vehicle trajectory tracking considering road curvature. International Journal of Automotive Technology, 25, 1051–1064.CrossRef
Zurück zum Zitat Ge, C., & Qian, S. (2021). An adaptive MPC trajectory tracking algorithm for autonomous vehicles. In 2021 17th International conference on computational intelligence and security (CIS) (pp. 197–201). Ge, C., & Qian, S. (2021). An adaptive MPC trajectory tracking algorithm for autonomous vehicles. In 2021 17th International conference on computational intelligence and security (CIS) (pp. 197–201).
Zurück zum Zitat He, S., Hu, C., Lin, S., & Zhu, Y. (2022). An online time-optimal trajectory planning method for constrained multi-axis trajectory with guaranteed feasibility. IEEE Robotics and Automation Letters, 7(3), 7375–7382.CrossRef He, S., Hu, C., Lin, S., & Zhu, Y. (2022). An online time-optimal trajectory planning method for constrained multi-axis trajectory with guaranteed feasibility. IEEE Robotics and Automation Letters, 7(3), 7375–7382.CrossRef
Zurück zum Zitat He, S., Xu, X., Xie, J., Wang, F., & Liu, Z. (2023b). Adaptive control of dual-motor autonomous steering system for intelligent vehicles via Bi-LSTM and fuzzy methods. Control Engineering Practice, 130, 105362.CrossRef He, S., Xu, X., Xie, J., Wang, F., & Liu, Z. (2023b). Adaptive control of dual-motor autonomous steering system for intelligent vehicles via Bi-LSTM and fuzzy methods. Control Engineering Practice, 130, 105362.CrossRef
Zurück zum Zitat He, Z., Shi, Q., Liang, J., Gui, J., Cheng, T., & He, L. (2023a). Tridimensional vector path abstracting and trajectory tracking control on ramps of full self-driving vehicle. Control Engineering Practice, 139, 105626.CrossRef He, Z., Shi, Q., Liang, J., Gui, J., Cheng, T., & He, L. (2023a). Tridimensional vector path abstracting and trajectory tracking control on ramps of full self-driving vehicle. Control Engineering Practice, 139, 105626.CrossRef
Zurück zum Zitat Hu, L., Lei, W., Zhao, J., & Sun, X. (2024). Optimal weighting factor design of finite control set model predictive control based on multiobjective ant colony optimization. IEEE Transactions on Industrial Electronics, 71(7), 6918–6928.CrossRef Hu, L., Lei, W., Zhao, J., & Sun, X. (2024). Optimal weighting factor design of finite control set model predictive control based on multiobjective ant colony optimization. IEEE Transactions on Industrial Electronics, 71(7), 6918–6928.CrossRef
Zurück zum Zitat Jin, L., Zhou, H., Xie, X., Guo, B., & Ma, X. (2024). A direct yaw moment control frame through model predictive control considering vehicle trajectory tracking performance and handling stability for autonomous driving. Control Engineering Practice, 148, 105947.CrossRef Jin, L., Zhou, H., Xie, X., Guo, B., & Ma, X. (2024). A direct yaw moment control frame through model predictive control considering vehicle trajectory tracking performance and handling stability for autonomous driving. Control Engineering Practice, 148, 105947.CrossRef
Zurück zum Zitat Kebbati, Y., Ait-Oufroukh, N., Ichalal, D., & Vigneron, V. (2023). Lateral control for autonomous wheeled vehicles: A technical review. Asian Journal of Control, 25(4), 2539–2563.MathSciNetCrossRef Kebbati, Y., Ait-Oufroukh, N., Ichalal, D., & Vigneron, V. (2023). Lateral control for autonomous wheeled vehicles: A technical review. Asian Journal of Control, 25(4), 2539–2563.MathSciNetCrossRef
Zurück zum Zitat Kong, J., Pfeiffer, M., Schildbach, G., & Borrelli, F. (2015). Kinematic and dynamic vehicle models for autonomous driving control design. IEEE Intelligent Vehicles Symposium (IV), 2015, 1094–1099. Kong, J., Pfeiffer, M., Schildbach, G., & Borrelli, F. (2015). Kinematic and dynamic vehicle models for autonomous driving control design. IEEE Intelligent Vehicles Symposium (IV), 2015, 1094–1099.
Zurück zum Zitat Nath, K., Yesmin, A., Nanda, A., & Bera, M. K. (2021). Event-triggered sliding-mode control of two wheeled mobile robot: An experimental validation. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2(3), 218–226.CrossRef Nath, K., Yesmin, A., Nanda, A., & Bera, M. K. (2021). Event-triggered sliding-mode control of two wheeled mobile robot: An experimental validation. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2(3), 218–226.CrossRef
Zurück zum Zitat Qin, Z., Cheng, F., Li, L., & Yang, H. (2022). Velocity tracking for a longitudinal vehicle control system on variable slope ramps. In 2022 37th Youth academic annual conference of Chinese Association of Automation (YAC) (pp. 1232–1237). Qin, Z., Cheng, F., Li, L., & Yang, H. (2022). Velocity tracking for a longitudinal vehicle control system on variable slope ramps. In 2022 37th Youth academic annual conference of Chinese Association of Automation (YAC) (pp. 1232–1237).
Zurück zum Zitat Satouri, M. R., Marashian, A., & Razminia, A. (2021). Trajectory tracking of an autonomous vehicle using immersion and invariance control. Journal of the Franklin Institute, 358(17), 8969–8992.MathSciNetCrossRef Satouri, M. R., Marashian, A., & Razminia, A. (2021). Trajectory tracking of an autonomous vehicle using immersion and invariance control. Journal of the Franklin Institute, 358(17), 8969–8992.MathSciNetCrossRef
Zurück zum Zitat Shi, Q., He, Z., Wei, Y., Wang, M., Zheng, X., & He, L. (2022). Single pedal control of battery electric vehicle by pedal torque demand with dynamic zero position. IEEE Transactions on Intelligent Transportation Systems, 23(11), 21608–21619.CrossRef Shi, Q., He, Z., Wei, Y., Wang, M., Zheng, X., & He, L. (2022). Single pedal control of battery electric vehicle by pedal torque demand with dynamic zero position. IEEE Transactions on Intelligent Transportation Systems, 23(11), 21608–21619.CrossRef
Zurück zum Zitat Shi, Y., & Zhang, K. (2021). Advanced model predictive control framework for autonomous intelligent mechatronic systems: A tutorial overview and perspectives. Annual Reviews in Control, 52, 170–196.MathSciNetCrossRef Shi, Y., & Zhang, K. (2021). Advanced model predictive control framework for autonomous intelligent mechatronic systems: A tutorial overview and perspectives. Annual Reviews in Control, 52, 170–196.MathSciNetCrossRef
Zurück zum Zitat Song, J., Tao, G., Zang, Z., Li, D., Fu, X., & Gong, J. (2022). Nonlinear dynamics based trajectory tracking robust control of unmanned ground vehicle. In 2022 6th CAA International Conference on Vehicular Control and Intelligence (CVCI) (pp. 1–6). Song, J., Tao, G., Zang, Z., Li, D., Fu, X., & Gong, J. (2022). Nonlinear dynamics based trajectory tracking robust control of unmanned ground vehicle. In 2022 6th CAA International Conference on Vehicular Control and Intelligence (CVCI) (pp. 1–6).
Zurück zum Zitat Song, J., Tao, G., Zang, Z., Dong, H., Wang, B., & Gong, J. (2023). Isolating trajectory tracking from motion control: A model predictive control and robust control framework for unmanned ground vehicles. IEEE Robotics and Automation Letters, 8(3), 1699–1706.CrossRef Song, J., Tao, G., Zang, Z., Dong, H., Wang, B., & Gong, J. (2023). Isolating trajectory tracking from motion control: A model predictive control and robust control framework for unmanned ground vehicles. IEEE Robotics and Automation Letters, 8(3), 1699–1706.CrossRef
Zurück zum Zitat Tan, G., Li, M., Hou, B., Zhu, J., & Guan, L. (2024). Achieving accurate trajectory predicting and tracking for autonomous vehicles via reinforcement learning-assisted control approaches. Engineering Applications of Artificial Intelligence, 135, 108773.CrossRef Tan, G., Li, M., Hou, B., Zhu, J., & Guan, L. (2024). Achieving accurate trajectory predicting and tracking for autonomous vehicles via reinforcement learning-assisted control approaches. Engineering Applications of Artificial Intelligence, 135, 108773.CrossRef
Zurück zum Zitat Tork, N., Amirkhani, A., & Shokouhi, S. B. (2021). An adaptive modified neural lateral-longitudinal control system for path following of autonomous vehicles. Engineering Science and Technology, an International Journal, 24(1), 126–137.CrossRef Tork, N., Amirkhani, A., & Shokouhi, S. B. (2021). An adaptive modified neural lateral-longitudinal control system for path following of autonomous vehicles. Engineering Science and Technology, an International Journal, 24(1), 126–137.CrossRef
Zurück zum Zitat Tu, Y., Wu, Y., Li, Y., Zhang, P., Guo, Z., Yin, Y. (2022) Longitudinal and transverse trajectory tracking of unmanned vehicle based on dual PID and LQR. 2022 4th International Conference on Intelligent Information Processing (IIP) 355–359. Tu, Y., Wu, Y., Li, Y., Zhang, P., Guo, Z., Yin, Y. (2022) Longitudinal and transverse trajectory tracking of unmanned vehicle based on dual PID and LQR. 2022 4th International Conference on Intelligent Information Processing (IIP) 355–359.
Zurück zum Zitat Wang, Z., Bai, Y., Wang, J., & Wang, X. (2019). Vehicle path-tracking linear-time-varying model predictive control controller parameter selection considering central process unit computational load. Journal of Dynamic Systems, Measurement, and Control, 141(5), 051004.CrossRef Wang, Z., Bai, Y., Wang, J., & Wang, X. (2019). Vehicle path-tracking linear-time-varying model predictive control controller parameter selection considering central process unit computational load. Journal of Dynamic Systems, Measurement, and Control, 141(5), 051004.CrossRef
Zurück zum Zitat Yang, H., Wang, Z., Xia, Y., & Zuo, Z. (2023). EMPC with adaptive APF of obstacle avoidance and trajectory tracking for autonomous electric vehicles. ISA Transactions, 135, 438–448.CrossRef Yang, H., Wang, Z., Xia, Y., & Zuo, Z. (2023). EMPC with adaptive APF of obstacle avoidance and trajectory tracking for autonomous electric vehicles. ISA Transactions, 135, 438–448.CrossRef
Zurück zum Zitat Ye, B.-L., Niu, S., Li, L., & Wu, W. (2023). A comparison study of kinematic and dynamic models for trajectory tracking of autonomous vehicles using model predictive control. International Journal of Control, Automation and Systems, 21(9), 3006–3021.CrossRef Ye, B.-L., Niu, S., Li, L., & Wu, W. (2023). A comparison study of kinematic and dynamic models for trajectory tracking of autonomous vehicles using model predictive control. International Journal of Control, Automation and Systems, 21(9), 3006–3021.CrossRef
Zurück zum Zitat Zha, Y., Deng, J., Qiu, Y., Zhang, K., & Wang, Y. (2023). A survey of intelligent driving vehicle trajectory tracking based on vehicle dynamics. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2, 221–248. Zha, Y., Deng, J., Qiu, Y., Zhang, K., & Wang, Y. (2023). A survey of intelligent driving vehicle trajectory tracking based on vehicle dynamics. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2, 221–248.
Zurück zum Zitat Zhai, L., Wang, C., Hou, Y., & Liu, C. (2022). MPC-based integrated control of trajectory tracking and handling stability for intelligent driving vehicle driven by four hub motor. IEEE Transactions on Vehicular Technology, 71(3), 2668–2680.CrossRef Zhai, L., Wang, C., Hou, Y., & Liu, C. (2022). MPC-based integrated control of trajectory tracking and handling stability for intelligent driving vehicle driven by four hub motor. IEEE Transactions on Vehicular Technology, 71(3), 2668–2680.CrossRef
Zurück zum Zitat Zhang, X., Li, J., Ma, Z., Chen, D., & Zhou, X. (2024). Lateral trajectory tracking of self-driving vehicles based on sliding mode and fractional-order proportional-integral-derivative control. Actuators, 13(1), 7.CrossRef Zhang, X., Li, J., Ma, Z., Chen, D., & Zhou, X. (2024). Lateral trajectory tracking of self-driving vehicles based on sliding mode and fractional-order proportional-integral-derivative control. Actuators, 13(1), 7.CrossRef
Zurück zum Zitat Zhang, Z., Zheng, L., Li, Y., Li, S., & Liang, Y. (2023). Cooperative strategy of trajectory tracking and stability control for 4WID autonomous vehicles under extreme conditions. IEEE Transactions on Vehicular Technology, 72(3), 3105–3118.CrossRef Zhang, Z., Zheng, L., Li, Y., Li, S., & Liang, Y. (2023). Cooperative strategy of trajectory tracking and stability control for 4WID autonomous vehicles under extreme conditions. IEEE Transactions on Vehicular Technology, 72(3), 3105–3118.CrossRef
Zurück zum Zitat Zhou, N., Qin, H., Choi, K.-S., Du, Y., Liu, J., Li, P., Huang, X., Shi, K., & Xu, Y. (2023). Correntropy based model predictive controller with multi-constraints for robust path trajectory tracking of self-driving vehicle. Journal of the Franklin Institute, 360(10), 6929–6952.MathSciNetCrossRef Zhou, N., Qin, H., Choi, K.-S., Du, Y., Liu, J., Li, P., Huang, X., Shi, K., & Xu, Y. (2023). Correntropy based model predictive controller with multi-constraints for robust path trajectory tracking of self-driving vehicle. Journal of the Franklin Institute, 360(10), 6929–6952.MathSciNetCrossRef
Metadaten
Titel
Trajectory Tracking Control for Self-driving Vehicle Considering Road Slope and Adhesion Condition
verfasst von
Zejia He
Jixiang Liang
Yiming Li
Weilu Hou
Qin Shi
Publikationsdatum
19.11.2024
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00177-6